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Abstract

In our recent paper, we generalized Bebiano–Lemos–Providência inequality (BLP inequality) that for
A, B � 0
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for all s � t � 0. On the other hand, we also propose a reverse of BLP inequality, which is inspired by
Araki–Cordes inequality; for A, B > 0
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for all t � s � 1.
Based on our results, we discuss the reverse of BLP inequality in a general setting, in which we point out

that the restriction t � s � 1 in the above is quite reasonable.
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1. Introduction

Throughout this note, an operator means a bounded linear operator acting on a Hilbert space
H . A positive operator A is denoted by A � 0. Löwner–Heinz inequality (cf. [14]) asserts

A � B � 0 implies Ap � Bp for all 0 � p � 1. (1.1)

It is known that it is equivalent to the Araki–Cordes inequality that
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for 0 � t � 1, [1,3]. Moreover, it is easily seen that so is the following reverse inequality:
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for t � 1.
By the way, Bebiano et al. [2] showed the following norm inequality, say BLP inequality; for
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for all s � t � 0. Inspired by Araki–Cordes inequality, we showed a reverse of BLP inequality
in our preceding paper [13] as follows. For A, B > 0
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for all t � s � 1.
On the other hand, we generalized BLP inequality using Furuta inequality.
Let A, B � 0. Then
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for all p � 1 and s � 0.
In this note, we consider a reverse of generalized BLP inequality, in which Kamei’s theorem

[12] on complements of Furuta inequality corresponds to our results. As a corollary, we have our
preceding theorem; in particular, the restriction t � s � 1 is well explained.

2. Preliminary-generalized BLP inequalities

In our recent paper [5], we generalized BLP inequality (1.2). For it we used Furuta inequality
[7] (see also [4,8,11,15]).

For each r � 0
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(
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holds for p � 1.
It is an essential part of Furuta inequality, whose whole picture is given in Fig. 1.

Theorem F (Furuta inequality, [6]). If A � B � 0, then for each r � 0,
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Fig. 1.

Now we review our results in the preceding paper [5]. First BLP inequality has the following
representation by α-geometric mean �α; for A, B � 0

As� t
s
Bs � A1+s for some s � t � 0 �⇒ Bt � A1+t , (2.2)

where A�αB for 0 � α � 1 is defined by
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Replacing here B by B
1+t
t , and putting p := s

t
(� 1) in (2.2), it is rewritten as follows: for A, B � 0

As� 1
p
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Now Furuta inequality gives an improvement of (2.4). Let A, B � 0. Then

As� 1
p
Bp+s � A1+s for some p � 1 and s � 0 �⇒ B1+s � A1+s . (2.5)

As a consequence, we have the following norm inequality equivalent to (2.5) :

Generalized BLP inequality, [5]. Let A, B � 0. Then
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holds for all p � 1 and s � 0.

3. Reverse of generalized BLP inequality

Inspired by Araki–Cordes inequality and its reverse, we proposed in [13] the following reverse
inequality with a slight restriction:

Theorem 3.1. For A, B > 0
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holds for all t � s � 1.

We remark that the original proof of Theorem 3.1 in [13] is constructive. On the other hand,
BLP inequality as generalized in (1.3) is equivalent to Furuta inequality. Therefore, we expect
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that the reverse of generalized BLP inequality (1.3) will correspond to the following complement
of Furuta inequality, due to Kamei [12]:

Theorem A. If A � B > 0, then for 0 < p � 1
2
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Here �q for q �∈ [0, 1] has been used as
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Now, we state our main theorem which is the reverse inequality of the generalized BLP inequal-
ity (1.3):

Theorem 3.2. Let A, B � 0 and 0 < p � 1. Then
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Proof. It suffices to show that
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for 0 < p � 1 and s � 0 with s � 1 − 2p. So we put
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Since 1
2 � p1 � 1, this is ensured by Theorem A due to Kamei. �

Next we show that Theorem 3.1 is obtained as a corollary of Theorem 3.2.

Proof of Theorem 3.1. We put p = s
t

for t � s � 0. Then we have 1 − 2p � s if and only if
t

t+2 � s. Since s � 1 is assumed, t
t+2 � s holds for arbitrary t > 0, so that Theorem 3.2 is

applicable.
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Now we take B = B
t

1+t

1 for a given arbitrary B1 � 0, i.e., B1 = B
1+t
t . Then Araki–Cordes

inequality and Theorem 3.2 imply that
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which proves (3.1). �

Theorem 3.1 is slightly generalized as follows:

Corollary 3.3. For A, B > 0 and r � 0
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Proof. It is proved by applying Theorem 3.1 to A1 = Ar, B1 = Br and t1 = t
r
, s1 = s

r
. �

Finally, we consider a reverse inequality of generalized BLP inequality which corresponds to
another Kamei’s complement (3.2). If A � B > 0, then for 0 < p � 1

2
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Proof. The proof is quite similar to that of Theorem 3.2. We put
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Remark. In Theorem 3.4, if we take s = 0, then we obtain Araki–Cordes inequality
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for t � s � 0. So, replacing At (resp. Bt ) by A (resp. B), we obtain this because 2p =
t
s

� 1.
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