On Relative Regular Sequences

Mario Fiorentini
Istituto Matematico, Università di Roma, Rome, Italy

Communicated by D. Buchsbaum
Received April 2, 1970

1. Introduction

In the article (Ref. [5]) the authors studied the ideal $C Q$, of a unitary commutative ring R, generated by n elements a_{1}, \ldots, a_{n} satisfying the following property (*): if b_{1}, \ldots, b_{n} are elements of the ideal $O l==\left(a_{1}, \ldots, a_{n}\right) R$ such that $b_{1} a_{1}+\cdots+b_{n} a_{n}=0$, then the syzygy $\left(b_{1}, \ldots, b_{n}\right)$ is trivial, i.e., it is a combination of the elementary syzygies ($0, \ldots, 0, a_{j}, 0, \ldots, 0,-a_{i}, 0, \ldots, 0$).

It is well-known that if a_{1}, \ldots, a_{n} is an R-regulat sequence every syzygy is trivial, so $\left(^{*}\right)$ is verified. It is also known that the property "every syzygy is trivial" can be expressed by the relation $H_{1}\left(K\left(a_{1}, \ldots, a_{n} ; R\right)\right)=0$, where $K\left(a_{1}, \ldots, a_{n} ; R\right)$ is the Koszul complex determined by a_{1}, \ldots, a_{n}.

In [5] some examples are given of elements a_{1}, \ldots, a_{n} verifying $\left(^{*}\right.$) which are not a regular sequence and, therefore, $H_{1}\left(K\left(a_{1}, \ldots, a_{n}\right)\right) \neq 0$.

The condition (*) can also be stated by means of the Koszul complex. In fact, let $O l=\left(a_{1}, \ldots, a_{n}\right) R$ and let

$$
\varphi: K\left(a_{1}, \ldots, a_{n} ; व l\right) \rightarrow K\left(a_{1}, \ldots, a_{n} ; R\right)
$$

be the canonical mapping induced by the inclusion $C l \subset R$. Then we observe in Section 2 that $\left(^{*}\right)$ is equivalent to the condition $H_{1}(\varphi)=0$, where $H_{1}(\varphi)$ is the map induced on homology.

By the remarks above we are led to consider the following problem: Given an R-module M and a submodule N, under what conditions will a sequence a_{1}, \ldots, a_{n} of elements in R, not necessarily a regular sequence, be such that $H_{1}(\varphi)=0, \varphi$ being the canonical mapping $K\left(a_{1}, \ldots, a_{n} ; N\right) \rightarrow$ $K\left(a_{1}, \ldots, a_{n} ; M\right)$ induced by the inclusion $N \subset M$?

Thus in Section 3 we define a notion of relative M-regular sequence with respect to N and verify that if a_{1}, \ldots, a_{n} is a relative M-regular sequence then we have $H_{1}(\varphi)=0$ as wanted.

Finally we verify in Section 4 that there exist interesting examples of ideals
$C l$ generated by a relative contained in $\operatorname{Rad}_{J}(R) R$-regular sequence with respect to $C \%$. Namely, if $h_{11}, \ldots, h_{q} 1 . q$ are elements of a noetherian ring R which form a regular sequence, then such an ideal is the ideal $C l$ generated by the $(q-1)$ minors of the matrix $H=\left\|h_{i j}\right\|(1 \leqslant i \leqslant q-1,1 \leqslant j \leqslant q)$.

2. Relative M-Regular Sequences with Respect to a Submodule N

Let R be a commutative unitary ring and M an R-module. A sequence of elements a_{1}, \ldots, a_{n} of R is said to be M-regular if for each $i=1, \ldots n, a_{i}$ is not a zero-divisor in the module $M /\left(a_{1}, \ldots, a_{i-1}\right) M$. (In particular, this means a_{1} is not a zero-divisor in M).

Definition 1. Let R be a commutative unitary ring, M an R-module and N a submodule of M. A sequence a_{1}, \ldots, a_{n} of elements in R is said to be a relative M-regular sequence with respect to N, if for all $i, a_{i+1} x \in \sum_{j=1}^{i} a_{j} N$ and $x \in N$ imply $x \in \sum_{j=1}^{i} a_{j} M, 0 \leqslant i<n$. (For $i=0$, this means a_{1} is not a zero-divisor in N).

Definition 2. Moreover, if every arbitrary permutation $a_{i_{1}}, \ldots, a_{i_{n}}$ of elements a_{1}, \ldots, a_{n} also gives a relative M-regular sequence with respect to the submodule N, we say that a_{1}, \ldots, a_{n} form an unconditioned relative M-regular sequence with respect to N.

