JOURNAL OF ALGEBRA 18, 384-389 (1971)

On Relative Regular Sequences

MARIO FIORENTINI

Istituto Matematico, Università di Roma, Rome, Italy Communicated by D. Buchsbaum Received April 2, 1970

1. INTRODUCTION

In the article (Ref. [5]) the authors studied the ideal \mathcal{O} , of a unitary commutative ring R, generated by n elements a_1, \ldots, a_n satisfying the following property (*): if b_1, \ldots, b_n are elements of the ideal $\mathcal{O} = (a_1, \ldots, a_n)R$ such that $b_1a_1 + \cdots + b_na_n = 0$, then the syzygy (b_1, \ldots, b_n) is trivial, i.e., it is a combination of the elementary syzygies $(0, \ldots, 0, a_j, 0, \ldots, 0, -a_i, 0, \ldots, 0)$.

It is well-known that if $a_1, ..., a_n$ is an *R*-regular sequence every syzygy is trivial, so (*) is verified. It is also known that the property "every syzygy is trivial" can be expressed by the relation $H_1(K(a_1, ..., a_n; R)) = 0$, where $K(a_1, ..., a_n; R)$ is the Koszul complex determined by $a_1, ..., a_n$.

In [5] some examples are given of elements $a_1, ..., a_n$ verifying (*) which are not a regular sequence and, therefore, $H_1(K(a_1, ..., a_n)) \neq 0$.

The condition (*) can also be stated by means of the Koszul complex. In fact, let $\mathcal{O} = (a_1, ..., a_n)R$ and let

$$\varphi: K(a_1, ..., a_n; \mathcal{O}) \to K(a_1, ..., a_n; R)$$

be the canonical mapping induced by the inclusion $\mathcal{A} \subset R$. Then we observe in Section 2 that (*) is equivalent to the condition $H_1(\varphi) = 0$, where $H_1(\varphi)$ is the map induced on homology.

By the remarks above we are led to consider the following problem: Given an *R*-module *M* and a submodule *N*, under what conditions will a sequence $a_1, ..., a_n$ of elements in *R*, not necessarily a regular sequence, be such that $H_1(\varphi) = 0$, φ being the canonical mapping $K(a_1, ..., a_n; N) \rightarrow K(a_1, ..., a_n; M)$ induced by the inclusion $N \subset M$?

Thus in Section 3 we define a notion of relative *M*-regular sequence with respect to *N* and verify that if $a_1, ..., a_n$ is a relative *M*-regular sequence then we have $H_1(\varphi) = 0$ as wanted.

Finally we verify in Section 4 that there exist interesting examples of ideals

 \mathcal{C} generated by a relative contained in Rad_J (R) R-regular sequence with respect to \mathcal{C} . Namely, if $h_{11}, ..., h_{q-1,q}$ are elements of a noetherian ring R which form a regular sequence, then such an ideal is the ideal \mathcal{C} generated by the (q-1) minors of the matrix $H = ||h_{ij}|| (1 \le i \le q-1, 1 \le j \le q)$.

2. Relative *M*-Regular Sequences with Respect to a Submodule N

Let R be a commutative unitary ring and M an R-module. A sequence of elements $a_1, ..., a_n$ of R is said to be M-regular if for each $i = 1, ..., n, a_i$ is not a zero-divisor in the module $M/(a_1, ..., a_{i-1})M$. (In particular, this means a_1 is not a zero-divisor in M).

DEFINITION 1. Let R be a commutative unitary ring, M an R-module and N a submodule of M. A sequence $a_1, ..., a_n$ of elements in R is said to be a relative M-regular sequence with respect to N, if for all $i, a_{i+1}x \in \sum_{j=1}^{i} a_jN$ and $x \in N$ imply $x \in \sum_{j=1}^{i} a_jM$, $0 \leq i < n$. (For i = 0, this means a_1 is not a zero-divisor in N).

DEFINITION 2. Moreover, if every arbitrary permutation $a_{i_1}, ..., a_{i_n}$ of elements $a_1, ..., a_n$ also gives a relative *M*-regular sequence with respect to the submodule *N*, we say that $a_1, ..., a_n$ form an unconditioned relative *M*-regular sequence with respect to *N*.

