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Abstract

Local fractional derivative (LFD) operators have been introduced in the recent liter-
ature (Chaos 6 (1996) 505–513). Being local in nature these derivatives have proven
useful in studying fractional differentiability properties of highly irregular and nowhere
differentiable functions. In the present paper we prove Leibniz rule, chain rule for LFD
operators. Generalization of directional LFD and multivariable fractional Taylor series to
higher orders have been presented. 2002 Elsevier Science (USA). All rights reserved.

Keywords: Riemann–Liouville fractional derivatives/integrals; Local fractional derivatives; Local
fractional Taylor series

1. Introduction

Fractional calculus [1,2] developed since 17th century thorough the pioneer-
ing works of Leibniz, Euler, Lagrange, Abel, Liouville and many others deals with
generalization of differentiation and integration to fractional order. In recent years
the term “fractional calculus” refers to integration and differentiation to an arbi-
trary order. Complex analytic version of fractional differentiation/integration has
been discussed by Srivastava and Owa [3]. Interestingly these derivatives/integrals
are not mere mathematical curiosities but have applications in visco-elasticity,
feedback amplifiers, electrical circuits, electro-analytical chemistry, fractional
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multipoles, neuron modelling and related areas in physics, chemistry, and bio-
logical sciences [2]. It is well known that the fractional derivatives/integrals have
been defined in a variety of ways as [1,2] given by Riemann, Liouville, Gr˝unwald,
Weyl and others. These definitions, however, are non-local in nature, which makes
them unsuitable for investigating properties related to local scaling or fractional
differentiability [4]. Kolwankar and Gangal [4,5] have proposed local fractional
derivative (LFD) operator through renormalization of Riemann–Liouville defini-
tion. LFD follows as a natural generalization of the usual derivatives to fractional
order conserving the local nature of the derivatives in contrast to traditional defin-
itions of fractional derivatives and used further to explore local scaling properties
of highly irregular and nowhere differentiable Weierstrass functions [4]. LFD op-
erators engender a new kind of differential equations, referred as local fractional
differential equations (LFDE) different from the conventional fractional differen-
tial equations. The fractional analog [6] of the Fokker–Planck equation [7] involv-
ing LFDs has been used in modelling phenomena involving fractal time. LFDs
therefore provide a much needed tool for calculus of fractal space–time.

As a pursuit of these we herein investigate the formal properties of LFD
operators. In the present work we prove Leibniz rule for a product of functions
and subsequently derive chain rule for evaluating LFD of composite function.
Generalizations of directional LFD and fractional multivariable Taylor series to
higher orders have also been presented.

The paper has been organised as follows. In Section 2 we give basic definitions
in Riemann–Liouville fractional calculus and LFD operator. Leibniz rule and
chain rule for LFD have been derived in Section 3 and Section 4. Extensions
of directional LFDs and local fractional Taylor series to higher orders have been
presented in Sections 5 and 6.

2. Basic definitions and preliminaries

2.1. Riemann–Liouville fractional calculus

Definitions of Riemann–Liouville fractional derivative/integral and their prop-
erties are given below.

Riemann–Liouville fractional derivative of a real functionf is given forx > a

as [1,2]

dαf (x)

d(x − a)α
= 1

Γ (n − α)

dn

dxn

x∫
a

f (t)

(x − t)α−n+1 dt, n − 1 � α < n, (1)

wheren ∈ N. If further f (x) ∈ Cn(R), repeated integration by parts leads to
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dαf (x)

d(x − a)α
=

n−1∑
k=0

f (k)(a)(x − a)−α+k

Γ (k + 1− α)
+ 1

Γ (n − α)

x∫
a

f (n)(t)

(x − t)α−n+1 dt.

