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A search for events containing two or more high-transverse-momentum isolated leptons has been
performed in ep collisions with the ZEUS detector at HERA using the full collected data sample,
corresponding to an integrated luminosity of 480 pb−1. The number of observed events has been
compared with the prediction from the Standard Model, searching for possible deviations, especially for
multi-lepton events with invariant mass larger than 100 GeV. Good agreement with the Standard Model
has been observed. Total and differential cross sections for di-lepton production have been measured in
a restricted phase space dominated by photon–photon collisions.
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1. Introduction

The production of multi-lepton final states in electron–proton
collisions55 is predicted within the framework of the Standard
Model (SM). At HERA energies, the production cross sections are
small for high transverse momenta, pT , of the produced leptons
and, along with the distributions of the kinematic quantities, can
be calculated with high accuracy in the SM. Therefore contribu-
tions from beyond the SM could either be observed as an increase
of the visible cross sections or as a deviation from the predicted
distributions.

Multi-lepton final states were searched for by the H1 Collab-
oration [1] using a luminosity of 463 pb−1. The observed overall
numbers of di- and tri-lepton events were in good agreement with
the SM predictions. However, some events with large transverse
momenta were observed, exceeding SM predictions in this region.

The analysis presented here is based on a luminosity of
480 pb−1 collected by the ZEUS experiment. Events with two
or more high-pT leptons (electrons or muons) were searched for
and the total yields and distributions of kinematic variables were
compared to SM predictions. In addition, the total visible and dif-
ferential cross sections for di-lepton production were measured in
the photoproduction regime, in which the incoming electron has
small squared momentum transfer, Q 2 < 1 GeV2.

2. Experimental set-up

The analysed data were collected between 1996 and 2007 at
the electron-proton collider HERA using the ZEUS detector. Dur-
ing this period HERA operated with an electron beam energy of
27.5 GeV and a proton beam energy of 820 GeV and, from 1998,
of 920 GeV, corresponding to centre-of-mass energies of 300 GeV
and 318 GeV, respectively.

47 Supported by RF Presidential grant N 1456.2008.2 for the leading scientific
schools and by the Russian Ministry of Education and Science through its grant
for Scientific Research on High Energy Physics.
48 Supported by the Spanish Ministry of Education and Science through funds pro-

vided by CICYT.
49 Supported by the Science and Technology Facilities Council, UK.
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Policy Office.
54 Supported by an FRGS grant from the Malaysian government.
55 Here and in the following, the term “electron” denotes generically both the elec-

tron (e−) and the positron (e+).
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A detailed description of the ZEUS detector can be found else-
where [2]. A brief outline of the components that are most relevant
for this analysis is given below.

Charged particles were tracked in the central tracking detector
(CTD) [3] which operated in a magnetic field of 1.43 T provided
by a thin superconducting solenoid and covered the polar-angle56

region 15◦ < θ < 164◦ . Before the 2003–2007 running period,
the ZEUS tracking system was upgraded with a silicon microver-
tex detector (MVD) [4]. The high-resolution uranium–scintillator
calorimeter (CAL) [5] consisted of three parts: the forward (FCAL),
the barrel (BCAL) and the rear (RCAL) calorimeters. The smallest
subdivision of the CAL was called a cell. The muon system con-
sisted of rear, barrel (R/BMUON) [6] and forward (FMUON) [2]
tracking detectors. The B/RMUON consisted of limited-streamer
(LS) tube chambers placed behind the BCAL (RCAL), inside and out-
side a magnetised iron yoke surrounding the CAL. The barrel and
rear muon chambers covered polar angles from 34◦ to 135◦ and
from 135◦ to 171◦ , respectively. The FMUON consisted of six trig-
ger planes of LS tubes and four planes of drift chambers covering
the angular region from 5◦ to 32◦ . The muon system exploited the
magnetic field of the iron yoke and, in the forward direction, of
two iron toroids magnetised to ∼1.6 T to provide a measurement
of the muon momentum.

