View metadata, citation and similar papers at core.ac.uk brought to you by **CORE**

provided by Elsevier - Publis

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 430 (2009) 1544–1549

www.elsevier.com/locate/laa

Generalizations of reverse Bebiano–Lemos–Providência inequality

Akemi Matsumoto^a, Masatoshi Fujii ^{b,*}

^a *Nose Senior High School, Nose, Toyono, Osaka 563-0122, Japan* ^b *Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan*

> Received 22 October 2007; accepted 15 January 2008 Available online 10 March 2008 Submitted by Pei Yuan Wu

Abstract

In our recent paper, we generalized Bebiano–Lemos–Providência inequality (BLP inequality) that for $A, B \geqslant 0$

 $||A^{\frac{1+t}{2}}B^t A^{\frac{1+t}{2}}|| \leq ||A^{\frac{1}{2}} (A^{\frac{s}{2}} B^s A^{\frac{s}{2}})^{\frac{t}{s}} A^{\frac{1}{2}}||$

for all $s \geq t \geq 0$. On the other hand, we also propose a reverse of BLP inequality, which is inspired by Araki–Cordes inequality; for $A, B > 0$

 $||A^{\frac{1+t}{2}}B^tA^{\frac{1+t}{2}}|| \geq ||A^{\frac{1}{2}}(A^{\frac{s}{2}}B^sA^{\frac{s}{2}})^{\frac{t}{s}}A^{\frac{1}{2}}||$

for all $t \ge s \ge 1$.

Based on our results, we discuss the reverse of BLP inequality in a general setting, in which we point out that the restriction $t \ge s \ge 1$ in the above is quite reasonable. © 2008 Elsevier Inc. All rights reserved.

AMS classification: [47A63](mailto:m@nose.osaka-c.ed.jp)

Keywords: Araki–Cordes inequality; Bebiano–Lemos–Providência inequality; Furuta inequality; Positive operator; Norm inequality; Operator inequality; Reverse inequality

∗ Corresponding author.

E-mail addresses: m@nose.osaka-c.ed.jp (A. Matsumoto), mfujii@cc.osaka-kyoiku.ac.jp (M. Fujii).

^{0024-3795/\$ -} see front matter \odot 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2008.01.022

A. Matsumoto, M. Fujii / Linear Algebra and its Applications 430 (2009) 1544–1549 1545

1. Introductio[n](#page-5-0)

Throughout this note, an operator means a bounded linear operator acting on a Hilbert space H. A positive operator A is denoted by $A \ge 0$. Löwner–Heinz inequality (cf. [14]) asserts

$$
A \ge B \ge 0 \quad \text{implies} \quad A^p \ge B^p \qquad \text{for all } 0 \le p \le 1. \tag{1.1}
$$

It is known that it is equivalent to the Araki–Cordes inequality that

$$
\|A^{\frac{t}{2}}B^tA^{\frac{t}{2}}\| \leqslant \|(A^{\frac{1}{2}}BA^{\frac{1}{2}})^t\|
$$

for $0 \le t \le 1$, [1,3]. M[oreo](#page-5-0)ver, it is easily seen that so is the following reverse inequality:

$$
\|A^{\frac{t}{2}}B^tA^{\frac{t}{2}}\| \geqslant \|(A^{\frac{1}{2}}BA^{\frac{1}{2}})^t\|
$$

for $t \geqslant 1$.

By the way, Bebiano et al. [2] showed the following norm inequality, say BLP inequality; for $A, B \geqslant 0$

$$
\|A^{\frac{1+t}{2}}B^tA^{\frac{1+t}{2}}\| \leqslant \|A^{\frac{1}{2}}(A^{\frac{s}{2}}B^sA^{\frac{s}{2}})^{\frac{t}{s}}A^{\frac{1}{2}}\| \tag{1.2}
$$

for all $s \geq t \geq 0$. Inspired by Araki–Cordes inequality, we showed a reverse of BLP inequality in our preceding paper [13] as follows. For $A, B > 0$

$$
\|A^{\frac{1+t}{2}}B^tA^{\frac{1+t}{2}}\| \geq \|A^{\frac{1}{2}}(A^{\frac{s}{2}}B^sA^{\frac{s}{2}})^{\frac{t}{s}}A^{\frac{1}{2}}\|
$$

for all $t \geqslant s \geqslant 1$.