(2)

Riemann–Liouville fractional integral of a real functionf is given by

dαf (x)

d(x − a)α
= 1

Γ (−α)

x∫
a

f (t)

(x − t)α+1
dt, α < 0, x > a. (3)

Note that [1,2] iff (x) = (x − a)β , β > −1, x > a, then

dαf (x)

d(x − a)α
= Γ (β + 1)

Γ (β − α + 1)
(x − a)β−α. (4)

From (3) and (4) it follows that

dα1

d(x − a)α
= (x − a)−α

Γ (1− α)
, x > a, (5)

whereα is any real number. Composition of the Riemann–Liouville fractional
derivative with integer-order derivatives forf ∈ Cn, α > 0, n ∈ N [2] gives

dα+nf (x)

d(x − a)α+n
= dαf (n)(x)

d(x − a)α
+

n−1∑
j=0

f (j)(a)(x − a)j−α−n

Γ (1+ j − α − n)
, x > a. (6)

If the fractional derivativedαf (x)/d(x − a)α of a functionf (x) is integrable,
then [2]

d−α
( dαf (x)

d(x−a)α

)
d(x − a)−α

= f (x) −
n∑

j=1

[
dα−j f (x)

d(x − a)α−j

]
x=a

(x − a)α−j

Γ (α − j + 1)
, (7)

wheren − 1 � α < n, x > a.
Leibniz rule for fractional differentiation is given below [2].
If f (x) is continuous in[a, b] and ϕ(x) ∈ Cn+1[a, b], then the fractional

derivative of the productϕ(x)f (x) is given by

dα(ϕ(x)f (x))

d(x − a)α
=

n∑
k=0

(
α

k

)
ϕ(k)(x)

dα−kf (x)

d(x − a)α−k
− Rα

n (x),

0 < α � n − 1, (8)

where

Rα
n (x) = 1

n!Γ (−α)

x∫
a

(x − u)−α−1f (u) du

x∫
u

ϕ(n+1)(r)(u − r)n dr (9)

and
(
α
k

)
is the generalized binomial coefficient(= Γ (α + 1)(k!Γ (α − k + 1))−1).
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The fractional derivative of the composite analytic functionϕ(x) = f (h(x))

[2] turns out to be

dαϕ(x)

d(x − a)α
= (x − a)−α

Γ (1− α)
ϕ(x) +

∞∑
k=1

(
α

k

)
k!(x − a)k−α

Γ (k − α + 1)

k∑
m=1

f (m)
(
h(x)

)

×
∑ k∏

r=1

1

ar !
(

h(r)(x)

r!
)ar

, (10)

where the sum
∑

extends over all combinations of non-negative integral values
of a1, a2, . . . , ak such that

∑k
r=1 rar = n and

∑k
r=1 ar = m.

2.2. Local fractional derivative

Kolwankar and Gangal [4] have defined LFD as follows. If for a function
f : [0,1] → R, the limit

D
α±f (x) = lim

y→x±
dα(f (y) − f (x))

d(±(y − x))α
, 0< α < 1, (11)

exists and is finite, thenf is said to have right (left) LFD of orderα at y = x. If
for a functionf : [0,1] → R, the limit

D
α±f (x) = lim

y→x±
dα
(
f (y) −∑n

k=0(f
(k)(x)/Γ (k + 1))(y − x)k

)
d(±(y − x))α

(12)

exists and is finite, wheren is the largest integer for whichnth-order derivative
of f (y) at x exist and is finite, thenDα±f (x) are called as the right (left) LFD of
orderα (n < α < n + 1), aty = x.

The definition of right (left) directional local fractional derivative has been
given as follows [8].

Consider a functionf :Rn → R. The right (left) directional LFD off at
X ∈ R

n of orderα in directionV ∈ R
n is given by

(
D

α
V

)
±f (X) = lim

t→0+
dα(f (X ± tV ) − f (X))

dtα
, 0 < α < 1, (13)

provided the limit on the R.H.S. exists.

3. Leibniz rule for LFD

In order to prove Leibniz rule for LFD we prove the following lemma.

