Local entropy theory for a countable discrete amenable group action

Wen Huang ${ }^{\text {a,* }}$, Xiangdong Ye^{a}, Guohua Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences and Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
b School of Mathematical Sciences and LMNS, Fudan University, Shanghai 200433, China
Received 4 January 2011; accepted 25 April 2011
Available online 11 May 2011
Communicated by D. Voiculescu

Abstract

The local properties of entropy for a countable discrete amenable group action are studied. For such an action, a local variational principle for a given finite open cover is established, from which the variational relation between the topological and measure-theoretic entropy tuples is deduced. While doing this it is shown that two kinds of measure-theoretic entropy for finite Borel covers coincide. Moreover, two special classes of such an action: systems with uniformly positive entropy and completely positive entropy are investigated.

© 2011 Elsevier Inc. All rights reserved.
Keywords: Entropy; Amenable group; Variational principle; Entropy tuple

1. Introduction

Rohlin and Sinai [38] introduced the notion of completely positive entropy (c.p.e.) for \mathbb{Z} actions on a Lebesgue space. It is also known as K-actions of \mathbb{Z}. K-actions played an important role in the classic ergodic theory. In 1992, Blanchard introduced the notions of uniformly positive entropy (u.p.e.) and c.p.e. as topological analogues of the K-actions in topological dynamics of \mathbb{Z}-actions [1]. By localizing the concepts of u.p.e. and c.p.e., he defined the notion of entropy

[^0]pairs, and used it to show that a u.p.e. system is disjoint from all minimal zero entropy systems [2] and to obtain the maximal zero entropy factor for any topological dynamical system of \mathbb{Z}-actions (namely the topological Pinsker factor) [5]. From then, on the local entropy theory of \mathbb{Z}-actions there have been made great achievements $[1-5,11,16,21,23-25,27,39,45]$, see also the relevant chapters in [17] and the survey papers [19,20]. A key point in the local entropy theory of \mathbb{Z} actions is the local variational principle for finite open covers.

Note that for each dynamical system (X, T) of \mathbb{Z}-actions (or call it TDS), there always exist T-invariant Borel probability measures on X so that the classic ergodic theory involves the study of the entropy theory of (X, T). Whereas, there are some groups G such that there exists no any invariant Borel probability measures on some compact metric space with G-actions, for example the rank two free group F_{2}. It is well known that, for a dynamical system of group actions, the amenability of the group ensures the existence of invariant Borel probability measures, which includes all finite groups, solvable groups and compact groups.

Comparing to dynamical systems of \mathbb{Z}-actions, the level of development of dynamical systems of an amenable group action lagged behind. However, this situation is rapidly changing in recent years. A turning point occurred with Ornstein and Weiss's pioneering paper [34] in 1987 which laid a foundation of an amenable group action. In 2000, Rudolph and Weiss [40] showed that K-actions for a countable discrete amenable group is mixing of all orders (an open important question for years) by using methods from orbit equivalence. Inspired by this, Danilenko [7] pushed further the idea used by Rudolph and Weiss providing new short proofs of results in $[18,34,40,43]$. Meanwhile, based on the result of [40] and with the help of the results from [6], Dooley and Golodets in [9] proved that every free ergodic actions of a countable discrete amenable group with c.p.e. has a countable Lebesgue spectrum. Another long standing open problem is the generalization of pointwise convergence results, even such basic theorems as the L^{1}-pointwise ergodic theorem and the Shannon-McMillan-Breiman (SMB) Theorem for general amenable groups, for related results see for example [13,29,35]. In [30] Lindenstrauss gave a satisfactory answer to the question by proving the pointwise ergodic theorem for general locally compact amenable groups along Følner sequences obeying some restrictions (such sequences must exist for all amenable groups) and obtaining a generalization of the SMB Theorem to all countable discrete amenable groups (see also the survey [44] written by Weiss). Moreover, using the tools built in [30] Lindenstrauss also proved other pointwise results, for example [35] and so on.

Along with the development of the local entropy theory for \mathbb{Z}-actions, a natural question arises: to what extends the theory can be generalized to an amenable group action? In [27] Kerr and Li studied the local entropy theory of an amenable group action for topological dynamics via independence. In this paper we try to study systematically the local properties of entropy for actions of a countable discrete amenable group both in topological and measure theoretical settings.

First, we shall establish a local variational principle for a given finite open cover of a countable discrete amenable group action. Note that the classical variational principle of a countable discrete amenable group action (see $[33,41]$) can be deduced from our result by proceeding some simple arguments. In the way to build the local variational principle, we also introduce two kinds of measure-theoretic entropy for finite Borel covers following the ideas of [39], prove the upper semi-continuity (u.s.c.) of them (when considering a finite open cover) on the set of invariant measures, and show that they coincide. We note that completely different from the case of \mathbb{Z}-actions, in our proving of the u.s.c. we need a deep convergence lemma related to a countable discrete amenable group; and in our proving of the equivalence of these two kinds of entropy, we
need the result that they are equivalent for \mathbb{Z}-actions, and Danilenko's orbital approach method (since we can't obtain a universal Rohlin Lemma and a result similar to Glasner-Weiss Theorem [19] in this setting). Meanwhile, inspired by [44, Lemma 5.11] we shall give a local version of the well-known Katok's result [26, Theorem I.I] for a countable discrete amenable group action.

Then we introduce entropy tuples in both topological and measure-theoretic settings. The set of measure-theoretic entropy tuples for an invariant measure is characterized, the variational relation between these two kinds of entropy tuples is obtained as an application of the local variational principle for a given finite open cover. Based on the ideas of topological entropy pairs, we discuss two classes of dynamical systems: having u.p.e. and having c.p.e. Precisely speaking, for a countable discrete amenable group action, it is proved: u.p.e. and c.p.e. are both preserved under a finite production; u.p.e. implies c.p.e.; c.p.e. implies the existence of an invariant measure with full support; u.p.e. implies mild mixing; and minimal topological K implies strong mixing if the group considered is commutative.

We note that when we finished our writing of the paper, we received a preprint by Kerr and Li [28], where the authors investigated the local entropy theory of an amenable group action for measure-preserving systems via independence. They obtained the variational relation between these two kinds of entropy tuples defined by them, and stated the local variational principle for a given finite open cover as an open question, see [28, Question 2.10]. Moreover, the results obtained in this paper have been applied to consider the co-induction of dynamical systems in [10].

The paper is organized as following. In Section 2, we introduce the terminology from [34,43] that we shall use, and obtain some convergence lemmas which play key roles in the following sections. In Section 3, for a countable discrete amenable group action we introduce the entropy theory of it, including two kinds of measure-theoretic entropy for a finite Borel cover, and establish some basic properties of them, such as u.s.c., affinity and so on. Then in Section 4 we prove the equivalence of those two kinds of entropy introduced for a finite Borel cover, and give a local version of the well-known Katok's result [26, Theorem I.I] for a countable discrete amenable group action. In Section 5, we aim to establish the local variational principle for a finite open cover. In Section 6, we introduce entropy tuples in both topological and measure-theoretic settings and establish the variational relation between them. Based on the ideas of topological entropy pairs, in Section 7 we discuss two special classes of dynamical systems: having u.p.e. and having c.p.e., respectively.

2. Backgrounds of a countable discrete amenable group

Let G be a countable discrete infinite group and $F(G)$ the set of all finite non-empty subsets of G. G is called amenable, if for each $K \in F(G)$ and $\delta>0$ there exists $F \in F(G)$ such that

$$
\frac{|F \Delta K F|}{|F|}<\delta,
$$

where $|\cdot|$ is the counting measure, $K F=\{k f: k \in K, f \in F\}$ and $F \Delta K F=(F \backslash K F) \cup$ $(K F \backslash F)$. Let $K \in F(G)$ and $\delta>0$. Set $K^{-1}=\left\{k^{-1}: k \in K\right\} . A \in F(G)$ is (K, δ)-invariant if

$$
\frac{|B(A, K)|}{|A|}<\delta
$$

where $B(A, K) \doteq\{g \in G: K g \cap A \neq \emptyset$ and $K g \cap(G \backslash A) \neq \emptyset\}=K^{-1} A \cap K^{-1}(G \backslash A)$. A sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}} \subseteq F(G)$ is called a Følner sequence, if for each $K \in F(G)$ and $\delta>0$,
F_{n} is (K, δ)-invariant when n is large enough. It is not hard to obtain the following asymptotic invariance property that G is amenable if and only if G has a Følner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$. For example, for \mathbb{Z} we may take Følner sequence $F_{n}=\{0,1, \ldots, n-1\}$, or for that matter $\left\{a_{n}, a_{n}+1, \ldots, a_{n}+n-1\right\}$ for any sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathbb{Z}$.

Throughout the paper, any amenable group considered is assumed to be a countable discrete amenable infinite group, and G will always be such a group with the unit e_{G}.

2.1. Quasi-tiling for an amenable group

The following terminology and results are due to Ornstein and Weiss [34] (see also $[40,43])$. Let $\left\{A_{1}, \ldots, A_{k}\right\} \subseteq F(G)$ and $\epsilon \in(0,1)$. Subsets A_{1}, \ldots, A_{k} are ϵ-disjoint if there are $\left\{B_{1}, \ldots, B_{k}\right\} \subseteq F(G)$ such that
(1) $B_{i} \subseteq A_{i}$ and $\frac{\left|B_{i}\right|}{\left|A_{i}\right|}>1-\epsilon$ for $i=1, \ldots, k$,
(2) $B_{i} \cap B_{j}=\emptyset$ if $1 \leqslant i \neq j \leqslant k$.

For $\alpha \in(0,1]$, we say that $\left\{A_{1}, \ldots, A_{k}\right\} \alpha$-covers $A \in F(G)$ if

$$
\frac{\left|A \cap\left(\bigcup_{i=1}^{k} A_{i}\right)\right|}{|A|} \geqslant \alpha
$$

For $\delta \in[0,1),\left\{A_{1}, \ldots, A_{k}\right\}$ is called a δ-even cover of $A \in F(G)$ if
(1) $A_{i} \subseteq A$ for $i=1, \ldots, k$,
(2) there is $M \in \mathbb{N}$ such that $\sum_{i=1}^{k} 1_{A_{i}}(g) \leqslant M$ for each $g \in G$ and $\sum_{i=1}^{k}\left|A_{i}\right| \geqslant(1-\delta) M|A|$.