The luminosity was measured using the Bethe–Heitler reaction
ep → eγ p by a luminosity detector which consisted of a lead–
scintillator [7–9] calorimeter and, in the 2003–2007 running pe-
riod, an independent magnetic spectrometer [10]. The fractional
systematic uncertainty on the measured luminosity was 2.5%.

The integrated luminosity of the samples corresponds to
480 pb−1 for events in which a search of electrons but no muons
was carried out (electron channel) and to 444 pb−1 for events
in which a search for either muons or electrons was carried out
(muon channel). The slight difference in integrated luminosity is
due to the requirement of a good performance of the detector
components involved in the search.

3. Standard Model processes and Monte Carlo simulation

To evaluate the detector acceptance and to provide simulations
of signal and background distributions, Monte Carlo (MC) samples
of signal and background events were generated.

The SM predicts that isolated multi-lepton final states are pre-
dominantly produced by two-photon interactions, γ γ → l+l− . The
Grape MC event generator [11] was used to simulate these pro-
cesses. It also includes contributions from γ Z and Z Z interactions,
photon internal conversions and virtual and real Z production. It
is based on the electroweak matrix elements at tree level. At the
proton vertex, three contributions were considered: elastic, where
the proton stays intact; quasi-elastic, where a resonant state is
formed; and inelastic, where the proton interacts via its quark con-
stituents. At the electron vertex, all values of Q 2 were generated,
from Q 2 � 0 GeV2 (photoproduction) to the deep inelastic scat-
tering (DIS) regime. The uncertainty on the Grape predictions was
taken to be 3% [1].

The Drell–Yan process from resolved photon events, in which
the photon fluctuates into a qq̄ pair, and the lepton pair is pro-
duced from the interaction between a quark in the proton and one
of the quarks from the photon, is not included. However this is ex-
pected to be negligible in the investigated kinematic regime [12].

56 The ZEUS coordinate system is a right-handed Cartesian system, with the Z
axis pointing in the proton beam direction, the Y axis pointing up and the X axis
pointing towards the centre of HERA. The polar angle, θ , is measured with respect
to the proton beam direction. The coordinate origin is at the nominal interaction
point.
The dominant SM background to topologies in which at least
one electron is identified comes from neutral current (NC) DIS and
QED Compton (QEDC) events. In NC (ep → e X ) events, the scat-
tered electron is identified as one of the electrons of the pair and
hadrons or photons in the hadronic system X are misidentified as
a further electron. In QEDC events (ep → eγ X ), the final-state pho-
ton may convert into an e+e− pair in the detector material in front
of the CTD and typically one of these two electrons is identified as
the second electron of the pair.

The NC DIS and QEDC events were simulated with the Djan-

goh [13] and Grape-Compton [11] MC programs, respectively. The
absolute predictions of the Grape-Compton MC were scaled by a
factor 1.13 in order to correct imperfections in the simulation of
the dead material between the beampipe and the CTD. The un-
certainty on this factor was taken as a source of systematic un-
certainty. For the final-state topologies in which an electron and a
muon were found, the background from SM di-tau pair production
was estimated using the Grape MC program.

Standard Model processes such as vector-meson (Υ , charmo-
nium) and open heavy-flavour (charm and beauty) production
were studied using the Diffvm [14] and Pythia [15] MC programs
and were found to be negligible.

The generated events were passed through a full simulation of
the ZEUS detector based on the GEANT [16] program versions 3.13
(1996–2000) and 3.21 (2003–2007). They were then subjected to
the same trigger requirements and processed by the same recon-
struction program as the data.

4. Event selection

4.1. Online selection

Events with two or more leptons in the final state were selected
using the ZEUS three-level trigger system [2,17,18].

To select electrons, a significant energy deposit was required in
the electromagnetic calorimeter and at least one good track in the
central detectors had to be present. In addition, two other trigger
chains were used: the first, dedicated to NC DIS selection, requir-
ing the detection of an electron with an energy E ′

e > 4 GeV; the
second, dedicated to the selection of events with high transverse
energy deposited in the calorimeter (E T > 25 GeV).