Remark 1. Let $a_1, ..., a_n \in R$. The property of being a relative *M*-regular sequence with respect to a submodule *N* is preserved under flat extension of *R*. Indeed, let $f: R \to R'$ be a ring homomorphism making R' into a flat *R*-module. Put $M' = M \bigotimes_R R'$, $N' = N \bigotimes_R R'$. It is obvious that $N' \subset M'$. The fact that $a_1, ..., a_n$ is a relative *M*-regular sequence with respect to *N* can be expressed by the following commutative exact diagram

FIORENTINI

where

$$N_1 = N, \qquad M_1 = M, \qquad N_i = N/(a_1N + \dots + a_{i-1}N), \ M'_i = M/(a_1M + \dots + a_{i-1}M), \qquad i = 2, ..., n;$$

 α_i is induced by α and $\omega_i(x) = a_i x (x \in N_i)$, i = 1,..., n. Tensoring with R' over R this diagram is transformed into the corresponding diagram for $M', N', a_i' = f(a_i), i = 1,..., n$, and the exactness is preserved.

Let $K(a_1,...,a_n; E) = K(a_1,...,a_n) \otimes_R E$, for all *R*-module *E*, where $K(a_1,...,a_n)$ denotes the Koszul complex associated to the sequence $a_1,...,a_n$.

THEOREM. Let N be a submodule of M such that $\sum_{i=1}^{n} a_i M \subset N$, with $a_i \in R$. Let $\alpha : N \to M$ be the inclusion mapping, and let

$$\varphi_{a}: K(a_{1},...,a_{n};N) \rightarrow K(a_{1},...,a_{n};M)$$

be the mapping induced by α . If the sequence of elements $a_1, ..., a_n$ is a relative *M*-regular sequence with respect to *N*, then $H_p(\varphi_\alpha) = 0, \forall p > 0$.

Proof. We proceed by induction on *n*.

Case (a)

If n = 1, then $xa_1 = 0$ and $x \in N$ imply x = 0; hence a_1 is an N-regular element. However, $H_1(K(a_1; N)) = \operatorname{Ann}_N a_1$. It follows that $H_1(K(a_1; N)) = 0$, and, "a fortiori," $H_1(\varphi_{\alpha}) = 0$.

Case (b)

If n > 1, then we suppose the statement true for n - 1. We have

$$K(a_1,...,a_n;E) = K(a_n) \otimes_R K(a_1,...,a_{n-1};E),$$

for all R-modules E[7]; we also have the following exact sequence:

$$0 \rightarrow H_0(K(a_n) \otimes_{\mathbb{R}} H_p(a_1, ..., a_{n-1}; E)) \rightarrow H_p(a_1, ..., a_n; E)$$

$$\rightarrow H_1(K(a_n) \otimes H_{p-1}(a_1, ..., a_{n-1}; E)) \rightarrow 0.$$

Choosing E = N, M, we get the commutative diagram

$$\begin{array}{cccc} 0 \longrightarrow H_0(K(a_n) \otimes_R H_p(a_1, ..., a_{n-1}; N)) \longrightarrow H_p(a_1, ..., a_n; N) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ 0 \longrightarrow H_0(K(a_n) \otimes_R H_p(a_1, ..., a_{n-1}; M)) \longrightarrow H_p(a_1, ..., a_n; M) \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

where the vertical arrows are defined by the inclusion $\alpha : N \rightarrow M$.

386

If p > 1, by the induction hypothesis, $\alpha_p = \gamma_p = 0$.

If p = 1, also by the induction hypothesis, $\alpha_1 = 0$. We prove now that even in this case $\gamma_1 = 0$.

In fact, since $H_0(a_1,...,a_{n-1}; E) = E/(a_1E + \cdots + a_{n-1}E)$, for all *R*-modules *E*, we have that $H_1(K(a_n) \otimes H_0(a_1,...,a_{n-1}; E)) = \operatorname{Ann}_E a_n$, with $\overline{E} = E/(a_1E + \cdots + a_{n-1}E)$.

On the other hand, $\gamma_1: \operatorname{Ann}_{\overline{N}} a_n \to \operatorname{Ann}_{\overline{M}} a_n$ is the homomorphism defined by $\overline{\alpha}: \overline{N} \to \overline{M}$, where $\overline{\alpha}$ is the homomorphism induced by the inclusion $\alpha: N \to M$. Every element of $\operatorname{Ann}_{\overline{N}} a_n$ is the class \overline{z} of an element $z \in N$, such that $a_n z \in \sum_{j=1}^{n-1} a_j N$. From the hypothesis, this implies that $z \in \sum_{j=1}^{n-1} a_j M$, hence $\gamma_1(\overline{z}) = 0$. Therefore for any p > 0, we have $\alpha_p = \gamma_p = 0$. We shall prove next that $\beta_p = 0$.