Lemma 3.1. Let f : [a, b] → R be a function of class Cr+1. Then D
α±f (x) = 0,

x ∈ (a, b) and D
α+f (a) = D

α−f (b) = 0, for m < α < m+1 � r +1, m ∈ N∪{0}.
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Proof. Form < α < m + 1,

D
α+f (x) = lim

δ→0+

dα
(
f (x + δ) −∑m

n=0
f (n)(x)
Γ (n+1)

δn
)

dδα
.

For a givenx define

g(δ) = f (x + δ) −
m∑

n=0

f (n)(x)

Γ (n + 1)
δn.

Then in view of (2) we get

D
α+f (x) = lim

δ→0+

[
m∑

k=0

g(k)(0)δ−α+k

Γ (−α + k + 1)
+

δ∫
0

(δ − u)m−αg(m+1)(u) du

Γ (−α + m + 1)

]
.

(14)

Since

g(k)(δ) = f (k)(x + δ) −
m∑

n=k

f (n)(x)

Γ (n + 1)
n(n − 1) . . . (n − k + 1)δn−k,

g(k)(0) = f (k)(x) − f (k)(x) = 0, (15)

Eqs. (14) and (15) lead to

D
α+f (x) = lim

δ→0+
1

Γ (−α + m + 1)

δ∫
0

(δ − u)m−αg(m+1)(u) du = 0,

asg(m+1)(u) is continuous and limδ→0+
∫ δ

0 (δ − u)m−α du = 0. Similarly we can
show thatDα−f (x) = 0, x ∈ (a, b) andD

α+f (a) = D
α−f (b) = 0. ✷

Now we proceed to prove Leibniz rule for LFD of orderα, 0 < α < 1, for
product of two functions.

Theorem 3.1. Let f (x) be continuous on [a, b] and D
α+f (a), D

α−f (b) and
D

α±f (x) exist for every x ∈ (a, b). If further ϕ(x) ∈ C3[a, b], then for 0< α < 1

D
α+
(
(ϕf )(a)

)= ϕ(a)Dα+f (a), D
α−
(
(ϕf )(b)

)= ϕ(b)Dα+f (b),

D
α±
(
(ϕf )(x)

)= ϕ(x)Dα±f (x), x ∈ (a, b). (16)

Proof.

D
α+
(
(ϕf )(x)

)= lim
δ→0+

dα((f ϕ(x + δ)) − (f ϕ)(x))

dδα
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= ϕ(x)Dα+f (x) + lim
δ→0+

dα(f (x + δ)[ϕ(x + δ) − ϕ(x)])
dδα

.

(17)

From Leibniz rule for ordinary fractional derivative (cf. Eq. (8)) we get

dα(f (x + δ)[ϕ(x + δ) − ϕ(x)])
dδα

=
2∑

j=0

(
α

j

)[
ϕ(x + δ) − ϕ(x)

](j) dα−j f (x + δ)

dδα−j
− Rα

2 (δ), (18)

where

Rα
2 (δ) = 1

2Γ (−α)

δ∫
0

(δ − u)−α−1f (x + u) du

δ∫
u

ϕ(3)(x + r)(u − r)2 dr.

Note that

lim
δ→0+

dαf (x + δ)

dδα

(
ϕ(x + δ) − ϕ(x)

)
= f (x)

Γ (1− α)
lim

δ→0+
ϕ(x + δ) − ϕ(x)

δα

= f (x)

Γ (1− α)

dϕ(δ)

dδ
lim

δ→0+ δ1−α = 0. (19)

Observe forj = 1,2

lim
δ→0+

dα−jf (x + δ)

dδα−j
= 1

Γ (j − α)
lim

δ→0+

δ∫
0

f (x + u)

(δ − u)α−j+1
du = 0, (20)

asf is bounded and limδ→0+
∫ δ

0 (δ − u)j−α−1 du = 0.
On substitutingr = u + h(δ − u), it follows

lim
δ→0+ Rα

2 (δ) = 1

2Γ (−α)
lim

δ→0+

δ∫
0

(δ − u)2−αf (x + u) du

×
1∫

0

h2ϕ(3)
(
x + u + h(δ − u)

)
dh = 0, (21)

as
∫ 1

0+ h2ϕ(3)(x + u + h(δ − u)) dh is finite, f is bounded and limδ→0+
∫ δ

0 (δ −
u)2−α du = 0.