To select muons [19], a candidate was identified as a central
track measured in the CTD matched to an energy deposit in the
CAL and to a segment in the barrel or rear inner muon chambers.

4.2. Electron identification

The following criteria were imposed to select electrons in the
offline analysis:

• electron identification — an algorithm [20] which combined
information from the energy deposits in the calorimeter and,
when available, tracks measured in the central tracking detec-
tors was used to identify the electron candidates. Electron can-
didates in the central region (20◦ < θe < 150◦) were required
to have energy greater than 10 GeV and a track matched with
the energy deposit in the calorimeter. The matched track was
required to be fitted to the primary vertex and to have a mo-
mentum of at least 3 GeV and a distance of closest approach
between the energy deposition and the track of less than 8 cm.
Forward electrons (5◦ < θe < 20◦) were also required to have
an energy greater than 10 GeV while, for electrons in the rear
region (150◦ < θe < 175◦), the energy requirement was de-
creased to 5 GeV;
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• isolation — to ensure high purity, each electron candidate was
required to be isolated such that the total energy not associ-
ated with the electron in an η − φ cone of radius 0.8 centred
on the electron was less than 0.3 GeV. This requirement was
complemented, for electrons in the central region, by the re-
quest that no track with pT > 1 GeV, other than the matching
track, was contained in an η −φ cone of radius 0.4 centred on
the electron;

• QEDC background reduction — for the data collected in 2003–
2007, each track associated with an electron candidate was
required to have at least two hits in the MVD. This require-
ment removed photon conversions in the material between
the MVD and the CTD.

4.3. Muon identification

The following criteria were imposed to select muons in the of-
fline analysis:

• muon identification — at least one muon candidate in the
event was required to be reconstructed by the rear, barrel or
forward muon chambers, matched to a track and to an energy
deposit in the calorimeter. In the case when only one muon in
the event was reconstructed by the muon chambers, additional
muons were also selected with looser criteria, by requiring a
track pointing towards a calorimeter energy deposit compat-
ible with that from a minimum ionising particle (mip). Each
muon candidate was required to be associated with a track
fitted to the primary vertex. The muon momentum was re-
constructed using the central tracking devices, complemented
with the information from the FMUON when available. The
muon was required to have pμ

T > 2 GeV, and to lie in the
angular region 20◦ < θμ < 26◦ (FMUON), 35◦ < θμ < 160◦
(B/RMUON), 20◦ < θμ < 160◦ (mip);

• isolation — to ensure high purity, each identified muon was
required to be isolated such that only the matching track was
contained in an η −φ cone of radius 1.0 centred on the muon.
This cut, harder than in the electron selection, was used to re-
ject background events in which a muon was found very close
to a hadronic system, in particular in the eμ channel;

• cosmic-muon background reduction — the reconstructed pri-
mary vertex had to be consistent with the HERA beam-spot
position. If two muons were found, the acollinearity angle, Ω ,
between the two muons had to satisfy cosΩ > −0.995. For
events with cos Ω < −0.990, additional CAL timing cuts were
applied.

4.4. Event selection and classification

The final event selection required the event vertex to be recon-
structed with |ZVTX| < 30 cm. At least two leptons, electrons or
muons, had to be reconstructed in the central part of the detector
(20◦ < θ l < 150◦). One of the leptons had to have pl1

T > 10 GeV and

the other pl2
T > 5 GeV. Additional leptons identified as described in

Sections 4.2 and 4.3 could be present in the event. No explicit re-
quirement on the charge of the leptons was imposed. According to
the number and the flavour of the lepton candidates, the events
were classified into mutually exclusive samples.

