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Abstract

Consider the multiplicities ep1 (n), ep2 (n), . . . , epk (n) in which the primes p1,p2, . . . , pk appear in
the factorization of n!. We show that these multiplicities are jointly uniformly distributed modulo
(m1,m2, . . . ,mk) for any fixed integers m1,m2, . . . ,mk , thus improving a result of Luca and Stănică
[F. Luca, P. Stănică, On the prime power factorization of n!, J. Number Theory 102 (2003) 298–305].
To prove the theorem, we obtain a result regarding the joint distribution of several completely q-additive
functions, which seems to be of independent interest.
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1. Introduction and main theorems

Given a non-negative integer n, write

n! = 2e2(n)3e3(n)5e5(n) · · ·pepl
(n)

l (1)
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(where l = π(n) is the number of primes not exceeding n). It is well known that for each prime p

we have

ep(n) =
[

n

p

]
+

[
n

p2

]
+ · · · . (2)

Even though the formula gives in principle all relevant information regarding the factoriza-
tion (1), it fails to answer in a simple way some basic questions. Thus, Erdős and Graham [6,
p. 77] posed the following

Question 1.1. Does there exist, for any fixed l, some n with all the exponents e2(n), e3(n), e5(n),

. . . , epl
(n) even?

In [1] this question was answered in the affirmative. Moreover, the following result was ob-
tained. (We actually change the formulation a little, as here it will be more convenient to let
p1,p2, . . . , pk denote any fixed primes, and not necessarily the first k primes.)

Theorem A. For any primes p1,p2, . . . , pk there exist infinitely many positive integers 1 = n0 <

n1 < n2 < · · · such that, for each j , all the numbers ep1(nj ), ep2(nj ), . . . , epk
(nj ) are even.

Moreover,

nj+1 − nj � C, i = 1,2, . . . ,

where C is an effectively computable constant.

This result was strengthened in [1] in two directions. First, the requirement that the exponents
be even was replaced by the requirement that they be divisible by an arbitrary fixed integer m.
Secondly, it turned out that the same is true when one looks at the factorizations of several
factorials n!, (2n)!, . . . , (an)!.

Several authors—Chen and Zhu [3], Sander [12], Chen [2] and Luca and Stănică [10]—
continued working on this problem, each obtaining a stronger version of Theorem A. In the
last of the above papers, the following result was proved.

Theorem B. [10] Let p1,p2, . . . , pl be any primes, m1,m2, . . . ,ml positive integers, and
a1, a2, . . . , al integers with pj � mj and 0 � aj � mj − 1 for 1 � j � l. Then

∣∣{0 � n < N : epj
(n) ≡ aj (mod mj), 1 � j � l

}∣∣ = N

m1 · · ·ml

+ O
(
N1−δ

)
,

with δ = 1/(120l2p3mm2), where p = max1�i�l pi and m = max1�i�l mi .

Luca and Stănică note that the condition, whereby the primes pj do not divide the corre-
sponding moduli mj , is probably superfluous. In this paper, we are indeed able to establish their
result in full generality. Moreover, in the process we improve the value of the constant δ. Our
proof goes according to lines similar to those Luca and Stănică suggested. Namely, we start from
Kim’s results [9] on the joint distribution of completely q-additive functions, and obtain a ver-
sion of his result (weaker than the one proposed by Luca and Stănică) which enables us to prove
the required result.



D. Berend, G. Kolesnik / Journal of Number Theory 124 (2007) 181–192 183
In Section 2 we present formally our main results—both the improvement of Theorem B and
that of Kim’s result. Section 3 is devoted to the proofs of both theorems.

2. The main results

To state our main result we need a few notations. As in Theorem B, let p1, . . . , pl be distinct
primes and m1, . . . ,ml any positive integers (which we may assume to be at least 2). Write
mj = p

αj

j kj , with (kj ,pj ) = 1. Distinguish between four cases:

Case 1. αj = 1 and kj = 1.