We say that $A_{1}, \ldots, A_{k} \epsilon$-quasi-tile $A \in F(G)$ if there exists $\left\{C_{1}, \ldots, C_{k}\right\} \subseteq F(G)$ such that
(1) for $i=1, \ldots, k, A_{i} C_{i} \subseteq A$ and $\left\{A_{i} c: c \in C_{i}\right\}$ forms an ϵ-disjoint family,
(2) $A_{i} C_{i} \cap A_{j} C_{j}=\emptyset$ if $1 \leqslant i \neq j \leqslant k$,
(3) $\left\{A_{i} C_{i}: i=1, \ldots, k\right\}$ forms a $(1-\epsilon)$-cover of A.

The subsets C_{1}, \ldots, C_{k} are called the tiling centers.
The following lemmas are proved in [34, §1.2].
Lemma 2.1. Let $\delta \in[0,1), e_{G} \in S \in F(G)$ and $A \in F(G)$ satisfy that A is $\left(S S^{-1}, \delta\right)$-invariant. Then the right translates of S that lie in $A,\{S g: g \in G, S g \subseteq A\}$, form a δ-even cover of A.

Lemma 2.2. Let $\delta \in[0,1)$ and let $\mathcal{A} \subseteq F(G)$ be a δ-even cover of $A \in F(G)$. Then for each $\epsilon \in(0,1)$ there is an ϵ-disjoint sub-collection of \mathcal{A} which $\epsilon(1-\delta)$-covers A.

Then we can claim the following proposition (see [34] or [43, Theorem 2.6]).
Proposition 2.3. Let $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ with $e_{G} \in F_{1} \subseteq F_{2} \subseteq \cdots$ and $\left\{F_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ be two Følner sequences of G. Then for any $\epsilon \in\left(0, \frac{1}{4}\right)$ and $N \in \mathbb{N}$, there exist integers n_{1}, \ldots, n_{k} with $N \leqslant n_{1}<\cdots<n_{k}$ such that $F_{n_{1}}, \ldots, F_{n_{k}} \epsilon$-quasi-tile F_{m}^{\prime} when m is large enough.

Proof. We follow the arguments in the proof of [43, Theorem 2.6]. Fix $\epsilon \in\left(0, \frac{1}{4}\right)$ and $N \in \mathbb{N}$.
Let $k \in \mathbb{N}$ and $\delta>0$ such that $\left(1-\frac{\epsilon}{2}\right)^{k}<\epsilon$ and $6^{k} \delta<\frac{\epsilon}{2}$. We can choose integers n_{1}, \ldots, n_{k} with $N \leqslant n_{1}<\cdots<n_{k}$ such that $F_{n_{i+1}}$ is $\left(F_{n_{i}} F_{n_{i}}^{-1}, \delta\right)$-invariant and $\frac{\left|F_{n_{i}}\right|}{\left|F_{n_{i}+1}\right|}<\delta, i=1, \ldots, k-1$.

Now for each enough large m, F_{m}^{\prime} is $\left(F_{n_{k}} F_{n_{k}}^{-1}, \delta\right)$-invariant and $\frac{\left|F_{n_{k}}\right|}{\left|F_{m}^{\prime}\right|}<\delta$, thus by Lemma 2.1 the right translates of $F_{n_{k}}$ that lie in F_{m}^{\prime} form a δ-even cover of F_{m}^{\prime}, and so by Lemma 2.2 there exists $C_{k} \in F(G)$ such that $F_{n_{k}} C_{k} \subseteq F_{m}^{\prime}$ and the family $\left\{F_{n_{k}} c: c \in C_{k}\right\}$ is ϵ-disjoint and $\epsilon(1-\delta)$ covers F_{m}^{\prime}. Let $c_{k} \in C_{k}$. Without loss of generality assume that $\left|F_{n_{k}} C_{k} \backslash F_{n_{k}} c_{k}\right|<\epsilon(1-\delta)\left|F_{m}^{\prime}\right|$ (if necessary we may take a subset of C_{k} to replace with C_{k}). Then $(1-\epsilon)\left|F_{n_{k}}\right|\left|C_{k}\right|<\left|F_{m}^{\prime}\right|$ and

$$
\begin{align*}
1-\epsilon(1-\delta) & \geqslant \frac{\left|F_{m}^{\prime} \backslash F_{n_{k}} C_{k}\right|}{\left|F_{m}^{\prime}\right|}=1-\frac{\left|F_{n_{k}} C_{k} \backslash F_{n_{k}} c_{k}\right|+\left|F_{n_{k}} c_{k}\right|}{\left|F_{m}^{\prime}\right|} \\
& \geqslant 1-\epsilon(1-\delta)-\delta . \tag{2.1}
\end{align*}
$$

Set $A_{k-1}=F_{m}^{\prime} \backslash F_{n_{k}} C_{k}, K_{k-1}=F_{n_{k-1}} F_{n_{k-1}}^{-1}$. We have

$$
\begin{aligned}
B\left(A_{k-1}, K_{k-1}\right) & =K_{k-1}^{-1}\left(F_{m}^{\prime} \backslash F_{n_{k}} C_{k}\right) \cap K_{k-1}^{-1}\left(\left(G \backslash F_{m}^{\prime}\right) \cup F_{n_{k}} C_{k}\right) \\
& \subseteq B\left(F_{m}^{\prime}, K_{k-1}\right) \cup \bigcup_{c \in C_{k}} B\left(F_{n_{k}} c, K_{k-1}\right) \\
& \subseteq B\left(F_{m}^{\prime}, F_{n_{k}} F_{n_{k}}^{-1}\right) \cup \bigcup_{c \in C_{k}} B\left(F_{n_{k}}, K_{k-1}\right) c \quad\left(\text { as } K_{k-1} \subseteq F_{n_{k}} F_{n_{k}}^{-1}\right),
\end{aligned}
$$

which implies

$$
\begin{aligned}
\frac{\left|B\left(A_{k-1}, K_{k-1}\right)\right|}{\left|A_{k-1}\right|} & \leqslant \frac{\left|B\left(F_{m}^{\prime}, F_{n_{k}} F_{n_{k}}^{-1}\right)\right|}{\left|A_{k-1}\right|}+\left|C_{k}\right| \frac{\left|B\left(F_{n_{k}}, K_{k-1}\right)\right|}{\left|A_{k-1}\right|} \\
& <\frac{\delta}{\left|F_{m}^{\prime} \backslash F_{n_{k}} C_{k}\right|}\left(\left|F_{m}^{\prime}\right|+\left|C_{k}\right|\left|F_{n_{k}}\right|\right) \\
& <\delta\left(1+\frac{1}{1-\epsilon}\right) \frac{\left|F_{m}^{\prime}\right|}{\left|F_{m}^{\prime} \backslash F_{n_{k}} C_{k}\right|} \quad\left(\text { as }(1-\epsilon)\left|F_{n_{k}}\right|\left|C_{k}\right|<\left|F_{m}^{\prime}\right|\right) \\
& \leqslant \delta\left(1+\frac{1}{1-\epsilon}\right) \frac{1}{1-\epsilon(1-\delta)-\delta} \quad(\text { by }(2.1)) \\
& <6 \delta \quad\left(\text { as } \epsilon \in\left(0, \frac{1}{4}\right)\right)
\end{aligned}
$$

That is, A_{k-1} is ($F_{n_{k-1}} F_{n_{k-1}}^{-1}, 6 \delta$)-invariant. Moreover, using (2.1) one has

$$
\frac{\left|F_{n_{k-1}}\right|}{\left|A_{k-1}\right|}=\frac{\left|F_{n_{k-1}}\right|}{\left|F_{n_{k}}\right|} \cdot \frac{\left|F_{n_{k}}\right|}{\left|F_{m}^{\prime}\right|} \cdot \frac{\left|F_{m}^{\prime}\right|}{\left|F_{m}^{\prime} \backslash F_{n_{k}} C_{k}\right|}<\frac{\delta^{2}}{1-\epsilon(1-\delta)-\delta}<\delta .
$$

By the same reasoning there exists $C_{k-1} \in F(G)$ such that $F_{n_{k-1}} C_{k-1} \subseteq A_{k-1}$, the family $\left\{F_{n_{k-1}} c: c \in C_{k-1}\right\}$ is ϵ-disjoint and $\epsilon(1-6 \delta)$-covers A_{k-1} and

$$
\begin{equation*}
1-\epsilon(1-6 \delta) \geqslant \frac{\left|A_{k-1} \backslash F_{n_{k-1}} C_{k-1}\right|}{\left|A_{k-1}\right|} \geqslant 1-\epsilon(1-6 \delta)-6 \delta . \tag{2.2}
\end{equation*}
$$

Moreover, by (2.1) and (2.2) we have

$$
\begin{aligned}
\frac{\left|A_{k-1} \backslash F_{n_{k-1}} C_{k-1}\right|}{\left|F_{m}^{\prime}\right|} & =\frac{\left|A_{k-1} \backslash F_{n_{k-1}} C_{k-1}\right|}{\left|A_{k-1}\right|} \cdot \frac{\left|F_{m}^{\prime} \backslash F_{n_{k}} C_{k}\right|}{\left|F_{m}^{\prime}\right|} \\
& \leqslant(1-\epsilon(1-6 \delta))(1-\epsilon(1-\delta))<\left(1-\frac{\epsilon}{2}\right)^{2} .
\end{aligned}
$$

Inductively, we get $\left\{C_{k}, \ldots, C_{1}\right\} \subseteq F(G)$ such that if $1 \leqslant i \neq j \leqslant k$ then $F_{n_{i}} C_{i} \cap F_{n_{j}} C_{j}=\emptyset$, and if $i=1, \ldots, k$ then $F_{n_{i}} C_{i} \subseteq F_{m}^{\prime}$ and the family $\left\{F_{n_{i}} c: c \in C_{i}\right\}$ is ϵ-disjoint. Moreover,

$$
\frac{\left|F_{m}^{\prime} \backslash \bigcup_{i=1}^{k} F_{n_{i}} C_{i}\right|}{\left|F_{m}^{\prime}\right|}<\left(1-\frac{\epsilon}{2}\right)^{k}<\epsilon .
$$

Thus, $\left\{F_{n_{i}} C_{i}: i=1, \ldots, k\right\}$ forms a $(1-\epsilon)$-cover of F_{m}^{\prime}. This ends the proof.

