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Mutations in SCO2 Are Associated
with Autosomal-Dominant High-Grade Myopia

Khanh-Nhat Tran-Viet,1 Caldwell Powell,1 Veluchamy A. Barathi,2,3,4 Thomas Klemm,2

Sebastian Maurer-Stroh,5,6 Vachiranee Limviphuvadh,5,6 Vincent Soler,7 Candice Ho,3

Tammy Yanovitch,8 Georg Schneider,5,9 Yi-Ju Li,1,2,10,13 Erica Nading,1,11 Ravikanth Metlapally,12

Seang-Mei Saw,13 Liang Goh,2,13 Steve Rozen,2 and Terri L. Young1,2,11,13,*

Myopia, or near-sightedness, is an ocular refractive error of unfocused image quality in front of the retinal plane. Individuals with high-

grade myopia (dioptric power greater than �6.00) are predisposed to ocular morbidities such as glaucoma, retinal detachment, and

myopic maculopathy. Nonsyndromic, high-grade myopia is highly heritable, and to date multiple gene loci have been reported.We per-

formed exome sequencing in 4 individuals from an 11-member family of European descent from the United States. Affected individuals

had a mean dioptric spherical equivalent of �22.00 sphere. A premature stop codon mutation c.157C>T (p.Gln53*) cosegregating with

disease was discovered within SCO2 that maps to chromosome 22q13.33. Subsequent analyses identified three additional mutations

in three highly myopic unrelated individuals (c.341G>A, c.418G>A, and c.776C>T). To determine differential gene expression in a

developmental mouse model, we induced myopia by applying a �15.00D lens over one eye. Messenger RNA levels of SCO2 were sig-

nificantly downregulated in myopic mouse retinae. Immunohistochemistry in mouse eyes confirmed SCO2 protein localization in

retina, retinal pigment epithelium, and sclera. SCO2 encodes for a copper homeostasis protein influential in mitochondrial

cytochrome c oxidase activity. Copper deficiencies have been linked with photoreceptor loss andmyopia with increased scleral wall elas-

ticity. Retinal thinning has been reported with an SC02 variant. Human mutation identification with support from an induced myopic

animal provides biological insights of myopic development.
Myopia is a common ocular disorder primarily resulting

from globe axial elongation.1,2 Its extreme form, high-

grade myopia (refractive error greater than �6.00 diopters

[D]) (MIM 160700, MIM 613969, MIM 60995, MIM

608367, MIM 614167, MIM 603221, MIM 608474, MIM

612554, and MIM 609994), is highly heritable and associ-

ated with ocular morbidities such as retinal detachment,

maculopathy, cataracts, and glaucoma.3 Myopia preva-

lence rates vary worldwide. The highest prevalence rates

are those in Asian countries, particularly in urban settings.

Over 80% of school children in Taiwan develop myopia

by adulthood, and similar rates are seen in children aged

between 13 and 15 years in Hong Kong.4–6 In the United

States, 33.1% of adults have some degree of myopia,

and high-grade myopia affects approximately 2% of the

myopic population.7,8 The economic impact of refractive

error management is substantial. In the U.S., adults

spend an average of $199 annually on refractive-error-

correction-related costs.9 U.S. estimates in 2007 of costs

associated with vision impairment exceeded 51 billion

dollars annually.10 In conjunction, vision-impairment

correction costs in the U.S. account for $3.8 to $7.2 billion

annually.11
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Multiple mapping and genome-wide association studies

have identified loci and genes associated with nonsyn-

dromic myopia.12 High-grade myopia is regarded to be

distinct from low-grade myopia, as classified through

thresholds in spherical refractive error and axial length

measurements.13 Recently, advances in deep sequencing

technology have identified mutations in genes associated

with a variety of ocular disorders including myopia.14–16

In 2011, Shi et al. identified mutations in zinc finger

protein 644 isoform 1 (ZNF644) in a Chinese family with

autosomal-dominant high-grade myopia by using exome

sequencing, which was replicated in four cases in our

European descent cohort.16,17

Herein, we describe the identification of pathogenic

mutations in the SCO2 cytochrome c oxidase (COX)

assembly protein (SCO2) on chromosome 22q13.33

(NM_001169111.1). Gene expression studies in an ex-

perimentally induced myopic mouse model suggest that

SCO2 may play a role in myopic development.