Remark 1. Let $a_{1}, \ldots, a_{n} \in R$. The property of being a relative M-regular sequence with respect to a submodule N is preserved under flat extension of R. Indeed, let $f: R \rightarrow R^{\prime}$ be a ring homomorphism making R^{\prime} into a flat R-module. Put $M^{\prime}=M \otimes \otimes_{R} R^{\prime}, N^{\prime}=N \otimes_{R} R^{\prime}$. It is obvious that $N^{\prime} \subset M^{\prime}$. The fact that a_{1}, \ldots, a_{n} is a relative M-regular sequence with respect to N can be expressed by the following commutative exact diagram

where

$$
\begin{gathered}
N_{1}=N, \quad M_{1}=M, \quad N_{i}=N /\left(a_{1} N+\cdots+a_{i-1} N\right) \\
M_{i}^{\prime}=M /\left(a_{1} M+\cdots+a_{i-1} M\right), \quad i=2, \ldots, n
\end{gathered}
$$

α_{i} is induced by α and $\omega_{i}(x)=a_{i} x\left(x \in N_{i}\right), i=1, \ldots, n$. Tensoring with R^{\prime} over R this diagram is transformed into the corresponding diagram for $M^{\prime}, N^{\prime}, a_{i}{ }^{\prime}=f\left(a_{i}\right), i=1, \ldots, n$, and the exactness is preserved.

Let $K\left(a_{1}, \ldots, a_{n} ; E\right)=K\left(a_{1}, \ldots, a_{n}\right)\left(\otimes_{R} E\right.$, for all R-module E, where $K\left(a_{1}, \ldots, a_{n}\right)$ denotes the Koszul complex associated to the sequence a_{1}, \ldots, a_{n}.

Theorem. Let N be a submodule of M such that $\sum_{i=1}^{n} a_{i} M \subset N$, with $a_{i} \in R$. Let $\alpha: N \rightarrow M$ be the inclusion mapping, and let

$$
\varphi_{a}: K\left(a_{1}, \ldots, a_{n} ; N\right) \rightarrow K\left(a_{1}, \ldots, a_{n} ; M\right)
$$

be the mapping induced by a. If the sequence of elements a_{1}, \ldots, a_{n} is a relative M-regular sequence with respect to N, then $H_{p}\left(\varphi_{\alpha}\right)=0, \forall p>0$.
Proof. We proceed by induction on n.

Case (a)

If $n=1$, then $x a_{1}=0$ and $x \in N$ imply $x=0$; hence a_{1} is an N-regular element. However, $H_{1}\left(K\left(a_{1} ; N\right)\right)=\mathrm{Ann}_{N} a_{1}$. It follows that $H_{1}\left(K\left(a_{1} ; N\right)\right)=0$, and, "a fortiori," $H_{1}\left(\varphi_{\alpha}\right)=0$.

Case (b)
If $n>1$, then we suppose the statement true for $n-1$. We have

$$
K\left(a_{1}, \ldots, a_{n} ; E\right)=K\left(a_{n}\right) \otimes_{R} K\left(a_{1}, \ldots, a_{n-1} ; E\right)
$$

for all R-modules E [7]; we also have the following exact sequence:

$$
\begin{aligned}
0 & \rightarrow H_{0}\left(K\left(a_{n}\right) \otimes \otimes_{R} H_{p}\left(a_{1}, \ldots, a_{n-1} ; E\right)\right) \rightarrow H_{p}\left(a_{1}, \ldots, a_{n} ; E\right) \\
& \rightarrow H_{1}\left(K\left(a_{n}\right) \otimes H_{p-1}\left(a_{1}, \ldots, a_{n-1} ; E\right)\right) \rightarrow 0 .
\end{aligned}
$$

Choosing $E=N, M$, we get the commutative diagram

$$
\begin{aligned}
& \begin{array}{c}
0 \longrightarrow H_{0}\left(K\left(a_{n}\right) \otimes_{R} H_{p}\left(a_{1}, \ldots, a_{n-1} ; N\right)\right) \longrightarrow H_{p}\left(a_{1}, \ldots, a_{n} ; N\right) \\
0 \longrightarrow H_{0} \downarrow H_{0}\left(K\left(a_{n}\right) \otimes_{R} H_{p}\left(a_{1}, \ldots, a_{n-1} ; M\right)\right) \longrightarrow H_{p}\left(a_{1}, \ldots, a_{n} ; M\right)
\end{array} \\
& \longrightarrow H_{1}\left(K\left(a_{n}\right) \otimes H_{p-1}\left(a_{1}, \ldots, a_{n-1} ; N\right)\right) \longrightarrow 0 \\
& \gamma_{p} \downarrow \\
& \longrightarrow H_{\mathbf{1}}\left(K\left(a_{n}\right) \otimes H_{p-1}\left(a_{1}, \ldots, a_{n-1} ; M\right)\right) \longrightarrow 0,
\end{aligned}
$$

where the vertical arrows are defined by the inclusion $\alpha: N \rightarrow M$.