2.2. Convergence key lemmas

Let $f: F(G) \rightarrow \mathbb{R}$ be a function. We say that f is
(1) monotone, if $f(E) \leqslant f(F)$ for any $E, F \in F(G)$ satisfying $E \subseteq F$;
(2) non-negative, if $f(F) \geqslant 0$ for any $F \in F(G)$;
(3) G-invariant, if $f(F g)=f(F)$ for any $F \in F(G)$ and $g \in G$;
(4) sub-additive, if $f(E \cup F) \leqslant f(E)+f(F)$ for any $E, F \in F(G)$.

The following lemma is proved in [31, Theorem 6.1].
Lemma 2.4. Let $f: F(G) \rightarrow \mathbb{R}$ be a monotone non-negative G-invariant sub-additive (m.n.i.s.a.) function. Then for any Folner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ of G, the sequence $\left\{\frac{f\left(F_{n}\right)}{\left|F_{n}\right|}\right\}_{n \in \mathbb{N}}$ converges and the value of the limit is independent of the selection of the Følner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$.

Proof. We give a proof for the completion. Since f is G-invariant, there exists $M \in \mathbb{R}_{+}$such that $f(\{g\})=M$ for all $g \in G$.

Now first we claim that if $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ with $e_{G} \in F_{1} \subseteq F_{2} \subseteq \cdots$ and $\left\{F_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ are two Følner sequences of G then

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{f\left(F_{n}^{\prime}\right)}{\left|F_{n}^{\prime}\right|} \leqslant \limsup _{n \rightarrow+\infty} \frac{f\left(F_{n}\right)}{\left|F_{n}\right|} . \tag{2.3}
\end{equation*}
$$

Let $\epsilon \in\left(0, \frac{1}{4}\right)$ and $N \in \mathbb{N}$. By Proposition 2.3 there exist integers n_{1}, \ldots, n_{k} with $N \leqslant n_{1}<$ $\cdots<n_{k}$ such that when n is large enough then $F_{n_{1}}, \ldots, F_{n_{k}}$-quasi-tile F_{n}^{\prime} with tiling centers $C_{1}^{n}, \ldots, C_{k}^{n}$. Thus, when n is large enough then

$$
\begin{equation*}
F_{n}^{\prime} \supseteq \bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n} \quad \text { and } \quad\left|\bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right| \geqslant \max \left\{(1-\epsilon)\left|F_{n}^{\prime}\right|,(1-\epsilon) \sum_{i=1}^{k}\left|C_{i}^{n}\right| \cdot\left|F_{n_{i}}\right|\right\}, \tag{2.4}
\end{equation*}
$$

which implies

$$
\begin{align*}
\frac{f\left(F_{n}^{\prime}\right)}{\left|F_{n}^{\prime}\right|} & \leqslant \frac{f\left(F_{n}^{\prime} \backslash \bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right)+f\left(\bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right)}{\left|F_{n}^{\prime}\right|} \\
& \leqslant M \frac{\left|F_{n}^{\prime} \backslash \bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right|}{\left|F_{n}^{\prime}\right|}+\frac{f\left(\bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right)}{\left|\bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right|} \\
& \leqslant M \epsilon+\frac{f\left(\bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right)}{\left|\bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right|} \\
& \leqslant M \epsilon+\sum_{i=1}^{k} \frac{\left|C_{i}^{n}\right| f\left(F_{n_{i}}\right)}{(1-\epsilon) \sum_{i=1}^{k}\left|C_{i}^{n}\right| \cdot\left|F_{n_{i}}\right|} \quad(\text { using (2.4))} \\
& \leqslant M \epsilon+\frac{1}{1-\epsilon} \max _{1 \leqslant i \leqslant k} \frac{f\left(F_{n_{i}}\right)}{\left|F_{n_{i}}\right|} \leqslant M \epsilon+\frac{1}{1-\epsilon} \sup _{m \geqslant N} \frac{f\left(F_{m}\right)}{\left|F_{m}\right|} . \tag{2.5}
\end{align*}
$$

Now letting $\epsilon \rightarrow 0+$ and $N \rightarrow+\infty$, we conclude the inequality (2.3).
Now let $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ with $e_{G} \in H_{1} \subseteq H_{2} \subseteq \cdots$ be a Følner sequence of G. Clearly, there is a sub-sequence $\left\{H_{n_{m}}\right\}_{m \in \mathbb{N}}$ of $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \frac{f\left(H_{n_{m}}\right)}{\left|H_{n_{m}}\right|}=\liminf _{n \rightarrow+\infty} \frac{f\left(H_{n}\right)}{\left|H_{n}\right|} . \tag{2.6}
\end{equation*}
$$

Applying the above claim to Følner sequences $\left\{H_{n_{m}}\right\}_{m \in \mathbb{N}}$ and $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ (see (2.3)), we obtain

$$
\limsup _{n \rightarrow+\infty} \frac{f\left(H_{n}\right)}{\left|H_{n}\right|} \leqslant \limsup _{m \rightarrow+\infty} \frac{f\left(H_{n_{m}}\right)}{\left|H_{n_{m}}\right|}=\liminf _{n \rightarrow+\infty} \frac{f\left(H_{n}\right)}{\left|H_{n}\right|} \quad \text { (by (2.6)). }
$$

Thus, the sequence $\left\{\frac{f\left(H_{n}\right)}{\left|H_{n}\right|}\right\}_{n \in \mathbb{N}}$ converges (say $N(f)$ to be the value of the limit). Then for any FøIner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ with $e_{G} \in F_{1} \subseteq F_{2} \subseteq \cdots$ of G, the sequence $\left\{\frac{f\left(F_{n}\right)}{\left|F_{n}\right|}\right\}_{n \in \mathbb{N}}$ converges to $N(f)$ (by (2.3)).

Finally, in order to complete the proof, we only need to check that, for any given Følner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ of G, if $\left\{F_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ is any sub-sequence of $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ such that the sequence $\left\{\frac{f\left(F_{n}^{\prime}\right)}{\left|F_{n}^{\prime}\right|}\right\}_{n \in \mathbb{N}}$ converges, then it converges to $N(f)$, which implies $\left\{\frac{f\left(F_{n}\right)}{\left|F_{n}\right|}\right\}_{n \in \mathbb{N}}$ converges to $N(f)$. Let $\left\{F_{n}^{\prime}\right\}_{n \in \mathbb{N}}$ be such a sub-sequence. With no loss of generality we assume $\lim _{n \rightarrow+\infty} \frac{\left|F_{n}^{*}\right|}{\left|F_{n+1}^{\prime}\right|}=0$ (if necessary we take a sub-sequence of $\left\{F_{n}^{\prime}\right\}_{n \in \mathbb{N}}$), where $F_{n}^{*}=\left\{e_{G}\right\} \cup \bigcup_{i=1}^{n} F_{i}^{\prime}$ for each n. It is easy to check that $e_{G} \in F_{1}^{*} \subseteq F_{2}^{*} \subseteq \cdots$ forms a Følner sequence of G and so the sequence $\left\{\frac{f\left(F_{n}^{*}\right)}{\left|F_{n}^{*}\right|}\right\}_{n \in \mathbb{N}}$ converges to $N(f)$ from the above discussion. Note that, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|\frac{f\left(F_{n+1}^{*}\right)}{\left|F_{n+1}^{*}\right|}-\frac{f\left(F_{n+1}^{\prime}\right)}{\left|F_{n+1}^{\prime}\right|}\right| & \leqslant \frac{f\left(F_{n}^{*}\right)}{\left|F_{n+1}^{*}\right|}+\left|\frac{f\left(F_{n+1}^{\prime}\right)}{\left|F_{n+1}^{*}\right|}-\frac{f\left(F_{n+1}^{\prime}\right)}{\left|F_{n+1}^{\prime}\right|}\right| \\
& \leqslant M\left(\frac{\left|F_{n}^{*}\right|}{\left|F_{n+1}^{*}\right|}+\left|F_{n+1}^{\prime}\right| \cdot\left|\frac{1}{\left|F_{n+1}^{*}\right|}-\frac{1}{\left|F_{n+1}^{\prime}\right|}\right|\right) \\
& \leqslant M\left(\frac{\left|F_{n}^{*}\right|}{\left|F_{n+1}^{\prime}\right|}+1-\frac{1}{1+\frac{\left|F_{n}^{*}\right|}{\left|F_{n+1}^{\prime}\right|}}\right)
\end{aligned}
$$

By letting $n \rightarrow+\infty$ one has $\lim _{n \rightarrow+\infty} \frac{f\left(F_{n+1}^{*}\right)}{\left|F_{n+1}^{*}\right|}=\lim _{n \rightarrow+\infty} \frac{f\left(F_{n+1}^{\prime}\right)}{\left|F_{n+1}^{\prime}\right|}=N(f)$, that is, the sequence $\left\{\frac{f\left(F_{n}^{\prime}\right)}{\left|F_{n}^{\prime}\right|}\right\}_{n \in \mathbb{N}}$ converges also to $N(f)$.

Remark 2.5. Recall that we say a set T tiles G if there is a subset C such that $\{T c: c \in C\}$ is a partition of G. It's proved that if G admits a Følner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ of tiling sets then for each f as in Lemma 2.4 the sequence $\left\{\frac{f\left(F_{n}\right)}{\left|F_{n}\right|}\right\}_{n \in \mathbb{N}}$ converges to $\inf _{n \in \mathbb{N}} \frac{f\left(F_{n}\right)}{\left|F_{n}\right|}$ and the value of the limit is independent of the choice of such a Følner sequence, which is stated as [44, Theorem 5.9].