In this case put uj = 2 and βj = 2.

Case 2. αj � 2 and kj = 1.

Put uj = 1 and βj = αj .

Case 3. αj = 0 and kj > 1.

Let uj be the least positive integer for which

p
uj

j − 1

pj − 1
≡ 0 (mod kj )

and βj = uj .

Case 4. αj � 1 and kj > 1.

Let uj be as in the preceding case and βj = lcm(αj , uj ).
In all cases, put

m̄ = max
1�j�l

mj , q̄ = max
1�j�l

p
βj

j .

Our main result is

Theorem 2.1. For any integers a1, . . . , al

∣∣{0 � n � N − 1: epj
(n) ≡ aj (mod mj), j = 1,2, . . . , l

}∣∣ = N

m1 · · ·ml

+ O
(
N1−δ

)
, (3)

where δ = 4/(q̄2m̄2l log q̄ + 8l + 8).

It is natural to inquire how tight the result is, namely whether the error term can be reduced.
Now sometimes the error is indeed much lower, as in the following
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Example 2.2. Consider the sequence (e2(n) mod 2)∞n=0. It is easy to see that, if 4 | n, then
e2(n + 1) = e2(n), while e2(n + 2) = e2(n + 3) = e2(n) + 1. Hence, out of any 4 consecutive
elements of our sequence, starting at an index divisible by 4, there are two 0’s and two 1’s.
It follows that, in this case, the error term on the right-hand side of (3) is bounded by 1. The
situation is similar for the sequence (ep(n) mod p)∞n=0 for any prime p.

However, while it is hardly conceivable that the error term O(N1−δ) in Theorem 2.1 cannot
be reduced, it is nevertheless bounded below in general by some positive power of N , as is the
case in

Example 2.3. Consider the sequence (e3(n) mod 2)∞n=0. Employing (2) we obtain

e3(9n + r) =
[

9n + r

3

]
+

[
9n + r

9

]
+

[
9n + r

27

]
+ · · ·

= 3n +
[

r

3

]
+ n + e3(n)

≡ e3(n) +
[

r

3

]
(mod 2), r = 0,1, . . . ,8.

In the range [0,8], six of the values assumed by [r/3] are 0 modulo 2 and the other three are 1.
It follows that, denoting by as and bs the number of 0’s and the number of 1’s, respectively, in
the finite sequence (e3(n) mod 2)9s−1

n=0 , we have:

as+1 = 6as + 3bs, bs+1 = 3as + 6bs.

This yields

as = 9s + 3s

2
, bs = 9s − 3s

2
,

which implies that the error term on the right-hand side of (3) is Ω(
√

N ).

It is also interesting to note the following somewhat strengthened version of Theorem 2.1.

Theorem 2.4. In the setup of Theorem 2.1, for every positive integer m � 2 and integer a

∣∣{0 � n � N − 1: n ≡ a (mod m), epj
(n) ≡ aj (mod mj), j = 1,2, . . . , l

}∣∣
= N

mm1 · · ·ml

+ O
(
N1−δ

)
, (4)

where δ = 4/(q̄2m̄2l log q̄ + 8l + 8).

The proof of the theorem is similar to that of Theorem 2.1. Let us mention a particular example
in which the error term in the last theorem has been calculated (although starting with a different
motivation than ours).
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Example 2.5. According to Theorem 2.4 we have

{
0 � n � N − 1: n ≡ 0 (mod 6), e2(n) ≡ 0 (mod 2)

} = N

6
+ O

(
N1−1/(32 log 2+4)

)
. (5)

Now, as is well known,

e2(n) =
⌊

n

2

⌋
+

⌊
n

22

⌋
+ · · · = n − σ2(n).