Thus, in view of Eqs. (19)–(21),
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lim
δ→0+

dα(f (x + δ)[ϕ(x + δ) − ϕ(x)])
dδα

= 0. (22)

Hence from Eqs. (17) and (22) we getD
α+(ϕ(x)f (x)) = ϕ(x)Dα+f (x), where

0 < α < 1.
A similar proof can be given forDα−f . Further note thatDα+((ϕf ))(a) =

ϕ(a)Dα+f (a) andD
α−((ϕf ))(b) = ϕ(b)Dα−f (b) wheneverDα+f (a) andD

α−f (b)

exist. ✷
We further extend the Leibniz rule to the case wheren < α < n + 1, using

Theorem 3.1.

Theorem 3.2. Let f (x) ∈ Cr [a, b] and ϕ(x) ∈ Cr+3[a, b]. If D
α−nf (n)(x) exists,

where n < α < n + 1 � r + 1, x ∈ (a, b), n ∈ N ∪ {0}, then

D
α±
(
ϕ(x)f (x)

)= ϕ(x)Dα−n± f (n)(x). (23)

Proof. For fixedx ∈ (a, b)

D
α+
(
(ϕf )(x)

)= lim
δ→0+

dαg(δ)

dδα
,

where

g(δ) = (f ϕ)(x + δ) −
n∑

k=0

([
(f ϕ)(x)

](k)/
Γ (k + 1)

)
δk.

Using (6),

dαg(δ)

dδα
= dα−n

dδα−n

[
dng(δ)

dδn
+

n−1∑
j=0

δj−α−n

Γ (1+ j − α − n)

djg(0)

dδj

]
. (24)

Note that

dng(δ)

dδn
=

n∑
k=0

(
n

k

)
ϕ(k)(x + δ)f (n−k)(x + δ) − (

ϕ(x)f (x)
)(n)

=
n∑

k=0

(
n

k

){
f (n−k)(x + δ)

[
ϕ(k)(x + δ) − ϕ(k)(x)

]}

+
n∑

k=0

(
n

k

){
ϕ(k)(x)

[
f (n−k)(x + δ) − f (n−k)(x)

]}
. (25)

Denoteα − n = β . From Eq. (22) we get

lim
δ→0+

dβ(f (n−k)(x + δ)[ϕ(k)(x + δ) − ϕ(k)(x)])
dδβ

= 0,

k = 0,1, . . . , n. (26)
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Equation (26), Theorem 3.1 and the definition of LFD together imply

lim
δ→0+

dβ

dδβ

[
dng(δ)

dδn

]
= lim

δ→0+

n∑
k=0

dβ(ϕ(k)(x)[f (n−k)(x + δ) − f (n−k)(x)])
dδβ

=
n∑

k=0

ϕ(k)(x)D
β
+f (n−k)(x). (27)

But f (n−k)(x) ∈ Ck[a, b], for k = 1,2, . . . , n. Thus, in view of Lemma 3.1,
D

β
+f (n−k)(x) = 0, for k = 1,2, . . . , n.
Hence

lim
δ→0+

dβ

dδβ

[
dng(δ)

dδn

]
= ϕ(x)Dα−n+ f (n)(x). (28)

On the other hand,

djg(δ)

dδj

∣∣∣∣
δ=0

=
j∑

r=0

(
j

r

)
f (r)(x)ϕ(j−r)(x) − dj (f (x)ϕ(x))

dxj
= 0. (29)

Using Eqs. (24), (28) and (29) we get

D
α+
(
ϕ(x)f (x)

)= lim
δ→0+

dαg(δ)

dδα
= ϕ(x)Dα−n+ f (n)(x), n < α < n + 1.