The following useful lemma is an alternative version of (2.5) in the proof of Lemma 2.4.
Lemma 2.6. Let $e_{G} \in F_{1} \subseteq F_{2} \subseteq \cdots$ be a Følner sequence of G. Then for any $\epsilon \in\left(0, \frac{1}{4}\right)$ and $N \in \mathbb{N}$ there exist integers n_{1}, \ldots, n_{k} with $N \leqslant n_{1}<\cdots<n_{k}$ such that if $f: F(G) \rightarrow \mathbb{R}$ is a m.n.i.s.a. function with $M=f(\{g\})$ for all $g \in G$ then

$$
\lim _{n \rightarrow+\infty} \frac{f\left(F_{n}\right)}{\left|F_{n}\right|} \leqslant M \epsilon+\frac{1}{1-\epsilon} \max _{1 \leqslant i \leqslant k} \frac{f\left(F_{n_{i}}\right)}{\left|F_{n_{i}}\right|} \leqslant M \epsilon\left(1+\frac{1}{1-\epsilon}\right)+\max _{1 \leqslant i \leqslant k} \frac{f\left(F_{n_{i}}\right)}{\left|F_{n_{i}}\right|} .
$$

3. Entropy of an amenable group action

Let $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ be a Følner sequence of G and fix it in the section. In this section, we aim to introduce the entropy theory of a G-system. By a G-system (X, G) we mean that X is a compact metric space and $\Gamma: G \times X \rightarrow X,(g, x) \mapsto g x$ is a continuous mapping satisfying
(1) $\Gamma\left(e_{G}, x\right)=x$ for each $x \in X$,
(2) $\Gamma\left(g_{1}, \Gamma\left(g_{2}, x\right)\right)=\Gamma\left(g_{1} g_{2}, x\right)$ for each $g_{1}, g_{2} \in G$ and $x \in X$.

Moreover, if a non-empty compact subset $W \subseteq X$ is G-invariant (i.e. $g W=W$ for any $g \in G$) then (W, G) is called a sub- G-system of (X, G).

From now on, we let (X, G) always be a G-system if there is no any special statement. Denote by \mathcal{B}_{X} the collection of all Borel subsets of X. A cover of X is a finite family of Borel subsets of X, whose union is X. A partition of X is a cover of X whose elements are pairwise disjoint. Denote by \mathcal{C}_{X} (resp. \mathcal{C}_{X}^{o}) the set of all covers (resp. finite open covers) of X. Denote by \mathcal{P}_{X} the set of all partitions of X. Given two covers $\mathcal{U}, \mathcal{V} \in \mathcal{C}_{X}, \mathcal{U}$ is said to be finer than \mathcal{V} (denoted by $\mathcal{U} \succcurlyeq \mathcal{V}$ or $\mathcal{V} \preccurlyeq \mathcal{U})$ if each element of \mathcal{U} is contained in some element of \mathcal{V}; set $\mathcal{U} \vee \mathcal{V}=$ $\{U \cap V: U \in \mathcal{U}, V \in \mathcal{V}\}$.

3.1. Topological entropy

Let $\mathcal{U} \in \mathcal{C}_{X}$. Set $N(\mathcal{U})$ to be the minimum among the cardinalities of all sub-families of \mathcal{U} covering X and denote by $\#(\mathcal{U})$ the cardinality of \mathcal{U}. Define $H(\mathcal{U})=\log N(\mathcal{U})$. Clearly, if $\mathcal{U}, \mathcal{V} \in \mathcal{C}_{X}$, then $H(\mathcal{U} \vee \mathcal{V}) \leqslant H(\mathcal{U})+H(\mathcal{V})$ and $H(\mathcal{V}) \geqslant H(\mathcal{U})$ when $\mathcal{V} \succcurlyeq \mathcal{U}$.

Let $F \in F(G)$ and $\mathcal{U} \in \mathcal{C}_{X}$, set $\mathcal{U}_{F}=\bigvee_{g \in F} g^{-1} \mathcal{U}$ (letting $\mathcal{U}_{\emptyset}=\{X\}$). It is not hard to check that $F \in F(G) \mapsto H\left(\mathcal{U}_{F}\right)$ is a m.n.i.a.s. function, and so by Lemma 2.4, the quantity

$$
h_{\mathrm{top}}(G, \mathcal{U}) \doteq \lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H\left(\mathcal{U}_{F_{n}}\right)
$$

exists and $h_{\text {top }}(G, \mathcal{U})$ is independent of the choice of $\left\{F_{n}\right\}_{n \in \mathbb{N}} . h_{\text {top }}(G, \mathcal{U})$ is called the topological entropy of \mathcal{U}. It is clear that $h_{\text {top }}(G, \mathcal{U}) \leqslant H(\mathcal{U})$. Note that if $\mathcal{U}_{1}, \mathcal{U}_{2} \in \mathcal{C}_{X}$, then $h_{\text {top }}\left(G, \mathcal{U}_{1} \vee \mathcal{U}_{2}\right) \leqslant h_{\text {top }}\left(G, \mathcal{U}_{1}\right)+h_{\text {top }}\left(G, \mathcal{U}_{2}\right)$ and $h_{\text {top }}\left(G, \mathcal{U}_{2}\right) \geqslant h_{\text {top }}\left(G, \mathcal{U}_{1}\right)$ when $\mathcal{U}_{2} \succcurlyeq \mathcal{U}_{1}$. The topological entropy of (X, G) is defined by

$$
h_{\text {top }}(G, X)=\sup _{\mathcal{U} \in \mathcal{C}_{X}^{o}} h_{\text {top }}(G, \mathcal{U})
$$

3.2. Measure-theoretic entropy

Denote by $\mathcal{M}(X)$ the set of all Borel probability measures on X. For $\mu \in \mathcal{M}(X)$, denote by $\operatorname{supp}(\mu)$ the support of μ, i.e. the smallest closed subset $W \subseteq X$ such that $\mu(W)=1 . \mu \in \mathcal{M}(X)$ is called G-invariant if $g \mu=\mu$ for each $g \in G$; G-invariant $v \in \mathcal{M}(X)$ is called ergodic if $\nu\left(\bigcup_{g \in G} g A\right)=0$ or 1 for any $A \in \mathcal{B}_{X}$. Denote by $\mathcal{M}(X, G)$ (resp. $\mathcal{M}^{e}(X, G)$) the set of all G invariant (resp. ergodic G-invariant) elements in $\mathcal{M}(X)$. Note that the amenability of G ensures that $\emptyset \neq \mathcal{M}^{e}(X, G)$ and both $\mathcal{M}(X)$ and $\mathcal{M}(X, G)$ are convex compact metric spaces when they are endowed with the weak*-topology.

Given $\alpha \in \mathcal{P}_{X}, \mu \in \mathcal{M}(X)$ and a sub- σ-algebra $\mathcal{A} \subseteq \mathcal{B}_{X}$, define

$$
H_{\mu}(\alpha \mid \mathcal{A})=\sum_{A \in \alpha} \int_{X}-\mathbb{E}\left(1_{A} \mid \mathcal{A}\right) \log \mathbb{E}\left(1_{A} \mid \mathcal{A}\right) d \mu
$$

where $\mathbb{E}\left(1_{A} \mid \mathcal{A}\right)$ is the expectation of 1_{A} with respect to (w.r.t.) \mathcal{A}. One standard fact is that $H_{\mu}(\alpha \mid \mathcal{A})$ increases w.r.t. α and decreases w.r.t. \mathcal{A}. Set $\mathcal{N}=\{\emptyset, X\}$. Define

$$
H_{\mu}(\alpha)=H_{\mu}(\alpha \mid \mathcal{N})=\sum_{A \in \alpha}-\mu(A) \log \mu(A)
$$

Let $\beta \in \mathcal{P}_{X}$. Note that β generates naturally a sub- σ-algebra $\mathcal{F}(\beta)$ of \mathcal{B}_{X}, define

$$
H_{\mu}(\alpha \mid \beta)=H_{\mu}(\alpha \mid \mathcal{F}(\beta))=H_{\mu}(\alpha \vee \beta)-H_{\mu}(\beta) .
$$

Now let $\mu \in \mathcal{M}(X, G)$, it is not hard to see that $F \in F(G) \mapsto H_{\mu}\left(\alpha_{F}\right)$ is a m.n.i.a.s. function. Thus by Lemma 2.4 we can define the measure-theoretic μ-entropy of α as

$$
\begin{equation*}
h_{\mu}(G, \alpha)=\lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\alpha_{F_{n}}\right)\left(=\inf _{F \in F(G)} \frac{1}{|F|} H_{\mu}\left(\alpha_{F}\right)\right), \tag{3.1}
\end{equation*}
$$

where the last identity is to be proved in Lemma 3.1(4). In particular, $h_{\mu}(G, \alpha)$ is independent of the choice of Følner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$. The measure-theoretic μ-entropy of (X, G) is defined by

$$
\begin{equation*}
h_{\mu}(G, X)=\sup _{\alpha \in \mathcal{P}_{X}} h_{\mu}(G, \alpha) . \tag{3.2}
\end{equation*}
$$

3.2.1. The proof of the second identity in (3.1)

Lemma 3.1. Let $\alpha \in \mathcal{P}_{X}, \mu \in \mathcal{M}(X), m \in \mathbb{N}$ and $E, F, B, E_{1}, \ldots, E_{k} \in F(G)$. Then

1. $H_{\mu}\left(\alpha_{E \cup F}\right)+H_{\mu}\left(\alpha_{E \cap F}\right) \leqslant H_{\mu}\left(\alpha_{E}\right)+H_{\mu}\left(\alpha_{F}\right)$.
2. If $1_{E}(g)=\frac{1}{m} \sum_{i=1}^{k} 1_{E_{i}}(g)$ holds for each $g \in G$, then $H_{\mu}\left(\alpha_{E}\right) \leqslant \frac{1}{m} \sum_{i=1}^{k} H_{\mu}\left(\alpha_{E_{i}}\right)$. 3.

$$
H_{\mu}\left(\alpha_{F}\right) \leqslant \sum_{g \in F} \frac{1}{|B|} H_{\mu}\left(\alpha_{B g}\right)+\left|F \backslash\left\{g \in G: B^{-1} g \subseteq F\right\}\right| \cdot \log \#(\alpha)
$$

4. If in addition $\mu \in \mathcal{M}(X, G)$, then $h_{\mu}(G, \alpha)=\inf _{B \in F(G)} \frac{H_{\mu}\left(\alpha_{B}\right)}{|B|}$.