For the measurement of the production cross section of e+e−
and μ+μ− pairs in the photoproduction regime, the cut (E −
P Z ) < 45 GeV was applied. This quantity was reconstructed in the
electron case as

E − P Z =
∑

Ecorr
i

(
1 − cos(θi)

)
, (1)
i

where the sum runs over the corrected energies, Ecorr
i , of the CAL

clusters and, in the muon case, as

E − P Z =
∑

i

Ei
(
1 − cos(θi)

) −
∑

mip

Emip
(
1 − cos(θmip)

)

+
∑

muon

Emuon
(
1 − cos(θmuon)

)
, (2)

where Ei is the energy of the ith CAL cell and the (E − P Z ) of
the CAL mip was replaced by that of the muon track. This require-
ment selects events in which the scattered electron was lost in the
beampipe and corresponds to a cut of Q 2 < 1 GeV2 and on the
event inelasticity, y = (E − P Z )/2Ee < 0.82, where Ee is the elec-
tron beam energy. The background from NC DIS and QEDC events
is negligible in this sample, which will be referred to as the γ γ
sample in the following.

5. Systematic uncertainties

The following sources of systematic uncertainties were consid-
ered; the effect on the total visible cross section is given:

• the muon acceptance, including the B/RMUON trigger, the re-
construction and the muon identification efficiencies, is known
to about 7% from a study based on an independent elastic di-

muon sample [21], resulting in an uncertainty of
( +10%

−8%
)

for
muons;

• the uncertainty on the efficiency of the CTD part of the trigger
chain was estimated from a study based on an independent
sample of low-multiplicity low-Q 2 DIS events [22], resulting
in an uncertainty of +5% for electrons and ±5% for muons;

• the CAL energy scale was varied by its uncertainty of 3%, re-

sulting in an uncertainty of
( +4%

−3%
)

for electrons and negligible

for muons;
• the uncertainty on the efficiency of the CAL part of the muon

trigger (±3%) and of the mip finder (±2%) resulted in an un-
certainty of ±4% for muons;

• the uncertainty on the measurement of the hadronic system
was evaluated by using an alternative reconstruction of E − P Z ,
resulting in an uncertainty of −1.8% for electrons;

• the scaling factor of the QEDC MC was varied between 0.95
and 1.31, as allowed by the comparison with a QEDC-enriched
data sample, resulting in a negligible effect for both electrons
and muons.

The total systematic uncertainty was obtained by adding the in-
dividual contributions in quadrature. A 2.5% overall normalisation
uncertainty associated with the luminosity measurement was in-
cluded only in the systematic uncertainty of the total visible cross
section.

6. Results

The number of selected events in the data are compared to SM
predictions in Table 1. The following different di- and tri-lepton
topologies are listed: ee, μμ, eμ, eee and eμμ. The observed
number of events is in good agreement with the predictions of
the SM, according to which the NC DIS and QEDC processes give
a sizeable contribution to the ee channel. Most of the events con-
tributing to the eμ topology are predicted to come from di-muon
production at high Q 2, in which the beam electron is scattered at
large angles and is therefore seen in the detector, while one of the
muons is outside the acceptance region. A small contribution to
this channel (∼2 events) is predicted to come from di-τ produc-
tion, while the NC DIS background constitutes ∼10% of the sample.
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Table 1
The observed and predicted multi-lepton event yields for the ee, μμ, eμ, eee, eμμ,
eeee and eeμμ event topologies; the event yields for the ee and μμ topologies
in the γ γ samples. The quoted uncertainties consist of model uncertainties, MC
statistical uncertainties and systematic experimental uncertainties added in quadra-
ture. Limits at 95% C.L. are given when none or few events were selected from the
background MC samples. The central value and the uncertainty on the total SM pre-
dictions are in these cases determined as explained in the text.