A similar proof can be given forDα−f . Further note thatDα+((ϕf ))(a) =
ϕ(a)Dα−n+ f (n)(a) andD

α−((ϕf ))(b) = ϕ(b)Dα−n− f (n)(b) wheneverDα−n+ f (n)(a)

andD
α−n− f (n)(b) exist. Hence the theorem.✷

Note: In caseϕ(x) = const, the above theorem is valid even iff (r) exists,
without being continuous.

4. Chain rule for LFD

The Leibniz rule enables us to find LFD of a composite function, i.e., the chain
rule, which we derive below.

Theorem 4.1. Let h : [a, b] → R be a function of class Cn+3 on [a, b], f be a
function of class Cn on h[a, b], and D

α−n± [f (n)(h(x))] exists. Then

D
α±
[
f
(
h(x)

)]=
(

dh

dx

)n

D
α−n±

[
f (n)

(
h(x)

)]
, (30)

where n < α < n + 1, n ∈ N ∪ {0}.
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Proof. In view of the Leibniz rule for LFD,

D
α±
[
f
(
h(x)

)]= D
α−n±

[
f
(
h(x)

)](n)
. (31)

Thenth-order derivative off (h(x)) is evaluated with the help of the Faá di Bruno
formula [2], which states

[
f
(
h(x)

)](n) = n!
n∑

m=1

f (m)
(
h(x)

)∑ n∏
r=1

1

ar !
(

h(r)(x)

r!
)ar

, (32)

where the sum
∑

extends over all combinations of non-negative integer values of
a1, a2, . . . , an such that

∑n
r=1 rar = n and

∑n
r=1 ar = m. As h ∈ Cn+3[a, b] by

assumption and
∏n

r=1(1/ar !)(h(r)(x)/r!)ar ∈ C3[a, b], using Eqs. (32) and (16)
we obtain

D
α−n±

([
f
(
h(x)

)](n)
)

= D
α−n±

[
n!

n∑
m=1

f (m)
(
h(x)

)∑ n∏
r=1

1

ar !
(

h(r)(x)

r!
)ar

]

= n!
[

n∑
m=1

D
α−n±

[
f (m)

(
h(x)

)]∑ n∏
r=1

1

ar !
(

h(r)(x)

r!
)ar

]
.

Note that 0< α − n < 1, f ∈ Cn[a, b]; hence in view of Lemma 3.1 we get

D
α−n±

(
f (m)

(
h(x)

))= 0, m = 1,2, . . . , n − 1.

Therefore

D
α−n±

([
f
(
h(x)

)](n)
)

= n!Dα−n±
[
f (n)

(
h(x)

)](∑ n∏
r=1

1

ar !
(

h(r)(x)

r!
)ar

)
,

(33)

where
∑

extends over all combinations satisfying
∑n

r=1 rar = n and
∑n

r=1 ar =
n, which has unique possibility, viz.a1 = n, a2 = a3 = · · · = an = 0. Hence in
view of (31) and (33) we get

D
α±
[
f
(
h(x)

)]=
(

dh

dx

)n

D
α−n±

[
f (n)

(
h(x)

)]
,

n < α < n + 1, n ∈ N ∪ {0}. ✷
This theorem yields the following interesting corollary.

Corollary 4.1. If f :Rn → R is a function of class C1, xi(t) :R → R are of
class Cr , r � 4, and D

α−1± [(∂f /∂xi)(X(t))] exist for i = 1,2, . . . , n, where
X(t) = (x1(t), . . . , xn(t)), then
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D
α±f
(
X(t)

)=
n∑

i=1

dxi

dt
D

α−1±
(

∂f

∂xi

(
X(t)

))
, for 1< α < 2. (34)

Proof. Using Theorem 4.1,

D
α±f
(
x1(t), x2(t), . . . , xn(t)

)= D
α−1±

(
d[f (x1(t), x2(t), . . . , xn(t))]

dt

)

= D
α−1±

(
n∑

i=1

∂f

∂xi

(
X(t)

)dxi

dt

)
=

n∑
i=1

dxi

dt
D

α−1±
(

∂f

∂xi

(
X(t)

))
. ✷

5. Higher-order directional LFD

The definition of LFD has been extended to directional LFD for functions of
many variables, in case where the order of differentiationα is between 0 and 1 [8].