If $p>1$, by the induction hypothesis, $\alpha_{p}=\gamma_{p}=0$.
If $p=1$, also by the induction hypothesis, $\alpha_{1}=0$. We prove now that even in this case $\gamma_{1}=0$.

In fact, since $H_{0}\left(a_{1}, \ldots, a_{n-1} ; E\right)=E /\left(a_{1} E+\cdots+a_{n-1} E\right)$, for all R-modulcs E, we have that $H_{1}\left(K\left(a_{n}\right) \otimes H_{0}\left(a_{1}, \ldots, a_{n-1} ; E\right)\right)=A n n_{\bar{E}} a_{n}$, with $\breve{E}=E /\left(a_{1} E+\cdots+a_{n-1} E\right)$.

On the other hand, $\gamma_{1}: \operatorname{Ann}_{\bar{N}} a_{n} \rightarrow \operatorname{Ann}_{\bar{M}} a_{n}$ is the homomorphism defined by $\bar{\alpha}: \bar{N} \rightarrow \bar{M}$, where $\bar{\alpha}$ is the homomorphism induced by the inclusion $\alpha: N \rightarrow M$. Every element of $\operatorname{Ann}_{\bar{N}} a_{n}$ is the class \bar{Z} of an element $z \in N$, such that $a_{n} z \in \sum_{j=1}^{n-1} a_{j} N$. From the hypothesis, this implies that $z \in \sum_{j=1}^{n-1} a_{j} M$, hence $\gamma_{1}(\bar{z})=0$. Therefore for any $p>0$, we have $\alpha_{p}=\gamma_{p}=0$.

We shall prove next that $\beta_{p}=0$.
By the above diagram,

$$
\operatorname{Im} \beta_{p} \subseteq H_{0}\left(K\left(a_{n}\right) \otimes_{R} H_{p}\left(a_{1}, \ldots, a_{n-1} ; N\right)\right)
$$

Hence every cycle c of $K_{p}\left(a_{1}, \ldots, a_{n} ; N\right)$ is homologous to a cycle $e \in K_{p}\left(a_{1}, \ldots, a_{n-1} ; M\right)$; that means, $c-e \in d K_{p+1}\left(a_{1}, \ldots, a_{n} ; M\right)$. But

$$
d K_{p+1}\left(a_{1}, \ldots, a_{n} ; M\right) \subseteq K_{p}\left(a_{1}, \ldots, a_{n-\overline{1}} ; N\right)
$$

since, by hypothesis, $\sum_{i=1}^{n} a_{i} M \subset N$. Consequently,

$$
e \in K_{p}\left(a_{1}, \ldots, a_{n-1} ; M\right) \cap K_{p}\left(a_{1}, \ldots, a_{n-1} ; N\right)=K_{p}\left(a_{1}, \ldots, a_{n-1} ; N\right)
$$

Taking the homology classes, it follows that $\operatorname{Im} \beta_{p} \subseteq \operatorname{Im} \alpha_{p}$. But $\operatorname{Im} \alpha_{p}=0$, so $\beta_{p}=0$, and the theorem is proved.

Remark 2. The condition $H_{p}\left(\varphi_{a}\right)=0$, indicated in the above theorem, is equivalent to

$$
\begin{equation*}
Z\left(K_{p}\left(a_{1}, \ldots, a_{n} ; N\right)\right)=d K_{p+1}\left(a_{1}, \ldots, a_{n} ; M\right) \tag{**}
\end{equation*}
$$

where $Z\left(K_{p}\left(a_{1}, \ldots, a_{n} ; N\right)\right)$ is the module of cycles of $K_{p}\left(a_{1}, \ldots, a_{n} ; M\right)$, identified as a submodule of $K_{p}\left(a_{1}, \ldots, a_{n} ; M\right)$.