On the other hand, we generalized BLP inequality using Furuta inequality.

Let $A, B \geqslant 0$. Then

$$
\|A^{\frac{1+s}{2}}B^{1+s}A^{\frac{1+s}{2}}\|_{p(1+s)}^{\frac{p+s}{p(1+s)}} \leqslant \|A^{\frac{1}{2}}(A^{\frac{s}{2}}B^{p+s}A^{\frac{s}{2}})^{\frac{1}{p}}A^{\frac{1}{2}}\| \tag{1.3}
$$

for all $p \geqslant 1$ and $s \geqslant 0$.

In this note, we consider a reverse of generalized BLP inequality, in which Kamei's theorem [12] on complements of Furuta inequality corresponds to our results. As a corollary, we have our preceding theorem; in particular, the restriction $t \geqslant s \geqslant 1$ is well explained.

2. Preliminary-generalized BLP inequalities

In our recent paper [5], we g[ene](#page-5-0)ralized BLP inequality (1.2). For it we used Furuta inequality [7] (see also [4,8,11,15]).

For each $r \geqslant 0$

$$
A \geq B \geq 0 \implies A^{1+r} \geq \left(A^{\frac{r}{2}}B^p A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \tag{2.1}
$$

holds for $p \geqslant 1$.

It is an essential part of Furuta inequality, whose whole picture is given in Fig. 1.

Theorem F (Furuta inequality, [6]). *If* $A \ge B \ge 0$, *then for each* $r \ge 0$,

(i)
$$
(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1}{q}} \ge (B^{\frac{r}{2}}B^pB^{\frac{r}{2}})^{\frac{1}{q}}
$$
, and
\n(ii) $(A^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1}{q}} \ge (A^{\frac{r}{2}}B^pA^{\frac{r}{2}})^{\frac{1}{q}}$ hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

1546 *A. Matsumoto, M. Fujii / Linear Algebra and its Applications 430 (2009) 1544–1549*

Now we review our results in the preceding paper [5]. First BLP inequality has the following representation by α -geometric mean \sharp_{α} ; for $A, B \geqslant 0$

$$
A^s \sharp_{\frac{t}{s}} B^s \leqslant A^{1+s} \quad \text{for some } s \geqslant t \geqslant 0 \implies B^t \leqslant A^{1+t}, \tag{2.2}
$$

where $A \sharp_{\alpha} B$ for $0 \le \alpha \le 1$ is defined by

$$
A\sharp_{\alpha} B := A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\alpha} A^{\frac{1}{2}} \quad \text{for } A, B > 0.
$$
 (2.3)

Replacing here B by $B^{\frac{1+t}{t}}$, and putting $p := \frac{s}{t} \geqslant 1$) in (2.2), it is rewritten as follows: for A, $B \geqslant 0$

$$
A^{s}\sharp_{\frac{1}{p}}B^{p+s} \leqslant A^{1+s} \quad \text{for some } p \geqslant 1 \text{ and } s \geqslant 0 \implies B^{1+\frac{s}{p}} \leqslant A^{1+\frac{s}{p}}. \tag{2.4}
$$

Now Furuta inequality gives an improvement of (2.4). Let $A, B \geqslant 0$. Then

$$
A^{s} \sharp_{\frac{1}{p}} B^{p+s} \leqslant A^{1+s} \quad \text{for some } p \geqslant 1 \text{ and } s \geqslant 0 \implies B^{1+s} \leqslant A^{1+s}.
$$
 (2.5)

As a c[o](#page-5-0)nsequence, we have the following norm inequality equivalent to (2.5) (2.5) :

Generalized BLP inequality, [5]. *Let* $A, B \ge 0$. *Then*

$$
\|A^{\frac{1+s}{2}}B^{1+s}A^{\frac{1+s}{2}}\|^{\frac{p+s}{p(1+s)}} \leqslant \|A^{\frac{1}{2}}(A^{\frac{s}{2}}B^{p+s}A^{\frac{s}{2}})^{\frac{1}{p}}A^{\frac{1}{2}}\|
$$
\n
$$
(2.6)
$$

holds for all $p \geqslant 1$ and $s \geqslant 0$.