A large three-generation index family (11 members) of

European descent with nine affected individuals with

high-grade myopia (average spherical refractive error of

�22.00D) participated in the study (Figure 1). Informed
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Figure 1. A Family with High-Grade
Myopia
Segregation of SCO2 mutation (c.157C>T)
in a high-grade myopia family. Abbrevia-
tions are as follows:þ indicates DNA avail-
able for this study, and x indicates samples
used for exome sequencing. Where avail-
able, the genotype of each individual is
shown as a ‘‘WT’’ for the wild-type allele
and as an ‘‘M’’ for the mutated allele.
consent was obtained from all participants, with approval

by the Institutional Review Board according to the princi-

ples of the Declaration of Helsinki. DNA was extracted

from blood and/or saliva from all participating family

members. The affected phenotype was determined as those

with high myopia (refractive error greater than �6.00D)

with no systemic abnormalities. To identify the genetic eti-

ology of disease in our family, we employed exome

sequencing. We selected four individuals (III:1, III:2, IV:1,

IV:2) for sequencing and analysis (Figure 1). An additional

60 ethnically matched exomes and 1,172 ethnically

matched controls (500 samples ascertained internally,

and 672 samples purchased commercially; The Centre for

Applied Genomics, The Hospital for Sick Children, Tor-

onto, Canada) were available for subsequent validation

studies to analyze allelic frequencies for candidate variants.

Exome sequencing was performed by Beijing Genomics

Institute (BGI), and data analyses were conducted inter-

nally. Seven micrograms (mg) of DNA were submitted

with independent sample processing by using the Agilent

SureSelect XT Human All Exon 38 Mb kit (Agilent, Santa

Clara, CA). High throughput sequencing was performed

with 91 base pair (bp) paired-end runs on a HiSeq2000

(Illumina, San Diego, CA). Read alignment was conducted

by using Burrows-Wheeler Aligner (v.0.5.6) and potential

duplicate reads were removed with Picard v.1.40.18

Filtering and detection of reads were conducted by using
The American Journal of Huma
SAMtools (v.0.1.7).19 Single nucleo-

tide variants and microindels were

annotated by using the Genome

Analyzer Toolkit (GATK- v1.4). We

generated an average of 37.8 giga-

bases (Gb) of sequence and coverage

of 343 for each individual. An

average of 95.7% of targeted bases

was covered in the four subject sam-

ples, and 87.5% of the target had at

least 53 coverage (see Supplement 1

available online).

Variants in dbSNP132 with a minor

allele frequency greater than 3%

and those present in more than 1%

of public exomes (NHLBI and 1000

Genomes) were excluded. In addi-

tion, heterozygous variants present

in at least one affected individual
were kept in the finalized list. In conjunction with

filtering, Integrated Genome Viewer (IGV) visualization

software was utilized to confirm corresponding reads and

read depth to verify false positives or negatives. We identi-

fied 49 variants shared among the exome-sequenced

affected members only. To minimize false positives due

to batch effects, we verified all 49 variants as unique

in silico relative to 60 exomes previously sequenced by

our group. We performed Sanger sequencing of all 49 var-

iants and demonstrated 100% validation (49/49) in the

four index DNA samples. All microindels were eliminated

based on our filtering criteria. To confirm the segregation

of variants with the disease phenotype, we used Sanger

sequencing for the remaining 7 family member DNA

samples against all 49 variants.

A rare nonsense mutation of c.157C>T (rs74315510)

within exon 2 of SCO2 cytochrome c oxidase assembly

protein (SCO2, NM_001169111.1) segregated with high-

grademyopia in the pedigree. The SCO2mutation converts

the amino acid glutamine to a premature stop codon on

base 53 (p.Gln53*). The minor allele was not present in

1,000 control samples for the SCO2 variant. The MERLIN

program using a dominant parametric model was em-

ployed to estimate the linkage of this variant.20 A two-

point LOD score of 1.49 for c.157C>T was calculated for

the family.20 PCR sequencing of the SCO2 coding exon 2

was conducted in an additional 140 high-grade myopia
n Genetics 92, 820–826, May 2, 2013 821
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cases. The average spherical equivalent refraction of the

cases was �11.00D (OD) and �10.50D (OS), respectively.

We identified two additional rare variants (rs74315511

and rs8139305) and one variant in three unrelated

cases that were heterozygous (Table 1). Rs74315511

(c.418G>A) is a missense mutation predicted to cause

a p.Glu140Lys substitution. Rs8139305 (c.776C>T)

missense mutation causes a p.Ala259Val substitution.