The property (**) is equivalent to

$$
Z\left(K_{p}\left(a_{1}, \ldots, a_{n} ; M\right)\right) \cap K_{p}\left(a_{1}, \ldots, a_{n} ; N\right)=d K_{p+1}\left(a_{1}, \ldots, a_{n} ; M\right)
$$

In particular, if $p=1$, we have $\operatorname{syz}\left(a_{1}, \ldots, a_{n}\right) \cap N^{n}=T$, where $T=d K_{2}\left(a_{1}, \ldots, a_{n} ; M\right)$ is the submodule of trivial syzygies [4, Chapter IV].

3. One Example

Let k be a field and $y_{11}, \ldots, y_{q-1, q}$ indeterminates over k. In the polynomial ring $A=K\left[y_{11}, \ldots, y_{q-1, q}\right]$ we consider the ideal $p=\sum_{i=1}^{q} F_{i} A$, where $\left.(-1)\right|^{i+1} F_{i}$ is the $(q-1)$-minor obtained by deleting the i-th column in the matrix $Y=\left\|y_{i j}\right\|,(i=1, \ldots, q-1 ; j=1, \ldots, q)$.

We know [2] that every pair F_{i}, F_{j} with $i \neq j$, is a maximal A-regular sequencc contained in p. It follows that if $q>2, F_{1}, \ldots, F_{q}$ is not an A-regular sequence. Our purpose is to verify that F_{1}, \ldots, F_{q} is a relative A-regular sequence with respect to p.
Let us suppose that $y F_{q} \in\left(F_{1}, \ldots, F_{q-1}\right)$, with $y \in p$, i.e., $y=\sum_{i=1}^{q} r_{i} F_{i}\left(r_{i} \in A\right)$. Then $y \in\left(F_{1}, \ldots, F_{q-1}\right)$ is equivalent to $r_{q} F_{q} \in\left(F_{1}, \ldots, F_{q-1}\right)$.
$I=\sum_{j=1}^{a} y_{j Q} A$ is a prime ideal of A, and one can easily see that (i) $\left(F_{1}, \ldots, F_{q-1}\right) \subset I$, and (ii) $F_{q} \notin I$. On the other hand $\sum_{j=1}^{q} y_{i j} F_{j}=0$, $\left(1 \leqslant i \leqslant q-1\right.$), which shows that $y_{i q} F_{q} \in I$, for $i=1, \ldots, q-1$, hence (iii) $I F_{q} \subset\left(F_{1}, \ldots, F_{q-1}\right) \cdot y F_{q} \in\left(F_{1}, \ldots, F_{q-1}\right)$ implies $r_{q} F_{q}{ }^{2} \in\left(F_{1}, \ldots, F_{q-1}\right)$, hence, by (i) $r_{q} F_{q}{ }^{2} \in I$; therefore by (ii) $r_{q} \in I$; also, by (iii) $r_{q} F_{q} \in\left(F_{1}, \ldots, F_{q-1}\right)$.

We have thus verified that $y F_{q} \in\left(F_{1}, \ldots, F_{q-1}\right)$ and $y \in p$ implies $y \in\left(F_{1}, \ldots, F_{q-1}\right)$, i.e., $p \cap\left[\left(F_{1}, \ldots, F_{q-1}\right): F_{q}\right]=\left(F_{1}, \ldots, F_{q-1}\right)$.

Suppose now that $y F_{\eta-1} \in\left(F_{1}, \ldots, F_{q-2}\right)$, where $y=\sum_{i=1}^{q} r_{i} F_{i}$. Since a permutation of the columns of the matrix Y leads to a permutation of the elements of the system $\left\{F_{1}, \ldots, F_{q}\right\}$, we get

$$
\left[\left(F_{1}, \ldots, F_{q-2}, F_{q}\right): F_{q-1}\right] \cap p=\left(F_{1}, \ldots, F_{q-2}, F_{q}\right),
$$

and, therefore, we can suppose $r_{a-1}=0$.
We have to prove that $r_{q} F_{q} \in\left(F_{1}, \ldots, F_{q-2}\right)$.
Let J be the ideal of A generated by all the minors of order 2 of the matrix formed by the last two columns of the matrix Y. We know [2] that J is a prime ideal and it is easy to see that
(j) $\left(F_{1}, \ldots, F_{q-2}\right) \subset J$;
(jj) $F_{q-1}, F_{q} \notin J ;$
(jjj) $J F_{q} \subset\left(F_{1}, \ldots, F_{q-2}\right)$.