3. Reverse of generalized BLP inequality

Inspired by Araki–Cordes ineq[uality](#page-1-0) and its reverse, we proposed in [13] the following reverse inequality with a slight restriction:

Theorem 3.1. *For* $A, B > 0$

$$
\|A^{\frac{1+t}{2}}B^t A^{\frac{1+t}{2}}\| \ge \|A^{\frac{1}{2}} \left(A^{\frac{s}{2}} B^s A^{\frac{s}{2}}\right)^{\frac{t}{s}} A^{\frac{1}{2}} \|
$$
\n
$$
\text{and } t > s > 1 \tag{3.1}
$$

holds for all $t \geqslant s \geqslant 1$.

We remark that the original proof of Theorem 3.1 in [13] is constructive. On the other hand, BLP inequality as generalized in (1.3) is equivalent to Furuta inequality. Therefore, we expect

A. Matsumoto, M. Fujii / Linear Algebra and its Applications 430 (2009) 1544–1549 1547

that the reverse of generalized BLP inequality (1.3) will correspond to the following complement of Furuta inequality, due to Kamei [12]:

Theorem A. If
$$
A \ge B > 0
$$
, then for $0 < p \le \frac{1}{2}$

$$
A^{t} \downarrow_{\frac{2p-t}{p-t}} B^{p} \le A^{2p} \quad \text{for } 0 \le t \le p
$$
(3.2)

and for $\frac{1}{2} \leqslant p \leqslant 1$

 $A^t\downarrow_{\frac{1-t}{p-t}} B^p \leq A$ for $0 \leq t \leq p$. (3.3)

Here \natural_q *for* $q \notin [0, 1]$ *has been used as*

$$
A\natural_q B := A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^q A^{\frac{1}{2}} \quad \text{for } A, B > 0.
$$

Now, we state our main theorem which is the reverse inequality of the generalized BLP inequality (1.3):

Theorem 3.2. *Let* $A, B \ge 0$ *and* $0 < p \le 1$ *. Then*

$$
\|A^{\frac{1+s}{2}}B^{1+s}A^{\frac{1+s}{2}}\|_{p(1+s)}^{\frac{p+s}{p(1+s)}} \ge \|A^{\frac{1}{2}}(A^{\frac{s}{2}}B^{p+s}A^{\frac{s}{2}})^{\frac{1}{p}}A^{\frac{1}{2}}\|
$$
\n(3.4)

for all $s \geqslant 0$ *with* $s \geqslant 1 - 2p$.

Proof. It suffices to show that

$$
B^{1+s} \leqslant A^{-(1+s)} \Rightarrow A^{\frac{1}{2}} \left(A^{\frac{s}{2}} B^{p+s} A^{\frac{s}{2}} \right)^{\frac{1}{p}} A^{\frac{1}{2}} \leqslant 1 \tag{3.5}
$$

for $0 < p \leq 1$ and $s \geq 0$ with $s \geq 1 - 2p$. So we put

$$
A_1 = A^{-(1+s)}, B_1 = B^{1+s}
$$

Then (3.5) is rephrased as

$$
A_1 \geqslant B_1 > 0 \Rightarrow A_1^{\frac{s}{1+s}} \natural_{\frac{1}{p}} B_1^{\frac{p+s}{1+s}} \leqslant A_1
$$

for $0 < p \le 1$ and $s \ge 0$ with $s \ge 1 - 2p$. Moreover, if we replace

.