Consequently, for n ≡ 0 (mod 2) we have e2(n) ≡ σ2(n) (mod 2). By [11], the error term in (5) is
actually O(N log4 3). Interestingly, the error is always positive, and is actually bounded between
two positive constant multiples of N log4 3. For similar results for other primes, as well as results
showing that these primes are actually exceptional, we refer to [4,5,7,8].

As mentioned earlier, the proof depends on an improvement of a result of Kim [9], deal-
ing with completely q-additive functions. Recall that a function f : N ∪ {0} → C is completely
q-additive, where q � 2 is an integer, if f (0) = 0 and f (aq + b) = f (a) + f (b) for integers
a � 1 and 0 � b � q − 1. In Kim’s setup there are pairwise prime integers qj � 2 and corre-
sponding completely qj -additive integer-valued functions, 1 � j � l, and we are interested in
the asymptotic frequency of the set of integers for which these functions assume values in some
prescribed residue classes modulo certain positive integers mj . The proof of Theorem 2.1 relies
on the following result, which allows for two completely qj -additive functions for each j .

Theorem 2.6. Let q1, . . . , ql � 3 be pairwise primes integers. For each j � l, let fj and fl+j be
completely qj -additive integer-valued functions and mj , ml+j relatively prime positive integers
such that

gcd
(
mj ,fj (2) − 2fj (1), . . . , fj (qj − 1) − (qj − 1)fj (1)

) = 1 (6)

and

gcd
(
ml+j , fl+j (2) − 2fl+j (1), . . . , fl+j (qj − 1) − (qj − 1)fl+j (1)

) = 1. (7)

Let M = max1�j�l mjml+j . Then for any integers m � 2 and a, a1, . . . , a2l

∣∣{0 � n � N − 1: n ≡ a (mod m), f1(n) ≡ a1 (mod m1), . . . , f2l(n) ≡ a2l (mod m2l )
}∣∣

= N

mm1 · · ·m2l

+ O
(
N1−δ

)
, (8)

where δ = 4/(q̄2M2l log q̄ + 8l + 8).

Remark 2.7. It is probably possible to deal with the case where (6) and (7) do not hold, as done
in [9]. However, this is unimportant for our application. We can also deal with several functions
for each modulus.
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3. Proofs

Lemma 3.1. Let q � 3 be an integer, f1 and f2 integer-valued completely q-additive functions,
m1 and m2 relatively prime positive integers such that

gcd
{
mj ,fj (2) − 2fj (1), . . . , fj (q − 1) − (q − 1)fj (1)

} = 1, j = 1,2,

h1 and h2 integers, not both 0, satisfying 0 � hj � mj − 1, and K = qs and Q = qt for some
1 � s � t . Then:

1

KQ

K−1∑
k=0

∣∣∣∣∣
Q−1∑
n=0

e

(
h1

m1

(
f1(n + k) − f1(n)

) + h2

m2

(
f2(n + k) − f2(n)

))∣∣∣∣∣ � e−8s/q2m2
1m

2
2 . (9)

Proof. Denote the left-hand side of (9) by S, and:

SK,Q(u) = 1

KQ

K−1∑
k=0

∣∣∣∣∣
Q−1∑
n=0

e

(
h1

m1

(
f1(n + k + u) − f1(n)

) + h2

m2

(
f2(n + k + u) − f2(n)

))∣∣∣∣∣,
u = 0,1.

Then:

SKq,Qq(u) = 1

KQq2

q−1∑
i=0

K−1∑
k=0

∣∣∣∣∣
q−1∑
j=0

Q−1∑
n=0

e

(
h1

m1

(
f1(kq + i + nq + j + u) − f1(nq + j)

)

+ h2

m2

(
f2(kq + i + nq + j + u) − f2(nq + j)

))∣∣∣∣∣
= 1

KQq2

q−1∑
i=0

K−1∑
k=0

∣∣∣∣∣
q−i−u−1∑

j=0

Q−1∑
n=0

e

(
h1

m1

(
f1(k + n) − f1(n) + f1(i + j + u) − f1(j)