Proof. 1. The conclusion follows directly from the following simple observation:

$$
\begin{aligned}
H_{\mu}\left(\alpha_{E \cup F}\right)+H_{\mu}\left(\alpha_{E \cap F}\right) & =H_{\mu}\left(\alpha_{E}\right)+H_{\mu}\left(\alpha_{F} \mid \alpha_{E}\right)+H_{\mu}\left(\alpha_{E \cap F}\right) \\
& \leqslant H_{\mu}\left(\alpha_{E}\right)+H_{\mu}\left(\alpha_{F} \mid \alpha_{E \cap F}\right)+H_{\mu}\left(\alpha_{E \cap F}\right) \\
& =H_{\mu}\left(\alpha_{E}\right)+H_{\mu}\left(\alpha_{F}\right) .
\end{aligned}
$$

2. Clearly, $\bigcup_{i=1}^{k} E_{i}=E$. Say $\left\{A_{1}, \ldots, A_{n}\right\}=\bigvee_{i=1}^{k}\left\{E_{i}, E \backslash E_{i}\right\}$ (neglecting all empty elements). Set $K_{0}=\emptyset, K_{i}=\bigcup_{j=1}^{i} A_{j}, i=1, \ldots, n$. Then $\emptyset=K_{0} \subsetneq K_{1} \subsetneq \cdots \subsetneq K_{n}=E$. Moreover, if for some $i=1, \ldots, n$ and $j=1, \ldots, k$ with $E_{j} \cap\left(K_{i} \backslash K_{i-1}\right) \neq \emptyset$ then $K_{i} \backslash K_{i-1} \subseteq E_{j}$ and so $K_{i}=K_{i-1} \cup\left(K_{i} \cap E_{j}\right)$, thus $H_{\mu}\left(\alpha_{K_{i}}\right)+H_{\mu}\left(\alpha_{K_{i-1} \cap E_{j}}\right) \leqslant H_{\mu}\left(\alpha_{K_{i-1}}\right)+H_{\mu}\left(\alpha_{K_{i} \cap E_{j}}\right)$ (using 1), i.e.

$$
\begin{equation*}
H_{\mu}\left(\alpha_{K_{i}}\right)-H_{\mu}\left(\alpha_{K_{i-1}}\right) \leqslant H_{\mu}\left(\alpha_{K_{i} \cap E_{j}}\right)-H_{\mu}\left(\alpha_{K_{i-1} \cap E_{j}}\right) . \tag{3.3}
\end{equation*}
$$

Now for each $i=1, \ldots, n$ we select $k_{i} \in K_{i} \backslash K_{i-1}$, one has

$$
\begin{aligned}
H_{\mu}\left(\alpha_{E}\right) & =\sum_{i=1}^{n}\left(\frac{1}{m} \sum_{j=1}^{k} 1_{E_{j}}\left(k_{i}\right)\right)\left(H_{\mu}\left(\alpha_{K_{i}}\right)-H_{\mu}\left(\alpha_{K_{i-1}}\right)\right) \quad \text { (by assumptions) } \\
& =\frac{1}{m} \sum_{j=1}^{k} \sum_{1 \leqslant i \leqslant n: k_{i} \in E_{j}}\left(H_{\mu}\left(\alpha_{K_{i}}\right)-H_{\mu}\left(\alpha_{K_{i-1}}\right)\right) \\
& \leqslant \frac{1}{m} \sum_{j=1}^{k} \sum_{1 \leqslant i \leqslant n: k_{i} \in E_{j}}\left(H_{\mu}\left(\alpha_{K_{i} \cap E_{j}}\right)-H_{\mu}\left(\alpha_{K_{i-1} \cap E_{j}}\right)\right) \quad \text { (using (3.3)) }
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{m} \sum_{j=1}^{k} \sum_{i=1}^{n}\left(H_{\mu}\left(\alpha_{K_{i} \cap E_{j}}\right)-H_{\mu}\left(\alpha_{K_{i-1} \cap E_{j}}\right)\right) \\
& =\frac{1}{m} \sum_{j=1}^{k} H_{\mu}\left(\alpha_{E_{j}}\right) .
\end{aligned}
$$

3. Note that $1_{\left\{h \in B F: B^{-1} h \subseteq F\right\}}(f)=\frac{1}{|B|} \sum_{g \in F} 1_{\left\{h \in B g: B^{-1} h \subseteq F\right\}}(f)$ for each $f \in G$. By 2 , one has

$$
\begin{equation*}
H_{\mu}\left(\alpha_{\left\{h \in B F: B^{-1} h \subseteq F\right\}}\right) \leqslant \frac{1}{|B|} \sum_{g \in F} H_{\mu}\left(\alpha_{\left\{h \in B g: B^{-1} h \subseteq F\right\}}\right) \leqslant \frac{1}{|B|} \sum_{g \in F} H_{\mu}\left(\alpha_{B g}\right), \tag{3.4}
\end{equation*}
$$

which implies

$$
\begin{aligned}
H_{\mu}\left(\alpha_{F}\right) & \leqslant H_{\mu}\left(\alpha_{\left\{h \in B F: B^{-1} h \subseteq F\right\}}\right)+H_{\mu}\left(\alpha_{F \backslash\left\{h \in B F: B^{-1} h \subseteq F\right\}}\right) \\
& \leqslant \frac{1}{|B|} \sum_{g \in F} H_{\mu}\left(\alpha_{B g}\right)+\left|F \backslash\left\{h \in B F: B^{-1} h \subseteq F\right\}\right| \cdot \log \# \alpha \quad \text { (using (3.4)) } \\
& =\frac{1}{|B|} \sum_{g \in F} H_{\mu}\left(\alpha_{B g}\right)+\left|F \backslash\left\{h \in G: B^{-1} h \subseteq F\right\}\right| \cdot \log \# \alpha .
\end{aligned}
$$

4. If in addition μ is G-invariant, then by 3 , for each $n \in \mathbb{N}$ we have

$$
\begin{align*}
\frac{1}{\left|F_{n}\right|} H_{\mu}\left(\alpha_{F_{n}}\right) & \leqslant \frac{1}{\left|F_{n}\right|} \sum_{g \in F_{n}} \frac{1}{|B|} H_{\mu}\left(\alpha_{B g}\right)+\frac{1}{\left|F_{n}\right|}\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right| \cdot \log \# \alpha \\
& =\frac{1}{\left|F_{n}\right|} \sum_{g \in F_{n}} \frac{1}{|B|} H_{\mu}\left(g^{-1}\left(\alpha_{B}\right)\right)+\frac{1}{\left|F_{n}\right|}\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right| \cdot \log \# \alpha \\
& =\frac{1}{|B|} H_{\mu}\left(\alpha_{B}\right)+\frac{1}{\left|F_{n}\right|}\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right| \cdot \log \# \alpha \tag{3.5}
\end{align*}
$$

Set $B^{\prime}=B^{-1} \cup\left\{e_{G}\right\}$. Note that for each $\delta>0, F_{n}$ is ($\left.B^{\prime}, \delta\right)$-invariant if n is large enough and

$$
F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}=F_{n} \cap B\left(G \backslash F_{n}\right) \subseteq\left(B^{\prime}\right)^{-1} F_{n} \cap\left(B^{\prime}\right)^{-1}\left(G \backslash F_{n}\right)=B\left(F_{n}, B^{\prime}\right),
$$

letting $n \rightarrow+\infty$ we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|}\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right|=\lim _{n \rightarrow+\infty} \frac{\left|B\left(F_{n}, B^{\prime}\right)\right|}{\left|F_{n}\right|}=0, \tag{3.6}
\end{equation*}
$$

and so $h_{\mu}(G, \alpha) \leqslant \frac{1}{|B|} H_{\mu}\left(\alpha_{B}\right)$ (using (3.5) and (3.6)). Since B is arbitrary, 4 is proved.
Remark 3.2. In [32], Lemma 3.1(1) is called the strong sub-additivity of entropy. In his treatment of entropy for amenable group actions [32, Chapter 4], Ollagnier used the property rather heavily.

3.2.2. Measure-theoretic entropy for covers

Following Romagnoli's ideas [39], we define a new notion that extends definition (3.1) to covers. Let $\mu \in \mathcal{M}(X)$ and $\mathcal{A} \subseteq \mathcal{B}_{X}$ be a sub- σ-algebra. For $\mathcal{U} \in \mathcal{C}_{X}$, we define

$$
H_{\mu}(\mathcal{U} \mid \mathcal{A})=\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} H_{\mu}(\alpha \mid \mathcal{A}) \quad \text { and } \quad H_{\mu}(\mathcal{U})=H_{\mu}(\mathcal{U} \mid \mathcal{N}) .
$$

Many properties of the function $H_{\mu}(\alpha)$ are extended to $H_{\mu}(\mathcal{U})$ from partitions to covers.
Lemma 3.3. Let $\mu \in \mathcal{M}(X), \mathcal{A} \subseteq \mathcal{B}_{X}$ be a sub- σ-algebra, $g \in G$ and $\mathcal{U}_{1}, \mathcal{U}_{2} \in \mathcal{C}_{X}$. Then

1. $0 \leqslant H_{\mu}\left(g^{-1} \mathcal{U}_{1} \mid g^{-1} \mathcal{A}\right)=H_{g \mu}\left(\mathcal{U}_{1} \mid \mathcal{A}\right) \leqslant H\left(\mathcal{U}_{1}\right)$.
2. If $\mathcal{U}_{1} \succcurlyeq \mathcal{U}_{2}$, then $H_{\mu}\left(\mathcal{U}_{1} \mid \mathcal{A}\right) \geqslant H_{\mu}\left(\mathcal{U}_{2} \mid \mathcal{A}\right)$.
3. $H_{\mu}\left(\mathcal{U}_{1} \vee \mathcal{U}_{2} \mid \mathcal{A}\right) \leqslant H_{\mu}\left(\mathcal{U}_{1} \mid \mathcal{A}\right)+H_{\mu}\left(\mathcal{U}_{2} \mid \mathcal{A}\right)$.