$$
t_1 = \frac{s}{1+s}
$$
, $p_1 = \frac{p+s}{1+s}$,

then we have $\frac{1-t_1}{p_1-t_1} = \frac{1}{p}$ $\frac{1-t_1}{p_1-t_1} = \frac{1}{p}$ $\frac{1-t_1}{p_1-t_1} = \frac{1}{p}$, and $\frac{1}{2} \leq p_1 (\leq 1)$ if and only if $1 - 2p \leq s$, so that (3.5) has the following equivalent expression:

$$
A_1 \geq B_1 > 0 \Rightarrow A_1^{t_1} \natural_{\frac{1-t_1}{p_1-t_1}} B_1^p \leq A_1 \quad \text{for } 0 \leq t_1 < p_1.
$$

Since $\frac{1}{2} \leq p_1 \leq 1$, this is ensured by Theorem A due to Kamei. \Box

Next we show that Theorem 3.1 is obtained as a corollary of Theorem 3.2.

Proof of Theorem 3.1. We put $p = \frac{s}{t}$ for $t \ge s \ge 0$. Then we have $1 - 2p \le s$ if and only if $\frac{t}{s} \le s$ Since $s > 1$ is assumed $\frac{t}{s} \le s$ holds for arbitrary $t > 0$ so that Theorem 3.2 is $\frac{t}{t+2} \leq s$. Since $s \geq 1$ is assumed, $\frac{t}{t+2} \leq s$ holds for arbitrary $t > 0$, so that Theorem 3.2 is applicable.

1548 *[A.](#page-2-0) [M](#page-2-0)atsumoto, M. Fujii / Linear Algebra and its Applications 430 (2009) 1544–1549*

Now we take $B = B_1^{\frac{t}{1+t}}$ for a given arbitrary $B_1 \geq 0$, i.e., $B_1 = B^{\frac{1+t}{t}}$. Then Araki–Cordes inequality and Theorem 3.2 imply that

$$
\|A^{\frac{1+t}{2}}B_1^tA^{\frac{1+t}{2}}\| \ge \|A^{\frac{1+s}{2}}B_1^{\frac{t(1+s)}{1+t}}A^{\frac{1+s}{2}}\|_{1+s}^{\frac{1+t}{1+t}} = \|A^{\frac{1+s}{2}}B^{1+s}A^{\frac{1+s}{2}}\|_{p(t+s)}^{\frac{p+s}{p(t+s)}}
$$

$$
\ge \|A^{\frac{1}{2}}(A^{\frac{s}{2}}B^{p+s}A^{\frac{s}{2}})^{\frac{1}{p}}A^{\frac{1}{2}}\| = \|A^{\frac{1}{2}}(A^{\frac{s}{2}}B_1^sA^{\frac{s}{2}})^{\frac{t}{s}}A^{\frac{1}{2}}\|,
$$

which proves (3.1) . \Box

Theorem 3.1 is slightly gen[erali](#page-3-0)zed as follows:

Corollary 3.3. *For* $A, B > 0$ *and* $r \ge 0$

$$
||A^{\frac{r+t}{2}}B^t A^{\frac{r+t}{2}}|| \ge ||A^{\frac{r}{2}} (A^{\frac{5}{2}} B^s A^{\frac{5}{2}})^{\frac{r}{s}} A^{\frac{r}{2}}||
$$
\n
$$
holds \text{ for all } t \ge s \ge r.
$$
\n
$$
(3.6)
$$

Proof. It is proved by applying Theorem 3.1 to $A_1 = A^r$, $B_1 = B^r$ and $t_1 = \frac{t}{r}$, $s_1 = \frac{s}{r}$. \Box

Finally, we consider a reverse inequality of generalized BLP inequality which corresponds to another Kamei's complement (3.2). If $A \ge B > 0$, t[hen f](#page-3-0)or $0 < p \le \frac{1}{2}$

$$
At\natural_{\frac{2p-t}{p-t}}Bp \leqslant A2p \text{ for } 0 \leqslant t < p.
$$

Theo[rem](#page-3-0) 3.4. *Let* $A, B \ge 0$ *and* $0 < p \le \frac{1}{2}$ *. Then*

$$
\|A^{\frac{1+s}{2}}B^{1+s}A^{\frac{1+s}{2}}\|^{\frac{(2p+s)(p+s)}{p(1+s)}} \ge \|A^{p+\frac{s}{2}}(A^{\frac{s}{2}}B^{p+s}A^{\frac{s}{2}})^{\frac{2p+s}{p}}A^{p+\frac{s}{2}}\|
$$
\nfor all $0 \le s \le 1 - 2p$.