)

+ h2

m2

(
f2(k + n) − f2(n) + f2(i + j + u) − f2(j)

))

+
q−1∑

j=q−i−u

Q−1∑
n=0

e

(
h1

m1

(
f1(k + n + 1) − f1(n) + f1(i + j + u − q) − f1(j)

)

+ h2

m2

(
f2(k + n + 1) − f2(n) + f2(i + j + u − q) − f2(j)

))∣∣∣∣∣
� α(0, u)SK,Q(0) + α(1, u)SK,Q(1),

where
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α(v,u) = 1

q2

q−1∑
i=0

∣∣∣∣∣
min{q−1,(v+1)q−i−u−1}∑

j=max{0,vq−i−u}
e

(
h1

m1

(
f1(i + j + u) − f1(j)

)

+ h2

m2

(
f2(i + j + u) − f2(j)

))∣∣∣∣∣.
Thus, putting XK,Q = (SK,Q(0), SK,Q(1))T and

A =
(

α(0,0) α(1,0)

α(0,1) α(1,1)

)
,

we obtain

XKq,Qq � AXK,Q,

β(v,u) = 1

q2

q−1∑
i=0

min{q−1,(v+1)q−i−u−1}∑
j=max{0,vq−i−u}

1. (10)

Obviously, we have α(v,u) � β(v,u) for every v,u ∈ {0,1}. We want to prove that, moreover,

α(0,0) � β(0,0) − ε, (11)

and

α(0,1) � β(0,1) − ε, (12)

with ε = 8/q2m2
1m

2
2. Indeed, denote by Σ the portion of q2α(0,0) corresponding to i = 1. Then:

Σ =
∣∣∣∣∣
q−2∑
j=0

e

(
h1

m1

(
f1(j + 1) − f1(j)

) + h2

m2

(
f2(j + 1) − f2(j)

))∣∣∣∣∣.
Assume that h1 	= 0, and let r be the smallest integer � 2 for which

h1
(
f1(r) − rf1(1)

) 	≡ 0 (mod m1).

Such an r exists, as otherwise we would have

f1(j) − jf1(1) ≡ 0
(
mod m1/(m1, h1)

)
, j = 1, . . . , q − 1.

Then:

Σ � q − 3 +
∣∣∣∣e

(
h1

m1
f1(1) + h2

m2
f2(1)

)

+ e

(
h1

m1

(
f1(r) − f1(r − 1)

) + h2

m2

(
f2(r) − f2(r − 1)

))∣∣∣∣
= q − 3 +

∣∣∣∣1 + e

(
h1 (

f1(r) − f1(r − 1) − f1(1)
)) + b

∣∣∣∣,
m1 m2
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where b = h2(f2(r) − f2(r − 1) − f2(1)). Now

h1f1(j) ≡ h1jf1(1), j = 2, . . . , r − 1,

so that, denoting a = h1(f1(r) − f1(r − 1) − f1(1)), we have

a ≡ h1
(
f1(r) − rf1(1)

) 	≡ 0 (mod m1).

Since (m1,m2) = 1 and at least one of a and b is non-zero, we have ‖a/m1 + b/m2‖ � 1/m1m2
and

Σ � q − 3 + 2 cos
π

m1m2
� q − 1 − 8

m2
1m

2
2

.

Evaluating the remaining portion of α(0,0) trivially, we obtain

α(0,0) � β(0,0) − 8

q2m2
1m

2
2

.

Similarly we prove (12).
In view of (11)

α(0,0) + β(1,0) � β(0,0) + β(1,0) − ε = 1 − ε,

and similarly, due to (12):

α(0,1) + β(1,1) � β(0,1) + β(1,1) − ε = 1 − ε.

By (10), taking

A =
(

α(0,0) β(1,0)

α(0,1) β(1,1)

)
,

we have

XKq,Qq � A′XK,Q.