In a similar way to that employed above for the ideal I, we can now conclude that $y \in\left(F_{1}, \ldots, F_{\alpha-2}\right)$. By repeating this procedure one can verify that $y F_{i} \in\left(F_{1}, \ldots, F_{i-1}\right)$ and $y \in p$ imply $y \in\left(F_{1}, \ldots, F_{i-1}\right)$, for $i=1, \ldots, q-1$.

We have therefore proved that the elements F_{1}, \ldots, F_{q} form a relative A-regular sequence with respect to p and that this sequence is unconditioned since we can permute arbitrarily the elements F_{1}, \ldots, F_{q} by simply permuting the columns of Y.

Remark 3. We have the relation

$$
T-\operatorname{ker}(\psi) \cap p A^{q}=-\operatorname{syz}\left(F_{1}, \ldots, F_{q}\right) \cap p A^{q},
$$

where $T \subset A^{q}$ is the submodule of the trivial syzygies of the system $\left\{F_{1}, \ldots, F_{q}\right\}$, and $\psi: A^{q} \rightarrow A$, is the ring homomorphism defined by $\psi\left(e_{i}\right)=F_{i}$, where e_{1}, \ldots, e_{q} is the natural basis of the free A-module A^{q}.

Remark 4. The property of being an unconditioned relative regular sequence also holds for the elements $G_{1}, \ldots ., G_{q}$ which are the $(q-1)$-minors of a matrix $H=\left\|h_{i j}\right\|,(1 \leqslant i \leqslant q-1,1 \leqslant j \leqslant q)$, where $h_{i j}$ are elements of a noetherian ring R which contains a field k, provided $h_{11}, \ldots, h_{q-1 . \alpha}$ form a regular sequence, contained in $\operatorname{Rad}_{J}(R)$.

Indeed, is this an easy consequence of Remark 1, of the example above, and of the following

Lemma. Let R be a unitary commutative noetherian ring containing a field k and $y_{1}, \ldots, y_{m} \in \operatorname{Rad} d_{y}(R)$. Let x_{1}, \ldots, x_{m} be indeterminates over k and $\theta: A=$ $k\left[x_{1}, \ldots, x_{m}\right] \rightarrow R$ the homomorphism of k-algebras for which $\theta\left(x_{i}\right)=y_{i}$ $(i=1, \ldots, m)$. Suppose that y_{1}, \ldots, y_{m} form a regular sequence. Then θ is flat, i.e., θ makes R into a flat A-module, and consequently $\operatorname{ker}(\theta)=0$.

Note: this Lemma slightly extends Proposition 1 of [4].
Proof. Let $I=y_{1} R+\cdots+y_{m} R, J=x_{1} A+\cdots+x_{m} A$. One knows [3] that R is A-flat iff (i) $R / J R$ is flat over A / J, and (ii) $\operatorname{Tor}_{1}{ }^{A}(R, A / J)=0$.

We observe that (i) is trivially verified as $A / J=k$ is a field.
To prove (ii) consider the Koszul complex associated to y_{1}, \ldots, y_{m}. But y_{1}, \ldots, y_{m} forms a regular sequence; hence $H_{p}\left(K\left(y_{1}, \ldots, y_{m}\right)\right)=0$, for $p>0$. Thus (ii) is true and R is a flat A-module.
$\operatorname{Ker}(\theta)=0$ follows from the fact that for any flat homomorphism of rings $f: B \rightarrow C$, any non zero-divisor b of B is mapped onto a non zero-divisor c of C. Indeed the homothety $\approx \mapsto b z$ of B tensored over B with C leads to the homothety $u \mapsto c u$ of C. So the Lemma is proved.

References

1. D. Buchseaum (Ed.), Lectures on regular local rings, in "Category Theory and Their Application," Vol. I, Springer, New York, 1969.
2. M. Fiorentini, "Una speciale famiglia di ideali di classe principale generalizzata," Rend. Mat. (3), Vol. 3, Serie VI, Roma, 1970.
3. A. Grothenulick, "Éléments de géométrie algébrique," Ch. III, IHES, Paris, 1961.
4. R. Hartshorne, A property of A-sequences, Bull. Soc. Math. France, t.94, Fasc. 1, 1966.
5. A. Micali, P. Salmon, and P. Samuel, "Intégrité et factorialité des algèbres symétriques," Saõ Paulo, 1965.
6. M. Nagata, "Local Rings," Interscience Publ. Inc., New York, 1962.
7. J. P. Serre, "Algèbre locale et multiplicités," Springer, New York, 1965.