\n(3.7)

Proof. The proof is quite similar to that of Theorem 3.2. We put

$$
A_1 = A^{-(1+s)},
$$
 $B_1 = B^{1+s};$ $t_1 = \frac{s}{1+s},$ $p_1 = \frac{p+s}{1+s}.$

Then (3.2) gives

$$
A_1 \geq B_1 > 0 \Rightarrow A_1^{t_1} \downarrow_{\frac{2p_1-t_1}{p_1-t_1}} B_1^{p_1} \leq A_1^{2p_1}
$$

for $0 \leq t_1 < p_1 \leq \frac{1}{2}$, so that

$$
A^{-(1+s)} \geq B^{1+s} \Rightarrow A^{-s} \natural_{\frac{2p+s}{p}} B^{p+s} \leq A^{-2(p+s)}
$$

for $0 \le s \le 1 - 2p$. Obviously, it implies the desired norm inequality (3.7). □

Remark. In Theorem 3.4, if we take $s = 0$, then we obtain Araki–Cordes inequality

$$
||A^{\frac{1}{2}}BA^{\frac{1}{2}}||^{2p} \geq ||A^pB^{2p}A^p||
$$

for $0 \leq p \leq \frac{1}{2}$. Also it appears in Corollary 3.3 by taking $r = 0$. Actually (3.6) for $r = 0$ is expressed as

$$
\|A^{\frac{t}{2}}B^tA^{\frac{t}{2}}\| \geqslant \|(A^{\frac{s}{2}}B^sA^{\frac{s}{2}})^{\frac{t}{s}}\| = \|(A^{\frac{s}{2}}B^sA^{\frac{s}{2}})\|^{\frac{t}{s}}
$$

for $t \ge s \ge 0$. So, replacing A^t (resp. B^t) by A (resp. B), we obtain this because $2p = \frac{t}{2} > 1$ $\frac{l}{s} \geqslant 1.$

Acknowledgement

The authors would like to express their thanks to the referee for his kind advice.

References

- [1] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990) 167–170.
- [2] N. Bebiano, R. Lemos, J. Providência, Inequalities for quantum relative entropy, Linear Algebra Appl. 401 (2005) 159–172.
- [3] H.O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, Cambridge University Press, 1987.
- [4] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23 (1990) 67–72.
- [5] M. Fujii, R. Nakamoto, M. Tominaga, Generalized Bebiano–Lemos–Providência inequalities and their reverses, Linear Algebra Appl. 426 (2007) 33–39.
- [6] M. Fujii, Y. Seo, Reverse inequalities of Cordes and Löwner–Heinz inequalities, Nihonkai Math. J. 16 (2005) 145–154.
- [7] T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. 101 (1987) 85–88.
- [8] T. Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad. 65 (1989) 126.
- [9] T. Furuta, Operator inequalities associated with Hölder–McCarthy and Kantorovich inequalities, J. Inequal. Appl. 2 (1998) 137–148.
- [10] T. Furuta, J. Mićić, J.E. Pečarić, Y. Seo, Mond–Pečarić Method in Operator Inequalities, Monographs in Inequalities, vol. 1, Element, Zagreb, 2005.
- [11] E. Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988) 883–886.
- [12] E. Kamei, Complements to Furuta inequality, II, Math. Japon. 45 (1997) 15–23.
- [13] A. Matsumoto, R. Nakamoto, Reverse of Bebiano–Lemos–Providência inequality, preprint.
- [14] G.K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc. 36 (1972) 309–310.
- [15] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996) 141–146.