Using Lemma 3.3, one gets easily that if $\mu \in \mathcal{M}(X, G)$ then $F \in F(G) \mapsto H_{\mu}\left(\mathcal{U}_{F}\right)$ is a m.n.i.s.a. function. So we may define the measure-theoretic μ^{-}-entropy of \mathcal{U} as

$$
h_{\mu}^{-}(G, \mathcal{U})=\lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}}\right)
$$

and $h_{\mu}^{-}(G, \mathcal{U})$ is independent of the choice of Følner sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ (see Lemma 2.4). At the same time, we define the measure-theoretic μ-entropy of \mathcal{U} as

$$
h_{\mu}(G, \mathcal{U})=\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} h_{\mu}(G, \alpha) .
$$

We obtain directly the following easy facts.
Lemma 3.4. Let $\mu \in \mathcal{M}(X, G)$ and $\mathcal{U}, \mathcal{V} \in \mathcal{C}_{X}$. Then

1. $h_{\mu}^{-}(G, \mathcal{U}) \leqslant h_{\mu}(G, \mathcal{U})$ and $h_{\mu}^{-}(G, \mathcal{U}) \leqslant h_{\text {top }}(G, \mathcal{U})$.
2. $h_{\mu}(G, \mathcal{U} \vee \mathcal{V}) \leqslant h_{\mu}(G, \mathcal{U})+h_{\mu}(G, \mathcal{V})$ and $h_{\mu}^{-}(G, \mathcal{U} \vee \mathcal{V}) \leqslant h_{\mu}^{-}(G, \mathcal{U})+h_{\mu}^{-}(G, \mathcal{V})$.
3. If $\mathcal{U} \succcurlyeq \mathcal{V}$, then $h_{\mu}(G, \mathcal{U}) \geqslant h_{\mu}(G, \mathcal{V})$ and $h_{\mu}^{-}(G, \mathcal{U}) \geqslant h_{\mu}^{-}(G, \mathcal{V})$.

3.2.3. An alternative formula for (3.2)

Let $\mu \in \mathcal{M}(X, G)$. Since $\mathcal{P}_{X} \subseteq \mathcal{C}_{X}$, we have

$$
\begin{equation*}
h_{\mu}(G, X)=\sup _{\mathcal{U} \in \mathcal{C}_{X}} h_{\mu}^{-}(G, \mathcal{U})=\sup _{\mathcal{U} \in \mathcal{C}_{X}} h_{\mu}(G, \mathcal{U}) \tag{3.7}
\end{equation*}
$$

In fact, the above extension of local measure-theoretic entropy from partitions to covers allows us to give another alternative formula for (3.2).

Theorem 3.5. Let $\mu \in \mathcal{M}(X, G)$. Then

$$
\begin{equation*}
h_{\mu}(G, X)=\sup _{\mathcal{U} \in \mathcal{C}_{X}^{o}} h_{\mu}^{-}(G, \mathcal{U})=\sup _{\mathcal{U} \in \mathcal{C}_{X}^{o}} h_{\mu}(G, \mathcal{U}) . \tag{3.8}
\end{equation*}
$$

Proof. By (3.7), $h_{\mu}(G, X) \geqslant \sup _{\mathcal{U} \in \mathcal{C}_{X}^{o}} h_{\mu}(G, \mathcal{U})$. For the other direction, let $\alpha=\left\{A_{1}, \ldots, A_{k}\right\} \in$ \mathcal{P}_{X} and $\epsilon>0$.

Claim. There exists $\mathcal{U} \in \mathcal{C}_{X}^{o}$ such that $H_{\mu}\left(g^{-1} \alpha \mid \beta\right) \leqslant \epsilon$ if $g \in G$ and $\beta \in \mathcal{P}_{X}$ satisfy $\beta \succcurlyeq g^{-1} \mathcal{U}$.
Proof. By [42, Lemma 4.15], there exists $\delta_{1}=\delta_{1}(k, \epsilon)>0$ such that if $\beta_{i}=\left\{B_{1}^{i}, \ldots, B_{k}^{i}\right\} \in \mathcal{P}_{X}$, $i=1,2$ satisfy $\sum_{i=1}^{k} \mu\left(B_{i}^{1} \Delta B_{i}^{2}\right)<\delta_{1}$ then $H_{\mu}\left(\beta_{1} \mid \beta_{2}\right) \leqslant \epsilon$. Since μ is regular, we can take closed subsets $B_{i} \subseteq A_{i}$ with $\mu\left(A_{i} \backslash B_{i}\right)<\frac{\delta_{1}}{2 k^{2}}, i=1, \ldots, k$. Let $B_{0}=X \backslash \bigcup_{i=1}^{k} B_{i}, U_{i}=B_{0} \cup B_{i}$, $i=1, \ldots, k$. Then $\mu\left(B_{0}\right)<\frac{\delta_{1}}{2 k}$ and $\mathcal{U}=\left\{U_{1}, \ldots, U_{k}\right\} \in \mathcal{C}_{X}^{o}$.

Let $g \in G$. If $\beta \in \mathcal{P}_{X}$ is finer than $g^{-1} \mathcal{U}$, we can find $\beta^{\prime}=\left\{C_{1}, \ldots, C_{k}\right\} \in \mathcal{P}_{X}$ satisfying $C_{i} \subseteq$ $g^{-1} U_{i}, i=1, \ldots, k$ and $\beta \succcurlyeq \beta^{\prime}$, and so $H_{\mu}\left(g^{-1} \alpha \mid \beta\right) \leqslant H_{\mu}\left(g^{-1} \alpha \mid \beta^{\prime}\right)$. For each $i=1, \ldots, k$, as $g^{-1} U_{i} \supseteq C_{i} \supseteq X \backslash \bigcup_{l \neq i} g^{-1} U_{l}=g^{-1} B_{i}$ and $g^{-1} A_{i} \supseteq g^{-1} B_{i}$, one has

$$
\mu\left(C_{i} \Delta g^{-1} A_{i}\right) \leqslant \mu\left(g^{-1} A_{i} \backslash g^{-1} B_{i}\right)+\mu\left(g^{-1} B_{0}\right)=\mu\left(A_{i} \backslash B_{i}\right)+\mu\left(B_{0}\right)<\frac{\delta_{1}}{2 k}+\frac{\delta_{1}}{2 k^{2}} \leqslant \frac{\delta_{1}}{k} .
$$

Thus $\sum_{i=1}^{k} \mu\left(C_{i} \Delta g^{-1} A_{i}\right)<\delta_{1}$. It follows that $H_{\mu}\left(g^{-1} \alpha \mid \beta^{\prime}\right) \leqslant \epsilon$ and hence $H_{\mu}\left(g^{-1} \alpha \mid\right.$ $\beta) \leqslant \epsilon$.

Let $F \in F(G)$. If $\beta \in \mathcal{P}_{X}$ is finer than \mathcal{U}_{F}, then $\beta \succcurlyeq g^{-1} \mathcal{U}$ for each $g \in F$, and so using the above Claim one has

$$
H_{\mu}\left(\alpha_{F}\right) \leqslant H_{\mu}(\beta)+H_{\mu}\left(\alpha_{F} \mid \beta\right) \leqslant H_{\mu}(\beta)+\sum_{g \in F} H_{\mu}\left(g^{-1} \alpha \mid \beta\right) \leqslant H_{\mu}(\beta)+|F| \epsilon .
$$

Moreover, $H_{\mu}\left(\alpha_{F}\right) \leqslant H_{\mu}\left(\mathcal{U}_{F}\right)+|F| \epsilon$. Now letting F range over $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ one has

$$
\begin{aligned}
h_{\mu}(G, \alpha) & =\lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\alpha_{F_{n}}\right) \leqslant \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}}\right)+\epsilon \\
& =h_{\mu}^{-}(G, \mathcal{U})+\epsilon \leqslant \sup _{\mathcal{V} \in \mathcal{C}_{X}^{o}} h_{\mu}^{-}(G, \mathcal{V})+\epsilon
\end{aligned}
$$

Since α and ϵ are arbitrary, $h_{\mu}(G, X) \leqslant \sup _{\mathcal{V} \in \mathcal{C}_{X}^{o}} h_{\mu}^{-}(G, \mathcal{V})$ and so

$$
h_{\mu}(G, X) \leqslant \sup _{\mathcal{V} \in \mathcal{C}_{X}^{o}} h_{\mu}^{-}(G, \mathcal{V}) \leqslant \sup _{\mathcal{V} \in \mathcal{C}_{X}^{o}} h_{\mu}(G, \mathcal{V}) \quad \text { (by Lemma 3.4(1)). }
$$

3.2.4. U.s.c. of measure-theoretic entropy of open covers

A real-valued function f defined on a compact metric space Z is called upper semi-continuous (u.s.c.) if one of the following equivalent conditions holds:
(A1) $\lim \sup _{z^{\prime} \rightarrow z} f\left(z^{\prime}\right) \leqslant f(z)$ for each $z \in Z$;
(A2) for each $r \in \mathbb{R}$, the set $\{z \in Z: f(z) \geqslant r\}$ is closed.

Using (A2), the infimum of any family of u.s.c. functions is again a u.s.c. one; both the sum and the supremum of finitely many u.s.c. functions are u.s.c. ones.

In this sub-section, we aim to prove that those two kinds entropy of open covers over $\mathcal{M}(X, G)$ are both u.s.c. First, we need

Lemma 3.6. Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{M}\right\} \in \mathcal{C}_{X}^{o}$ and $F \in F(G)$. Then the function $\psi: \mathcal{M}(X) \rightarrow \mathbb{R}_{+}$ with $\psi(\mu)=\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} H_{\mu}\left(\alpha_{F}\right)$ is u.s.c.

Proof. Fix $\mu \in \mathcal{M}(X)$ and $\epsilon>0$. It is sufficient to prove that

$$
\begin{equation*}
\limsup _{\mu^{\prime} \rightarrow \mu: \mu^{\prime} \in \mathcal{M}(X)} \psi\left(\mu^{\prime}\right) \leqslant \psi(\mu)+\epsilon . \tag{3.9}
\end{equation*}
$$

We choose $\alpha \in \mathcal{P}_{X}$ such that $\alpha \succcurlyeq \mathcal{U}$ and $H_{\mu}\left(\alpha_{F}\right) \leqslant \psi(\mu)+\frac{\epsilon}{2}$. With no loss of generality we assume $\alpha=\left\{A_{1}, \ldots, A_{M}\right\}$ with $A_{i} \subseteq U_{i}, 1 \leqslant i \leqslant M$. Then there exists $\delta=\delta(M, F, \epsilon)>0$ such that if $\beta^{i}=\left\{B_{1}^{i}, \ldots, B_{M}^{i}\right\} \in \mathcal{P}_{X}, i=1,2$ satisfy $\sum_{i=1}^{M} \sum_{g \in F} g \mu\left(B_{i}^{1} \Delta B_{i}^{2}\right)<\delta$ then $H_{\mu}\left(\beta_{F}^{1} \mid \beta_{F}^{2}\right) \leqslant \sum_{g \in F} H_{g \mu}\left(\beta^{1} \mid \beta^{2}\right)<\frac{\epsilon}{2} \quad$ [42, Lemma 4.15]. Set $\mathcal{U}_{\mu, F}^{*}=\left\{\beta \in \mathcal{P}_{X}: \beta \succcurlyeq \mathcal{U}\right.$, $\left.\mu\left(\bigcup_{B \in \beta_{F}} \partial B\right)=0\right\}$.