Applying this inequality s times, and starting from K1 = 1 and Q1 = qt−s instead of K and Q,
respectively, we obtain:

XK,Q � A′sXK1,Q1 � A′s(1,1)T .

By [9, Lemma 5], this yields

SK,Q(0) � (1 − ε)s � e−8s/q2m2
1m

2
2,

which proves the lemma. �
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Proof of Theorem 2.6. Denote the left-hand side of (8) by N(a). Write:

N(a) = 1

mm1 · · ·m2l

m−1∑
r=0

m1−1∑
h1=0

· · ·
m2l−1∑
h2l=0

N−1∑
n=0

e

(
r(n − a)

m

)
e

(
2l∑

j=1

hj

mj

(
fj (n) − aj

))
.

The portion of the last sum corresponding to h1 = h2 = · · · = h2l = 0 is

1

mm1 · · ·m2l

m−1∑
r=0

N−1∑
n=0

e

(
r(n − a)

m

)
= N

mm1 · · ·m2l

+ O(1).

Now consider the portion of the sum corresponding to arbitrary fixed h1, . . . , h2l , not all 0. Set:

S =
∣∣∣∣∣
N−1∑
n=0

e

(
rn

m

)
e

(
2l∑

j=1

hj

mj

fj (n)

)∣∣∣∣∣.
Suppose, say, h1 	= 0. Put

s1 =
[

1 − 2δ(l + 1)

l
· logN

logq1

]
, K = q

s1
1 ,

and

tj =
[

1 − 2δ

l
· logN

logqj

]
, Qj = q

tj
j ,

for j = 1, . . . , l. By van-der-Corput’s inequality:

|S|2 � 2N2

K
+ 4N

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

e

(
2l∑

j=1

hj

mj

(
fj (k + n) − fj (n)

))∣∣∣∣∣.
Set:

SN,K = 1

KN

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

e

(
2l∑

j=1

hj

mj

(
fj (k + n) − fj (n)

))∣∣∣∣∣.
Divide the set {0,1, . . . ,N − 1}, over which n varies, into residue classes modulo Q1 · · ·Ql . For
a typical n ∈ [0,N − 1], put:

rj = n mod Qj, j = 1, . . . , l.

Clearly, the number of n’s in [0,N −1], corresponding to any fixed r1, r2, . . . , rl is N/Q1 · · ·Ql +
O(1). Denote

R0 = {
(r1, r2, . . . , rl): 0 � rj < Qj − K, j = 1,2, . . . , l

}
,
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and let R1 be the complementary set. Obviously:

|R1| � KQ1 · · ·Ql

(
1

Q1
+ · · · + 1

Ql

)
.

If (r1, r2, . . . , rl) ∈ R0, then, letting rl+j = rj for 1 � j � l, we have

fj (k + n) − fj (n) = fj (k + rj ) − fj (rj ), j = 1, . . . ,2l.

It follows that:

SN,K = 1

KN

K−1∑
k=0

∣∣∣∣∣
∑

(r1,...,rl )∈R0

e

(
2l∑

j=1

hj

mj

(
fj (k + rj ) − fj (rj )

))(
N

Q1 · · ·Ql

+ O(1)

)∣∣∣∣∣
+ O(K/Q1)

= 1

KN
· N

Q1 · · ·Ql

K−1∑
k=0

l∏
j=1

∣∣∣∣∣
Qj −1∑
rj =0

e

(
hj

mj

(
fj (k + rj ) − fj (rj )

)

+ hl+j

ml+j

(
fl+j (k + rj ) − fl+j (rj )

))∣∣∣∣∣ + O

(
K

Q1
+ Q1 · · ·Ql

N

)

� 1

KQ1

K−1∑
k=0

∣∣∣∣∣
Q1−1∑
r1=0

e

(
hj

mj

(
fj (k + rj ) − fj (rj )

) + hl+j

ml+j

(
fl+j (k + rj ) − fl+j (rj )