ZEUS (L = 480 pb−1)

Topology Data Total SM Multi-lepton production NC DIS Compton

ee 545 563+29
−37 429+21

−29 74 ± 5 60 ± 10

μμ 93 106 ± 12 106 ± 12 < 0.5 –

eμ 46 42 ± 4 37+3
−4 4.5 ± 1.2 –

eee 73 75+5
−4 73+4

−5 < 1 < 3

eμμ 47 48 ± 5 48 ± 5 < 0.5 –

eeee 1 0.9+0.5
−0.1 0.6 ± 0.1 < 0.4 < 1

eeμμ 2 0.5+0.3
−0.1 0.4 ± 0.1 < 0.5 –

All 4 leptons 3 1.4+0.7
−0.1 1.0 ± 0.2 < 1.4

ee (γ γ sample) 166 185+8
−14 183+8

−14 1.4 ± 1.0 1.4 ± 0.6

μμ (γ γ sample) 72 85+9
−10 85+9

−10 < 0.5 –

Table 2
The observed and predicted high-mass, M12 > 100 GeV, multi-lepton event yields.
The invariant mass was calculated using the two highest-pT leptons. The quoted
uncertainties consist of model uncertainties, MC statistical uncertainties and sys-
tematic experimental uncertainties added in quadrature. Limits at 95% C.L. are given
when none or few events were selected from the background MC samples. The
central value and the uncertainty on the total SM predictions are in these cases
determined as explained in the text.

ZEUS (L = 480 pb−1)

Topology,
M12 > 100 GeV

Data Total SM Multi-lepton
production

NC DIS Compton

ee 1 1.7 ± 0.2 0.9 ± 0.1 0.2 ± 0.1 0.6 ± 0.1
μμ 0 0.4 ± 0.1 0.4 ± 0.1 < 0.01 –
eμ 0 0.06+0.03

−0.01 0.05 ± 0.02 < 0.02 –
eee 2 0.7 ± 0.1 0.7 ± 0.1 < 0.01 < 0.02
eμμ 0 0.18 ± 0.05 0.18 ± 0.05 < 0.01 –

Three four-lepton events, 2 in the eeμμ and 1 in the eeee chan-
nel, were observed, to be compared to a SM expectation of 1.4. The
contributions from true four-lepton events are not included in the
SM predictions and are expected to be small. Events with other
multi-lepton topologies were searched for, but none was found.

In Tables 1 and 2 the NC DIS and QEDC background contribu-
tions are given as limits at 95% confidence level (C.L.) when none
or few events were selected from the background MC samples.
When this is done, the central value of the total SM prediction is
determined as the most probable value (mode) of the convolution
of the Gaussian signal distribution with the poissonian background
distributions, and the uncertainty on the total SM prediction is de-
termined by taking the 68% C.L. interval.

Two events, one with three electrons in the final state and one
with two muons and an electron, passing the three-lepton selec-
tion cuts, are shown in Fig. 1.

6.1. Kinematic distributions

The distributions of the mass of the two highest-pT leptons
in the event, M12, and of the scalar sum of the transverse mo-
menta of all the identified leptons in the event,

∑
pl

T , are shown
in Figs. 2 and 3 for all the observed di- and tri-lepton topologies,
and are compared to SM predictions. The SM gives a good descrip-
tion of the data. In the mass region between 80 and 100 GeV,
which is sensitive to Z 0 production, 7 events were observed in the
Fig. 1. (a) An event with three electron candidates in the ZEUS detector. The in-
variant mass of the two highest-pT electrons is M12 = 113 GeV; the corresponding
transverse momenta are given above. (b) An event with two muons and an electron
candidate in the ZEUS detector. The invariant mass of the di-muon pair is 77.5 GeV;
the corresponding transverse momenta are given above.

data, compatible with the predictions from the SM of ∼9 events,
including ∼1 event from real Z 0 production.