We generalize the definition of the directional LFD for orderα, for n < α <

n + 1, as follows.

Definition 5.1. Let f :Rm → R be a function such that all its partial derivatives
of ordern exist. If

(
D

α
V

)
±f (X) = lim

t→0+

dα
(
f (X ± tV ) −∑n

k=0
1

Γ (k+1)

(∑m
i=1 tvi

∂
∂xi

)k
f (X)

)
dtα

exists, wheren < α < n + 1, then(Dα
V )±f (X) is called as the right (left) direc-

tional LFD of orderα atX in the direction ofV for X,V ∈ R
m.

These definitions render the following theorem.

Theorem 5.1. Let f :Rm → R be a function whose all the partial derivatives of
order n exist. Then

(
D

α
V

)
±f (X) = (

D
α−n
V

)
±

((
m∑

i=1

vi
∂

∂xi

)n

f (X)

)
, n < α < n + 1, (35)

provided the expression on the R.H.S. exists.

Proof.(
D

α
V

)
+f (X) = 1

Γ (n + 1− α)
lim

δ→0+
dn+1I1(δ)

dδn+1 ,

where

I1(δ) =
δ∫

0

f (X + sV ) −∑n
k=0

1
Γ (k+1)

(∑m
i=1 svi

∂
∂xi

)k
f (X)

(δ − s)α−n
ds.
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By performing integration by parts we get

I1(δ) =
δ∫

0

∑m
i=1 vifxi (X + sV ) −∑n

k=1
ksk−1

Γ (k+1)

(∑m
i=1 vi

∂
∂xi

)k
f (X)

(n − α + 1)(δ − s)α−n−1 ds.

Further we define

I2(δ) = dI1(δ)

dδ

=
δ∫

0

∑m
i=1 vifxi (X + sV ) −∑n

k=1
ksk−1

Γ (k+1)

(∑m
i=1 vi

∂
∂xi

)k
f (X)

(δ − s)α−n
ds.

Again integration by parts leads to

I2(δ) = 1

n + 1− α

δ∫
0

(∑m
i=1 vi

(∑m
j=1 vj fxixj (X + sV )

)
(δ − s)α−n−1

−
∑n

k=2
k(k−1)sk−2

Γ (k+1)

(∑m
i=1 vi

∂
∂xi

)k
f (X)

(δ − s)α−n−1

)
ds.

Hence

dI2(δ)

dδ
=

δ∫
0

((∑m
i=1 vi

∂
∂xi

)2
f (X + sV )

(δ − s)α−n

−
∑n

k=2
k(k−1)sk−2

Γ (k+1)

(∑m
i=1 vi

∂
∂xi

)k
f (X)

(δ − s)α−n

)
ds.

Repeating this processn times we get

(
D

α
V

)
+f (X)

= lim
δ→0+

d

dδ

δ∫
0

(∑m
i=1 vi

∂
∂xi

)n
f (X + sV ) − (∑m

i=1 vi
∂

∂xi

)n
f (X)

Γ (n + 1− α)(δ − s)α−n
ds.

= (
D

α−n
V

)
+

((
m∑

i=1

vi
∂

∂xi

)n

f (X)

)
.

A similar proof can be given for(Dα
V )−f. ✷
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6. Local fractional Taylor series

Local fractional Taylor series for a real function involving LFD has been
constructed [4,5]. Here we derive higher-order local fractional Taylor series for
multivariable case. To begin with we prove the following lemma.

Lemma 6.1. Let f :Rm → R be a function of class Cr+1. Then(
D

α
V

)
±f (X) = 0, n < α < n + 1 � r + 1. (36)

Proof.(
D

α
V

)
+f (X) = lim

t→0+
dαg(t)

dtα
,

where

g(t) = f (X + tV ) −
n∑

k=0

1

Γ (k + 1)

[
m∑

i=1

tvi
∂

∂xi

]k

f (X).