))∣∣∣∣∣.
Estimating the last sum by Lemma 3.1, we complete the proof. �
Proof of Theorem 2.1. For 1 � j � l, define a completely qj -additive function fj by

fj (n) = 0, n = 0,1, . . . ,

in case kj = 1 and by

fj (n) = epj
(n), n = 0,1, . . . , qj − 1, (13)

otherwise. (Note that (13), together with the complete qj -additivity requirement, determine fj

uniquely.) Put

vj = p
αj

j − 1

pj − 1
, 1 � j � l,

and define functions gj by:

gj (n) = epj
(n) + vjn, n = 0,1, . . . .
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Also set ql+j = p
αj

j if αj � 2 and ql+j = p2
j if αj = 1, and define completely ql+j -additive

functions fl+j by

fl+j (n) = gj (n), n = 0,1, . . . , ql+j − 1, (14)

in case αj > 0, and by

fl+j (n) = 0, n = 0,1, . . . ,

otherwise. In the sequel we shall relate to the main definitions (13) and (14) of fj and fl+j , and
omit the details of the cases where these functions vanish identically. We first claim that:

fl+j (n) ≡ gj (n) (mod ql+j ), 1 � j � l, n = 0,1, . . . . (15)

In fact, (15) is trivial for integers up to ql+j . Assume it holds for all integers less than n, and
write n = cql+j + d for integers c � 1 and 0 � d � ql+j − 1. Expand c and d in base pj :

c =
t∑

i=0

cip
i
j , d =

αj −1∑
i=0

dip
i
j .

Then

fl+j (n) = fl+j (c) + fl+j (d)

≡
t∑

i=0

ci

pi
j − 1

pj − 1
+ vj c + epj

(d) + vjd

≡
t∑

i=0

ci

pi
j − 1

pj − 1
+

t∑
i=0

cip
i
j

p
αj

j − 1

pj − 1
+ vj cql+j + epj

(d) + vjd

=
t∑

i=0

ci

p
αj +i

j − 1

pj − 1
+

αj −1∑
i=0

di

pi
j − 1

pj − 1
+ vj (cql+j + d)

≡ epj
(cql+j + d) + vj (cql+j + d) (mod ql+j ),

which proves (15).
Now put q = ∏l

j=1 ql+j . For a = 0,1, . . . , q − 1, let:

R(a) = {
0 � n � N − 1: n ≡ a (mod q), epj

(n) ≡ aj (mod mj), j = 1, . . . , l
}
.

Denoting a = (a1, . . . , al) and denoting the left-hand side of (3) by N(a), we clearly have N(a) =∑q−1
a=0 |R(a)|, so that it suffices to show that

∣∣R(a)
∣∣ = N

qm1 · · ·ml

+ O
(
N1−δ

)
. (16)

In fact, putting bj = a mod ql+j for 1 � j � l, we have:
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R(a) = {
0 � n � N − 1: n ≡ a (mod q), fj (n) ≡ aj (mod kj ),

fl+j (n) ≡ aj + vjbj (mod ql+j ) ∀j
}
.

Since βj is divisible by uj and αj , both functions fj and fl+j are completely p
βj

j -additive.
We want to verify that the conditions of Theorem 2.6 hold. First, since uj � 2, each qj is at
least 3. The moduli kj and p

αj

j , corresponding to mj and ml+j , corresponding to the moduli mj

and ml+j , respectively, in that theorem, are relatively prime. Next, fj (pj ) = epj
(pj ) = 1 and

fj (n) = 0 for n < pj , so that (6) holds. Since

fl+j (pj ) − pjfl+j (1) = epj
(pj ) + v + jpj − pj

(
epj

(1) + vj

) = 1,

we see that (7) holds as well. Finally, since the pj ’s are distinct, the qj ’s are pairwise prime.
Thus we can use Theorem 2.6 to obtain (16), which proves the theorem. �
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