The high-mass and high-
∑

pl
T regions are particularly sensi-

tive to possible contributions from physics beyond the SM. The
event yields for M12 > 100 GeV for all the observed di- and tri-
lepton channels are summarised in Table 2. In the electron chan-
nels, 3 events at high masses are observed, to be compared with
a SM prediction of 2.5. Two of these events are observed in the
eee topology, for which the SM expectation is 0.7. No event with
M12 > 100 GeV is seen in the muon channels. The event yield for∑

pl
T > 100 GeV, combined for all the lepton topologies, is sum-

marised in Table 3. Two events at high-
∑

pl
T are observed, to be

compared with a SM prediction of ∼1.6.
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Fig. 2. Distributions of the invariant mass of the two highest-pT leptons for the dif-
ferent multi-lepton topologies: ee, eee, μμ, eμμ, eμ. The ZEUS data are displayed
as the full dots. The errors on the data are given by the square root of the num-
ber of events in each bin. The SM predictions are represented as the solid line and
are obtained by summing the contributions of di-lepton production, NC DIS, QED
Compton events, and, for the eμ channel, di-tau production. The error band repre-
sents the systematic uncertainty on the SM predictions.

Fig. 3. Distributions of the sum of the transverse momenta of the leptons for the
different multi-lepton topologies: ee, eee, μμ, eμμ, eμ. The ZEUS data are dis-
played as the full dots. The errors on the data are given by the square root of the
number of events in each bin. The SM predictions are represented as the solid line
and are obtained by summing the contributions of di-lepton production, NC DIS,
QED Compton events, and, for the eμ channel, di-tau production. The error band
represents the systematic uncertainty on the SM predictions.

Table 3
The observed and predicted high-

∑
pl

T multi-lepton event yields, for all topolo-
gies combined, where

∑
pl

T was calculated using all the leptons in the event. The
quoted uncertainties consist of model uncertainties, MC statistical uncertainties and
systematic experimental uncertainties added in quadrature.

ZEUS (L = 480 pb−1)
∑

pl
T > 100 GeV

Data Total SM Multi-lepton production NC DIS Compton

2 1.56 ± 0.15 1.16 ± 0.13 0.05 ± 0.02 0.35 ± 0.06

Fig. 4. Distributions of (a) the invariant mass of the two highest-pT leptons and
(b) the sum of the transverse momenta of the leptons for all the individual lepton
topologies combined: ee, eee, μμ, eμμ, eμ. The ZEUS data are displayed as the full
dots. The errors on the data are given by the square root of the number of events in
each bin. The SM predictions are represented as the solid line and are obtained by
summing the contributions of di-lepton production, NC DIS, QED Compton events,
and, for the eμ channel, di-tau production. The error band represents the systematic
uncertainty on the SM predictions.

The distributions of M12 and
∑

pl
T , combined for all the di-

and tri-lepton topologies, are shown in Fig. 4. Also in this case, the
data are well described by the SM predictions.

6.2. Cross sections

Total visible and differential cross sections for di-electron and
di-muon production were determined in the kinematic region de-
fined by:

pl1
T > 10 GeV, pl2

T > 5 GeV, 20◦ < θ l1,2 < 150◦,

Q 2 < 1 GeV2, y < 0.82.

The cross sections are given at
√

s = 318 GeV: the small (∼5%)
correction needed for the 1996–1997 data sample was extracted
from the MC. The effect of final-state radiation on the cross section
was checked and found to be negligible.

The total visible cross sections, corrected for acceptance, were
measured to be

σ(γ γ → e+e−) = 0.64 ± 0.05+0.04
−0.03 pb (3)

for the electron channel, and

σ(γ γ → μ+μ−) = 0.58 ± 0.07+0.07
−0.06 pb (4)

for the muon channel.
Since the muon and electron cross sections differ only

marginally, they were combined in a single measurement, evalu-
ated as the weighted mean of the two [23], assuming the system-
atic uncertainties to be uncorrelated. The systematic uncertainties
of each measurement were symmetrised before the combination,
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by taking as systematic uncertainty the largest between the nega-
tive and the positive. The total visible cross sections are shown in
Table 4, compared with the SM predictions.