So

(
D

α
V

)
+f (X) = lim

t→0+

[
n∑

r=0

g(r)(0)tr−α

Γ (r − α + 1)
+

t∫
0

(t − u)n−αg(n+1)(u)

Γ (n − α + 1)
du

]
.

(37)

Note

g(r)(t) =
(

m∑
i=1

vi
∂

∂xi

)r

f (X + tV )

−
n∑

k=r

k(k − 1) . . . (k − r + 1)tk−r

Γ (k + 1)

(
m∑

i=1

vi

∂

∂xi

)k

f (X).

Henceg(r)(0) = 0, which after substituting in (37) gives

(
D

α
V

)
+f (X) = lim

t→0+
1

Γ (n − α + 1)

t∫
0

(t − u)n−αg(n+1)(u) du = 0,

asg(n+1)(u) is continuous and limt→0+
∫ t

0(t −u)n−α du = 0. A similar proof can
be given for(Dα

V )−f (X). ✷
Theorem 6.1. Let f :Rm → R be a function of class Cn. If (Dα

V )±f (X) exists,
where n < α < n + 1, X,V ∈ R

m, then
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f (X ± tV ) = f (X) +
n∑

k=1

1

Γ (k + 1)

(
m∑

i=1

tvi
∂

∂xi

)k

f (X)

+ (Dα
V )±f (X)

Γ (α + 1)
tα

+ 1

Γ (α + 1)

t∫
0

dF(X ± sV, s,α)

ds
(t − s)α ds, t > 0,

(38)

where

F(X ± sV, s,α)

= dα
(
f (X ± sV ) −∑n

k=0
1

Γ (k+1)

(∑m
i=1 svi

∂
∂xi

)k
f (X)

)
dsα

. (39)

Proof. As (Dα
V )±f (X) = F(X,0, α), in view of (7) and (39) we get

f (X ± tV ) −
n∑

k=0

1

Γ (k + 1)

(
m∑

i=1

tvi
∂

∂xi

)k

f (X)

= 1

Γ (α)

t∫
0

F(X ± sV, s,α)

(t − s)−α+1
ds +

n∑
j=1

[(
D

α−j
V

)
±f (X)

] tα−j

Γ (α − j + 1)

+ tα−n−1

Γ (α − n)

×
[ t∫

0

f (X ± sV ) −∑n
k=0

1
Γ (k+1)

(∑m
i=1 svi

∂
∂xi

)k
f (X)

Γ (n + 1− α)(t − s)α−n
ds

]
t=0

= −F(X ± sV, s,α)(t − s)α

Γ (α + 1)

∣∣∣∣
t

0

+
t∫

0

(
dF(X ± sV, s,α)

ds

)
(t − s)α ds

Γ (α + 1)

= (Dα
V )±f (X)

Γ (α + 1)
tα + 1

Γ (α + 1)

t∫
0

(
dF(X ± sV, s,α)

ds

)
(t − s)α ds.
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From Lemma 6.1,(Dα−j
V )±f (X) = 0 for j = 1, . . . , n and[ t∫

0

f (X ± sV ) −∑n
k=0

1
Γ (k+1)

(∑m
i=1 svi

∂
∂xi

)k
f (X)

Γ (n + 1− α)(t − s)α−n
ds

]
t=0

= 0,

as

f (X ± sV ) −
n∑

k=0

1

Γ (k + 1)

(
m∑

i=1

svi
∂

∂xi

)k

f (X)

is continuous. Further observe that limt→0+
∫ t

0(t − s)n−α ds = 0. Therefore

f (X ± tV ) = f (X) +
n∑

k=1

1

Γ (k + 1)

(
m∑

i=1

tvi
∂

∂xi

)k

f (X)

+ (Dα
V )±f (X)

Γ (α + 1)
tα

+ 1

Γ (α + 1)

t∫
0

(
dF(X ± sV, s,α)

ds

)
(t − s)α ds,

t > 0. ✷
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