The missense mutation (c.341G>A) causes a substitution

of p.Arg114His. These variants were not seen in the same

1,000 control DNA samples. ANNOVAR was used to assess

functional annotation and at least one in silico software

predicted the mutations to be deleterious or damaging

(Table 1).21–27 By using the Fisher exact test, the likelihood

for identifying the 4 functional variants in 141 individuals

with high-grade myopia relative to 1,000 nonmyopic

controls was significant (p ¼ 0.000248).

SCO2 consists of two exons of which only the second

exon is protein coding. Given the mutation location,

c.157C>T truncates the protein before the catalytic

domain, rendering it nonfunctional. The protein changes

(p.Arg114His, p.Glu140Lys, and p.Ala259Val) by using

BLAST are all located within the functional catalytic

domain and are predicted to affect the protein structure.

The p.Glu140Lys amino acid substitution results in

removal of a salt bridge between Glu140 and Lys143 and

changes the electrostatic potential of the copper binding

site, which can moderately to strongly affect SCO2 func-

tion (Supplements 2 and 3). Moreover, p.Arg114His and

p.Ala259Val are predicted to destabilize the structure based

on FoldX, with mild-to-moderate influence on SCO2 func-

tion (Supplement 4).28

Immunohistochemical results in mouse ocular tissues

confirmed SCO2 protein localization in the retina, retinal

pigment epithelium (RPE), and scleral wall (Figure 2). Im-

munostaining intensity was reduced significantly in

myopic retinal tissues of experimentally induced myopic

mice compared to the nonmyopic independent controls

and was significantly increased in myopic sclera (Figure 2).

Sco2 expression in ocular tissues was compared between

induced myopic mouse eyes relative to the control fellow

eye. Ocular tissues of myopic (with spherical equivalent

[SE] < �5.00D) and fellow nonoccluded eyes of the exper-

imental mice were compared with age-matched control

tissues (Supplement 6). Real-time PCR confirmed Sco2

messenger RNA (mRNA) levels to be significantly reduced

in myopic retina compared to naive control retina (fold

change [FC] ¼ �8.3, p < 0.001). Increased Sco2 mRNA

was detected in myopic compared to control sclera

(FC ¼ þ5.6, p < 0.01) (Figure 3). Reverse transcription

PCR of SCO2 expression in fetal and adult human ocular

tissues confirmed expression in the choroid, sclera, retina,

and RPE (Supplement 6).

SCO2 is a copper chaperone integral to oxygen reduc-

tion catalysis by cytochrome c oxidase of the mitochon-

drial respiratory chain.29 The COX assembly assists

in ATP metabolism, and disruptions exhibit increased
013



Figure 2. Immunofluorescent Labeling
of Sco2 in Mouse Ocular Tissues in
Induced Myopic Eyes, Fellow Eyes, and
Independent Control Eyes
Immunofluorescent labeling of Sco2 in
mouse retina, retinal pigment epithelium,
and sclera in induced myopic eyes, fellow
eyes, and independent control eyes. The
florescence intensity labeled of the green
color shows the localization of proteins,
and blue color indicates the nuclei that
were stained with DAPI. Lower level of
abundance was determined for myopic
retina and RPE, whereas a higher level of
abundance was found in myopic sclera.
The following abbreviations represent the
retinal layers: NFL, nerve fiber layer; GCL,
ganglion cell layer; IPL, inner plexiform
layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer;
PRL, photo receptor layer; and RPE, retinal
pigment epithelium.
intraocular oxygen levels and loss in protection to

increased oxygen toxicity.30 Protein deficiency can result

in reactive oxygen species increase and oxidative DNA

damage.31 COX deficiencies affect organs with high energy

demand.32 Because the retina is one of the most highly

metabolic tissues in the body, the increased oxidative stress

may alter retinal function and therefore image quality,

which is essential for refractive development.31,33–41

Normal copper metabolism is essential to ocular tissue

health and is associated with myopic refractive error devel-

opment.42–44 As an example of trace element ocular tissue

effects, copper-deficient rats exhibit a loss of conjunctival

goblet cells, decrease in conjunctival and cornealmicrovilli

and microplicae, retinal photoreceptor cell degeneration

and disappearances, and degeneration and disappearance

of myelin lamellae of myelinated optic nerve fibers.45,46

This implicates proper copper metabolism for cell differen-

tiation, development, and maintenance.46 One study

demonstrated the protective effect of copper supplements

in individuals with myopia.47 Restoration by subTenon’s

capsule injection of copper compounds resulted in

increased scleral copper concentration and improved

scleral tissue elasticity with cessation of myopic refractive

error development.47

Reduced retinal layer thickness is correlated with higher

degrees of myopia in humans with degenerative

retinal changes.16,48,49 Our experimentally induced

myopic mouse model demonstrated retinal thinning,
The American Journal of Huma
corroborating previous animal studies