Differential cross sections as a function of the invariant mass,
M12, the transverse momentum of the highest-pT lepton, pl1

T , and
the scalar sum of the transverse momentum of the two leptons,∑

pl
T , are shown in Fig. 5, separately for electrons and muons. The

di-electron, di-muon and combined cross sections are summarised
in Table 5. The combination was done as described for the total
visible cross section. Good agreement is observed between the data
and the SM predictions.

7. Conclusions

Events with two or more isolated leptons with high trans-
verse momentum were observed using the full data sample taken
with the ZEUS detector at HERA. The total number of multi-lepton
events for different lepton configurations as well as their pT and
mass distributions were studied. No significant deviations from the
predictions of the SM were observed. In addition, the total visible
and differential cross sections for the e+e− and μ+μ− signatures
were measured in photoproduction and were observed to be in
good agreement with the SM predictions.
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Fig. 5. Differential cross sections as a function of (a) the invariant mass of the lep-
ton pair, M12, (b) the transverse momentum pl1

T of the highest-pT lepton, and (c)
the scalar sum of the transverse momenta of the two highest-pT leptons,

∑
pl

T .
The di-muon cross sections are shown as the open dots, while the full dots are
the di-electron measurements, which have been displaced for clarity. The data
are compared with the predictions of the Grape Monte Carlo. The full error bars
are the quadratic sum of the statistical (inner part) and systematic uncertain-
ties.
Table 5
Differential cross section as a function of the invariant mass, M12, the transverse momentum of the highest-pT lepton, pl1

T , and the scalar sum of the transverse momentum
of the two leptons,

∑
pl

T , for di-lepton events in the kinematic region defined in the text, compared with the predictions from the Grape Monte Carlo. The results are shown
separately for the ee and μμ samples, as well as for the combined sample.

ZEUS (L = 480 pb−1)

Bin (GeV) σ 96−07
DATA (fb/GeV) σSM (fb/GeV)

e+e− μ+μ− Combined

15 < M12 < 25 23.0±3.2+1.6
−1.2 32.7 ±5.0+3.7

−3.2 25.4±2.7 ± 1.5 30.4±1.0

25 < M12 < 40 19.1±2.0+1.6
−1.2 12.6 ±2.6+1.4

−1.3 16.3±1.6 ± 1.1 19.8 ±0.7

40 < M12 < 60 3.8±0.8+0.3
−0.4 2.5±1.0+0.3

−0.3 3.3±0.6 ± 0.3 3.0±0.1

60 < M12 < 100 0.15±0.11+0.04
−0.03 0.21±0.21+0.03

−0.02 0.17±0.10±0.03 0.26±0.02

10 < pl1
T < 15 90.7±8.4+6.1

−2.5 94 ±12+11
−9 91.6±6.9 ± 5.3 103.2±3.3

15 < pl1
T < 20 26.4±4.3+2.2

−1.8 10.7±4.4+1.3
−1.1 18.1±3.1 ± 1.3 23.7 ±0.9

20 < pl1
T < 25 4.2±1.7+0.8

−0.5 8.9±4.0+1.0
−0.9 5.0±1.6 ± 0.7 7.3±0.4

25 < pl1
T < 50 0.90±0.37+0.08

−0.11 0.70±0.50+0.08
−0.08 0.82±0.29±0.08 0.88±0.06

15 <
∑

pl
T < 25 36.7±4.0+2.4

−1.3 38.4 ±5.5+4.4
−3.9 37.2±3.2 ± 2.2 43.9 ±1.4

25 <
∑

pl
T < 40 15.8±1.9+1.3

−1.1 11.2 ±2.6+1.3
−1.1 14.0 ±1.5 ± 0.9 14.6 ±0.5

40 <
∑

pl
T < 60 1.24±0.44+0.21

−0.17 1.32 ±0.76+0.15
−0.14 1.26±0.38±0.16 1.69 ±0.11

60 <
∑

pl
T < 100 0.092±0.092+0.021

−0.024 0.18±0.18+0.02
−0.02 0.11±0.08±0.02 0.16±0.02
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