By the above diagram,

$$\operatorname{Im} \beta_n \subseteq H_0(K(a_n) \otimes_{\mathbb{R}} H_p(a_1, ..., a_{n-1}; N)).$$

Hence every cycle c of $K_p(a_1,...,a_n; N)$ is homologous to a cycle $e \in K_p(a_1,...,a_{n-1}; M)$; that means, $c - e \in dK_{p+1}(a_1,...,a_n; M)$. But

$$dK_{p+1}(a_1,...,a_n;M) \subseteq K_p(a_1,...,a_{n-1};N)$$

since, by hypothesis, $\sum_{i=1}^{n} a_i M \subset N$. Consequently,

$$e \in K_p(a_1, ..., a_{n-1}; M) \cap K_p(a_1, ..., a_{n-1}; N) = K_p(a_1, ..., a_{n-1}; N).$$

Taking the homology classes, it follows that $\operatorname{Im} \beta_p \subseteq \operatorname{Im} \alpha_p$. But $\operatorname{Im} \alpha_p = 0$, so $\beta_p = 0$, and the theorem is proved.

Remark 2. The condition $H_p(\varphi_a) = 0$, indicated in the above theorem, is equivalent to

$$Z(K_p(a_1,...,a_n;N)) = dK_{p+1}(a_1,...,a_n;M),$$
(**)

where $Z(K_p(a_1,...,a_n;N))$ is the module of cycles of $K_p(a_1,...,a_n;M)$, identified as a submodule of $K_p(a_1,...,a_n;M)$.

The property (**) is equivalent to

$$Z(K_p(a_1,...,a_n;M)) \cap K_p(a_1,...,a_n;N) = dK_{p+1}(a_1,...,a_n;M).$$

In particular, if p = 1, we have $syz(a_1, ..., a_n) \cap N^n = T$, where $T = dK_2(a_1, ..., a_n; M)$ is the submodule of trivial syzygies [4, Chapter IV].

FIORENTINI

3. One Example

Let k be a field and $y_{11}, ..., y_{q-1,q}$ indeterminates over k. In the polynomial ring $A = K[y_{11}, ..., y_{q-1,q}]$ we consider the ideal $p = \sum_{i=1}^{q} F_i A$, where $(-1)|^{i+1}F_i$ is the (q-1)-minor obtained by deleting the *i*-th column in the matrix $Y = ||y_{ij}||, (i = 1, ..., q - 1; j = 1, ..., q)$.

We know [2] that every pair F_i , F_j with $i \neq j$, is a maximal A-regular sequence contained in p. It follows that if $q > 2, F_1, ..., F_q$ is not an A-regular sequence. Our purpose is to verify that $F_1, ..., F_q$ is a relative A-regular sequence with respect to p.

Let us suppose that $yF_q \in (F_1, ..., F_{q-1})$, with $y \in p$, i.e., $y = \sum_{i=1}^{q} r_i F_i(r_i \in A)$. Then $y \in (F_1, ..., F_{q-1})$ is equivalent to $r_qF_q \in (F_1, ..., F_{q-1})$.

 $I = \sum_{j=1}^{q} y_{jq}A \text{ is a prime ideal of } A, \text{ and one can easily see that}$ (i) $(F_1, ..., F_{q-1}) \subset I$, and (ii) $F_q \notin I$. On the other hand $\sum_{j=1}^{q} y_{ij}F_j = 0$, $(1 \leq i \leq q-1)$, which shows that $y_{iq}F_q \in I$, for i = 1, ..., q-1, hence (iii) $IF_q \subset (F_1, ..., F_{q-1})$. $yF_q \in (F_1, ..., F_{q-1})$ implies $r_q F_q^2 \in (F_1, ..., F_{q-1})$, hence, by (i) $r_q F_q^2 \in I$; therefore by (ii) $r_q \in I$; also, by (iii) $r_q F_q \in (F_1, ..., F_{q-1})$.

We have thus verified that $yF_q \in (F_1, ..., F_{q-1})$ and $y \in p$ implies $y \in (F_1, ..., F_{q-1})$, i.e., $p \cap [(F_1, ..., F_{q-1}) : F_q] = (F_1, ..., F_{q-1})$.

Suppose now that $yF_{q-1} \in (F_1, ..., F_{q-2})$, where $y = \sum_{i=1}^{q} r_i F_i$. Since a permutation of the columns of the matrix Y leads to a permutation of the elements of the system $\{F_1, ..., F_q\}$, we get

$$[(F_1,...,F_{q-2},F_q):F_{q-1}] \cap p = (F_1,...,F_{q-2},F_q),$$

and, therefore, we can suppose $r_{q-1} = 0$.