Claim. There exists $\beta=\left\{B_{1}, \ldots, B_{M}\right\} \in \mathcal{U}_{\mu, F}^{*}$ such that $H_{\mu}\left(\beta_{F} \mid \alpha_{F}\right)<\frac{\epsilon}{2}$.
Proof. Let $\delta_{1} \in\left(0, \frac{\delta}{2 M}\right)$. By the regularity of μ, there exists compact $C_{j} \subseteq A_{j}$ such that

$$
\begin{equation*}
\sum_{g \in F} g \mu\left(A_{j} \backslash C_{j}\right)<\frac{\delta_{1}}{M}, \quad j=1, \ldots, M \tag{3.10}
\end{equation*}
$$

For $j \in\{1, \ldots, M\}$, set $O_{j}=U_{j} \cap\left(X \backslash \bigcup_{i \neq j} C_{i}\right)$, then O_{j} is an open subset of X satisfying

$$
\begin{gather*}
A_{j} \subseteq O_{j} \subseteq U_{j} \quad \text { and } \\
\sum_{g \in F} g \mu\left(O_{j} \backslash A_{j}\right) \leqslant \sum_{i \neq j} \sum_{g \in F} g \mu\left(A_{i} \backslash C_{i}\right)<\delta_{1}, \quad \text { as } O_{j} \backslash A_{j} \subseteq \bigcup_{i \neq j} A_{i} \backslash C_{i} . \tag{3.11}
\end{gather*}
$$

Note that if $x \in X$ then there exist at most countably many $\gamma>0$ such that $\{y \in X: d(x, y)=\gamma\}$ has positive $g \mu$-measure for some $g \in F$. Moreover, as O_{1}, \ldots, O_{M} are open subsets of X and $\bigcup_{i=1}^{M} O_{i}=X$, it is not hard to obtain Borel subsets $C_{1}^{*}, \ldots, C_{M}^{*}$ such that $C_{i}^{*} \subseteq O_{i}, 1 \leqslant i \leqslant M$, $\bigcup_{i=1}^{M} C_{i}^{*}=X$ and $\sum_{i=1}^{M} \sum_{g \in F} g \mu\left(\partial C_{i}^{*}\right)=0$.

Set $B_{1}=C_{1}^{*}, B_{j}=C_{j}^{*} \backslash\left(\bigcup_{i=1}^{j-1} C_{i}^{*}\right), 2 \leqslant j \leqslant M$. Then $\beta \doteq\left\{B_{1}, \ldots, B_{M}\right\} \in \mathcal{P}_{X}$ and $\beta \succcurlyeq \mathcal{U}$. As $g^{-1}(\partial D)=\partial\left(g^{-1} D\right)$ for each $g \in F$ and $D \subseteq X$, by the construction of $C_{1}^{*}, \ldots, C_{M}^{*}$ it's easy to check that $\mu\left(\bigcup_{B \in \beta_{F}} \partial B\right)=0$ and so $\beta \in \mathcal{U}_{\mu, F}^{*}$. Note that if $1 \leqslant j \neq i \leqslant M$ then $B_{j} \cap C_{i} \subseteq$ $O_{j} \cap C_{i}=\emptyset$, which implies $C_{i} \subseteq B_{i} \subseteq O_{i}$ for all $1 \leqslant i \leqslant M$. By (3.10) and (3.11),

$$
\sum_{i=1}^{M} \sum_{g \in F} g \mu\left(A_{i} \Delta B_{i}\right) \leqslant \sum_{i=1}^{M} \sum_{g \in F}\left(g \mu\left(A_{i} \backslash C_{i}\right)+g \mu\left(O_{i} \backslash A_{i}\right)\right) \leqslant \sum_{i=1}^{M} 2 \delta_{1}<\delta
$$

Thus $H_{\mu}\left(\beta_{F} \mid \alpha_{F}\right)<\frac{\epsilon}{2}$ (by the selection of δ). This finishes the proof of the claim.

Now, note that $\beta \in \mathcal{P}_{X}$ satisfies $\beta \succcurlyeq \mathcal{U}$ and $\mu\left(\bigcup_{B \in \beta_{F}} \partial B\right)=0$, one has

$$
\begin{aligned}
\limsup _{\mu^{\prime} \rightarrow \mu: \mu^{\prime} \in \mathcal{M}(X)} \psi\left(\mu^{\prime}\right) & \leqslant \limsup _{\mu^{\prime} \rightarrow \mu, \mu^{\prime} \in \mathcal{M}(X)} H_{\mu^{\prime}}\left(\beta_{F}\right)=H_{\mu}\left(\beta_{F}\right) \\
& \leqslant H_{\mu}\left(\alpha_{F}\right)+H_{\mu}\left(\beta_{F} \mid \alpha_{F}\right) \leqslant \psi(\mu)+\epsilon \quad \text { (by Claim). }
\end{aligned}
$$

This establishes (3.9) and so completes the proof of the lemma.
Lemma 3.7. Let $\mu \in \mathcal{M}(X, G), M \in \mathbb{N}$ and $\epsilon>0$. Then there exists $\delta>0$ such that if $\mathcal{U}=$ $\left\{U_{1}, \ldots, U_{M}\right\} \in \mathcal{C}_{X}, \mathcal{V}=\left\{V_{1}, \ldots, V_{M}\right\} \in \mathcal{C}_{X}$ satisfy $\mu(\mathcal{U} \Delta \mathcal{V}) \doteq \sum_{m=1}^{M} \mu\left(U_{m} \Delta V_{m}\right)<\delta$ then $\left|h_{\mu}(G, \mathcal{U})-h_{\mu}(G, \mathcal{V})\right| \leqslant \epsilon$.

Proof. We follow the arguments in the proof of [21, Lemma 5]. Fix $M \in \mathbb{N}$ and $\epsilon>0$. Then there exists $\delta^{\prime}=\delta^{\prime}(M, \varepsilon)>0$ such that for M-sets partitions α, β of X, if $\mu(\alpha \Delta \beta)<\delta^{\prime}$ then $H_{\mu}(\beta \mid \alpha)<\epsilon$ (see for example [42, Lemma 4.15]). Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{M}\right\}$ and $\mathcal{V}=\left\{V_{1}, \ldots, V_{M}\right\}$ be any two M-sets covers of X with $\mu(\mathcal{U} \Delta \mathcal{V})<\frac{\delta^{\prime}}{M}=\delta$.

Claim. For every finite partition $\alpha \succcurlyeq \mathcal{U}$ there exists a finite partition $\beta \succcurlyeq \mathcal{V}$ with $H_{\mu}(\beta \mid \alpha)<\epsilon$.
Proof. Since $\alpha \succcurlyeq \mathcal{U}$, there exists a partition $\alpha^{\prime}=\left\{A_{1}, \ldots, A_{M}\right\}$ with $A_{i} \subseteq U_{i}, i=1, \ldots, M$ and $\alpha \succcurlyeq \alpha^{\prime}$, where A_{i} may be empty. Let

$$
\begin{aligned}
B_{1} & =V_{1} \backslash \bigcup_{k>1}\left(A_{k} \cap V_{k}\right), \\
B_{i} & =V_{i} \backslash\left(\bigcup_{k>i}\left(A_{k} \cap V_{k}\right) \cup \bigcup_{j<i} B_{j}\right), \quad i \in\{2, \ldots, M\} .
\end{aligned}
$$

Then $\beta=\left\{B_{1}, \ldots, B_{M}\right\} \in \mathcal{P}_{X}$ which satisfies $B_{m} \subseteq V_{m}$ and $A_{m} \cap V_{m} \subseteq B_{m}$ for $m \in\{1, \ldots, M\}$. It is clear that $A_{m} \backslash B_{m} \subseteq U_{m} \backslash V_{m}$ and

$$
\begin{aligned}
B_{m} \backslash A_{m} & =\left(X \backslash \bigcup_{k \neq m} B_{k}\right) \backslash A_{m} \\
& =\bigcup_{j \neq m} A_{j} \backslash \bigcup_{k \neq m} B_{k} \\
& \subseteq \bigcup_{k \neq m}\left(A_{k} \backslash B_{k}\right) \subseteq \bigcup_{k \neq m}\left(U_{k} \backslash V_{k}\right) .
\end{aligned}
$$

Hence for every $m \in\{1, \ldots, M\}, A_{m} \Delta B_{m} \subseteq \bigcup_{k=1}^{M}\left(U_{k} \Delta V_{k}\right)$ and $\mu\left(\alpha^{\prime} \Delta \beta\right) \leqslant M \cdot \mu(\mathcal{U} \Delta \mathcal{V})<\delta^{\prime}$. This implies that $H_{\mu}\left(\beta \mid \alpha^{\prime}\right)<\epsilon$. Moreover, $H_{\mu}(\beta \mid \alpha) \leqslant H_{\mu}\left(\beta \mid \alpha^{\prime}\right)<\epsilon$.