with similar results.50,51 Tree shrews

and other animal models with experi-

mentally induced myopia demon-

strated retinal ganglion cell layer

thinning.51,52 Interestingly, the high-

ly conserved paralogous SCO1 (Sup-

plement 7) was upregulated in
myopic chick retinae induced with positive (hyperopic)

lens exposure.52

SCO2 mutations are associated with autosomal-recessive

fatal infantile cardioencephalomyopathy (MIM 604377),

COX deficiency, and milder spinal muscular atrophy-like

presentations.53–57 Affected individuals harbor mutations

in a compound heterozygous state, where p.Glu140Lys

and an additional damaging substitution are typically

present.54,58 p.Glu140Lys and p.Gln53* have been re-

ported in cardiomyopathy patients, whereas p.Arg114His

and p.Ala259Val (rs8139305) are without annotation for

clinical associations.54,55 Retinal histology of a subject

with cardioencephalomyopathy harboring a compound

heterozygous substitution of p.Glu140Lys and p.Gln53*

had retinal ganglion neuronal loss and globular distension

of the retinal photoreceptors.59 Neonatal expiration

precludes investigation of an associated clinical ocular

phenotype such as refractive error. It is worth noting that

phenotype-genotype variability does occur and has been

seen in cardiovascular and ocular diseases.60,61 Within

SCO2, variability in onset and systemic involvement

have been reported between compound heterozygous

and homozygous individuals.58 Visual impairment is often

regarded as a benign disorder as a result of efficient treat-

ment options such as glasses, contact lenses, and refractive

surgery and is not always recognized as a disease pheno-

type in medical registries.62 The phenotypical intersection

of myopia and cardioencephalomyopathy presented here
n Genetics 92, 820–826, May 2, 2013 823



Figure 3. Transcription Quantification of Sco2 in Mouse Retina
and Sclera in InducedMyopic Eyes, Fellow Eyes, and Independent
Control Eyes
Experimental myopia was induced in B6 wild-type (WT) mice
(n ¼ 36) by applying a �15.00 D spectacle lens on the right eye
(experimental eye) for 6 weeks since postnatal day 10. The left
eyes were uncovered and served as contra-lateral fellow eyes.
Age-matched naive mice eyes were used as independent control
eyes (n ¼ 36). Primer sequences to conduct qRT-PCR were forward
50 ATC GCA CAG CCC TAA GTC TC 30 and reverse 50 CAG TAG
CAT CGT GGA CCT GA 30 (NM_001111288.1).
The bar represents the fold changes ofmRNA for Sco2 after normal-
ization by using GAPDH as reference. The mRNA levels of sco2 in
myopic and fellow retina and sclera are compared with indepen-
dent controls. Relative fold change—the values are shown in log
values (210). n ¼ 36; *p < 0.05, **p < 0.01 and ***p < 0.001.
must be considered exploratory and further studies are

warranted.

In summary, we identified four heterozygous muta-

tions—c.157C>T (p.Gln53*), c.341G>A (p.Arg114His),

c.418G>A (p.Glu140Lys), and c.776C>T (p.Ala259Val)—

in individuals and families with high-grade myopia. Inves-

tigations in silico revealed that the nonsense mutation

c.157C>T truncates the protein before the catalytic

domain, whereas the other three mutations are predicted

to destabilize the protein structure. The destabilization of

the protein may result in modulation of oxidative

toxicity—particularly in the retina, leading to retinal neu-

ronal thinning due to threshold changes in ROS.31,33–35,63

In addition, mutations can affect copper metabolism,

which may result in an imbalance of copper enzymatic

support activity and oxidative levels within eye tissues.

Refractive error genetics has proven to be complex, as

demonstrated by mapping and large association studies.

Although SCO2 did not colocalize in any reported myopia

loci, our findings provide evidence that SCO2 may play an

important role in eye growth and development, particu-

larly in those who become highly myopic. A myopic

phenotype should not be overlooked in studies involving

a heterogeneous group of rare disorders involving SCO2.
Supplemental Data

Supplemental Data include seven supplements and can be found

with this article online at http://www.cell.com/AJHG/.
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