We have to prove that $r_q F_q \in (F_1, ..., F_{q-2})$.

Let J be the ideal of A generated by all the minors of order 2 of the matrix formed by the last two columns of the matrix Y. We know [2] that J is a prime ideal and it is easy to see that

(j) $(F_1, ..., F_{q-2}) \subset J;$ (jj) $F_{q-1}, F_q \notin J;$ (jjj) $JF_q \subset (F_1, ..., F_{q-2}).$

In a similar way to that employed above for the ideal I, we can now conclude that $y \in (F_1, ..., F_{q-2})$. By repeating this procedure one can verify that $yF_i \in (F_1, ..., F_{i-1})$ and $y \in p$ imply $y \in (F_1, ..., F_{i-1})$, for i = 1, ..., q - 1.

We have therefore proved that the elements $F_1, ..., F_q$ form a relative A-regular sequence with respect to p and that this sequence is unconditioned since we can permute arbitrarily the elements $F_1, ..., F_q$ by simply permuting the columns of Y.

Remark 3. We have the relation

$$T = \ker(\psi) \cap pA^q = \operatorname{syz} (F_1, ..., F_q) \cap pA^q,$$

where $T \subset A^q$ is the submodule of the trivial syzygies of the system $\{F_1, ..., F_q\}$, and $\psi : A^q \to A$, is the ring homomorphism defined by $\psi(e_i) = F_i$, where $e_1, ..., e_q$ is the natural basis of the free A-module A^q .

Remark 4. The property of being an unconditioned relative regular sequence also holds for the elements G_1 ,..., G_q which are the (q-1)-minors of a matrix $H = || h_{ij} ||$, $(1 \le i \le q-1, 1 \le j \le q)$, where h_{ij} are elements of a noetherian ring R which contains a field k, provided h_{11} ,..., $h_{q-1,q}$ form a regular sequence, contained in Rad_I (R).

Indeed, is this an easy consequence of Remark 1, of the example above, and of the following

LEMMA. Let R be a unitary commutative noetherian ring containing a field k and $y_1, ..., y_m \in Rad_J(R)$. Let $x_1, ..., x_m$ be indeterminates over k and $\theta : A = k[x_1, ..., x_m] \rightarrow R$ the homomorphism of k-algebras for which $\theta(x_i) = y_i$ (i = 1, ..., m). Suppose that $y_1, ..., y_m$ form a regular sequence. Then θ is flat, i.e., θ makes R into a flat A-module, and consequently ker $(\theta) = 0$.

Note: this Lemma slightly extends Proposition 1 of [4].

Proof. Let $I = y_1R + \cdots + y_mR$, $J = x_1A + \cdots + x_mA$. One knows [3] that R is A-flat iff (i) R/JR is flat over A/J, and (ii) $\operatorname{Tor}_1^A(R, A/J) = 0$. We observe that (i) is trivially verified as A/J = k is a field.

To prove (ii) consider the Koszul complex associated to $y_1, ..., y_m$. But $y_1, ..., y_m$ forms a regular sequence; hence $H_p(K(y_1, ..., y_m)) = 0$, for p > 0. Thus (ii) is true and R is a flat A-module.

 $\operatorname{Ker}(\theta) = 0$ follows from the fact that for any flat homomorphism of rings $f: B \to C$, any non zero-divisor b of B is mapped onto a non zero-divisor c of C. Indeed the homothety $z \mapsto bz$ of B tensored over B with C leads to the homothety $u \mapsto cu$ of C. So the Lemma is proved.

References

- 1. D. BUCHSBAUM (Ed.), Lectures on regular local rings, in "Category Theory and Their Application," Vol. I, Springer, New York, 1969.
- M. FIORENTINI, "Una speciale famiglia di ideali di classe principale generalizzata," Rend. Mat. (3), Vol. 3, Serie VI, Roma, 1970.
- A. GROTHENDIECK, "Éléments de géométrie algébrique," Ch. III, IHES, Paris, 1961.
- 4. R. HARTSHORNE, A property of A-sequences, Bull. Soc. Math. France, t. 94, Fasc. 1, 1966.
- A. MICALI, P. SALMON, AND P. SAMUEL, "Intégrité et factorialité des algèbres symétriques," Saõ Paulo, 1965.
- 6. M. NAGATA, "Local Rings," Interscience Publ. Inc., New York, 1962.
- 7. J. P. SERRE, "Algèbre locale et multiplicités," Springer, New York, 1965.