Fix $n \in \mathbb{N}$. For any $\alpha \in \mathcal{P}_{X}$ with $\alpha \succcurlyeq \mathcal{U}_{F_{n}}$, we have $g \alpha \succcurlyeq \mathcal{U}$ for $g \in F_{n}$. By the above Claim, there exists $\beta_{g} \in \mathcal{P}_{X}$ such that $\beta_{g} \succcurlyeq \mathcal{V}$ and $H_{\mu}\left(\beta_{g} \mid g \alpha\right)<\epsilon$, i.e., $H_{\mu}\left(g^{-1} \beta_{g} \mid \alpha\right)<\epsilon$. Let $\beta=$ $\bigvee_{g \in F_{n}} g^{-1} \beta_{g}$. Then $\beta \in \mathcal{P}_{X}$ with $\beta \succcurlyeq \mathcal{V}_{F_{n}}$. Now

$$
\begin{aligned}
H_{\mu}\left(\mathcal{V}_{F_{n}}\right) & \leqslant H_{\mu}(\beta) \leqslant H_{\mu}(\beta \vee \alpha)=H_{\mu}(\alpha)+H_{\mu}(\beta \mid \alpha) \\
& \leqslant H_{\mu}(\alpha)+\sum_{g \in F_{n}} H_{\mu}\left(g^{-1} \beta_{g} \mid \alpha\right)<H_{\mu}(\alpha)+n \epsilon
\end{aligned}
$$

Since this is true for any $\alpha \in \mathcal{P}_{X}$ with $\alpha \succcurlyeq \mathcal{U}_{F_{n}}$, we get $\frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{V}_{F_{n}}\right) \leqslant \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}}\right)+\epsilon$.
Exchanging the roles of \mathcal{U} and \mathcal{V} we get

$$
\frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}}\right) \leqslant \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{V}_{F_{n}}\right)+\epsilon .
$$

This shows $\frac{1}{\left|F_{n}\right|}\left|H_{\mu}\left(\mathcal{U}_{F_{n}}\right)-H_{\mu}\left(\mathcal{V}_{F_{n}}\right)\right| \leqslant \epsilon$. Letting $n \rightarrow+\infty$, one has $\mid h_{\mu}(G, \mathcal{U})-h_{\mu}(G$, $\mathcal{V}) \mid \leqslant \epsilon$.

Now we can prove the u.s.c. property of those two kinds of measure-theoretic entropy of open covers over $\mathcal{M}(X, G)$.

Proposition 3.8. Let $\mathcal{U} \in \mathcal{C}_{X}^{o}$. Then $h_{\{\cdot\}}(G, \mathcal{U}): \mathcal{M}(X, G) \rightarrow \mathbb{R}_{+}$is u.s.c. on $\mathcal{M}(X, G)$.
Proof. Note that

$$
\begin{aligned}
h_{\mu}(G, \mathcal{U}) & =\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} h_{\mu}(G, \alpha)=\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} \inf _{B \in F(G)} \frac{H_{\mu}\left(\alpha_{B}\right)}{|B|} \quad \text { (by Lemma 3.1(4)) } \\
& =\inf _{B \in F(G) \alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} \frac{H_{\mu}\left(\alpha_{B}\right)}{|B|} .
\end{aligned}
$$

Since $\mu \mapsto \inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} H_{\mu}\left(\alpha_{B}\right)$ is u.s.c. (see Lemma 3.6) and the infimum of any family of u.s.c. functions is again u.s.c., one has $h_{\{\cdot\}}(G, \mathcal{U}): \mathcal{M}(X, G) \rightarrow \mathbb{R}_{+}$is u.s.c. on $\mathcal{M}(X, G)$.

Proposition 3.9. Let $\mathcal{U} \in \mathcal{C}_{X}^{o}$. Then $h_{\{\cdot\}}^{-}(G, \mathcal{U}): \mathcal{M}(X, G) \rightarrow \mathbb{R}_{+}$is u.s.c. on $\mathcal{M}(X, G)$.
Proof. With no loss of generality we assume $e_{G} \in F_{1} \subseteq F_{2} \subseteq \cdots$ by Lemma 2.4. Let $\mu \in$ $\mathcal{M}(X, G)$ and $\epsilon \in\left(0, \frac{1}{4}\right)$. Then there exists $N \in \mathbb{N}$ with

$$
\begin{equation*}
\sup _{n \geqslant N} \frac{H_{\mu}\left(\mathcal{U}_{F_{n}}\right)}{\left|F_{n}\right|} \leqslant h_{\mu}^{-}(G, \mathcal{U})+\frac{\epsilon}{2} . \tag{3.12}
\end{equation*}
$$

By Lemma 2.6, there exist integers n_{1}, \ldots, n_{k} with $N \leqslant n_{1}<\cdots<n_{k}$ such that

$$
\begin{align*}
h_{v}^{-}(G, \mathcal{U}) & =\lim _{n \rightarrow+\infty} \frac{H_{v}\left(\mathcal{U}_{F_{n}}\right)}{\left|F_{n}\right|} \\
& \leqslant \max _{1 \leqslant i \leqslant k} \frac{H_{v}\left(\mathcal{U}_{F_{n_{i}}}\right)}{\left|F_{n_{i}}\right|}+\frac{\epsilon H_{v}(\mathcal{U})}{2 \log (N(\mathcal{U})+1)} \\
& \leqslant \max _{1 \leqslant i \leqslant k} \frac{H_{v}\left(\mathcal{U}_{F_{n_{i}}}\right)}{\left|F_{n_{i}}\right|}+\frac{\epsilon}{2} \quad \text { for each } v \in \mathcal{M}(X, G) . \tag{3.13}
\end{align*}
$$

Then we have

$$
\begin{align*}
\limsup _{\mu^{\prime} \rightarrow \mu, \mu^{\prime} \in \mathcal{M}(X, G)} h_{\mu^{\prime}}^{-}(G, \mathcal{U}) & \leqslant \frac{\epsilon}{2}+\limsup _{\mu^{\prime} \rightarrow \mu, \mu^{\prime} \in \mathcal{M}(X, G)} \max _{1 \leqslant i \leqslant k} \frac{H_{\mu^{\prime}}\left(\mathcal{U}_{F_{n_{i}}}\right)}{\left|F_{n_{i}}\right|} \quad \text { (using (3.13)) } \\
& =\frac{\epsilon}{2}+\max _{1 \leqslant i \leqslant k} \limsup _{\mu^{\prime} \rightarrow \mu, \mu^{\prime} \in \mathcal{M}(X, G)} \frac{H_{\mu^{\prime}}\left(\mathcal{U}_{F_{n_{i}}}\right)}{\left|F_{n_{i}}\right|} \\
& \leqslant \frac{\epsilon}{2}+\max _{1 \leqslant i \leqslant k} \frac{H_{\mu}\left(\mathcal{U}_{F_{n_{i}}}\right)}{\left|F_{n_{i}}\right|} \quad \text { (Lemma 3.6) } \\
& \leqslant \frac{\epsilon}{2}+\sup _{n \geqslant N} \frac{H_{\mu}\left(\mathcal{U}_{F_{n}}\right)}{\left|F_{n}\right|} \leqslant h_{\mu}^{-}(G, \mathcal{U})+\epsilon \quad \text { (using (3.12)). } \tag{3.14}
\end{align*}
$$

Thus, we claim the conclusion from the arbitrariness of $\mu \in \mathcal{M}(X, G)$ and $\epsilon \in\left(0, \frac{1}{4}\right)$ in (3.14).

3.2.5. Affinity of measure-theoretic entropy of covers

Let $\mu=a \nu+(1-a) \eta$, where $\nu, \eta \in \mathcal{M}(X, G)$ and $0<a<1$. Using the concavity of $\phi(t)=$ $-t \log t$ on [0,1] with $\phi(0)=0$ (fix it in the remainder of the paper), one has if $\beta \in \mathcal{P}_{X}$ and $F \in F(G)$ then $0 \leqslant H_{\mu}\left(\beta_{F}\right)-a H_{v}\left(\beta_{F}\right)-(1-a) H_{\eta}\left(\beta_{F}\right) \leqslant \phi(a)+\phi(1-a)$ (see for example the proof of [42, Theorem 8.1]) and so

$$
\begin{equation*}
h_{\mu}(G, \beta)=a h_{\nu}(G, \beta)+(1-a) h_{\eta}(G, \beta), \tag{3.15}
\end{equation*}
$$

i.e. the function $h_{\{\cdot\}}(G, \beta): \mathcal{M}(X, G) \rightarrow \mathbb{R}_{+}$is affine. In the following, we shall show the affinity of $h_{\{\cdot\}}(G, \mathcal{U})$ and $h_{\{\cdot\}}^{-}(G, \mathcal{U})$ on $\mathcal{M}(X, G)$ for each $\mathcal{U} \in \mathcal{C}_{X}$.

Let $\mu \in \mathcal{M}(X, G)$ and \mathcal{B}_{X}^{μ} be the completion of \mathcal{B}_{X} under μ. Then $\left(X, \mathcal{B}_{X}^{\mu}, \mu, G\right)$ is a Lebesgue system. If $\left\{\alpha_{i}\right\}_{i \in I}$ is a countable family in \mathcal{P}_{X}, the partition $\alpha=\bigvee_{i \in I} \alpha_{i} \doteq$ $\left\{\bigcap_{i \in I} A_{i}: A_{i} \in \alpha_{i}, i \in I\right\}$ is called a measurable partition. Note that the sets $A \in \mathcal{B}_{X}^{\mu}$, which are unions of atoms of α, form a sub- σ-algebra of \mathcal{B}_{X}^{μ}, which is denoted by $\widehat{\alpha}$ or α if there is no ambiguity. In fact, every sub- σ-algebra of \mathcal{B}_{X}^{μ} coincides with a σ-algebra constructed in this way in the sense of $\bmod \mu$ [37]. We consider the sub- σ-algebra $I_{\mu}=\left\{A \in \mathcal{B}_{X}^{\mu}: \mu(g A \Delta A)=0\right.$ for each $g \in G\}$. Clearly, I_{μ} is G-invariant since G is countable. Let α be the measurable partition of X with $\widehat{\alpha}=I_{\mu}(\bmod \mu)$. With no loss of generality we may require that α is G-invariant, i.e. $g \alpha=\alpha$ for any $g \in G$. Let $\mu=\int_{X} \mu_{x} d \mu(x)$ be the disintegration of μ over I_{μ}, where $\mu_{x} \in \mathcal{M}^{e}(X, G)$ and $\mu_{x}(\alpha(x))=1$ for μ-a.e. $x \in X$, here $\alpha(x)$ denotes the atom of α containing x. This disintegration is known as the ergodic decomposition of μ (see for example [17, Theorem 3.22]).

The disintegration is characterized by properties (3.16) and (3.17) below:

$$
\begin{gather*}
\text { for every } f \in L^{1}\left(X, \mathcal{B}_{X}, \mu\right), f \in L^{1}\left(X, \mathcal{B}_{X}, \mu_{x}\right) \text { for } \mu \text {-a.e. } x \in X, \\
\text { and the map } x \mapsto \int_{X} f(y) d \mu_{x}(y) \text { is in } L^{1}\left(X, I_{\mu}, \mu\right) ; \tag{3.16}
\end{gather*}
$$

$$
\begin{equation*}
\text { for every } f \in L^{1}\left(X, \mathcal{B}_{X}, \mu\right), \mathbb{E}_{\mu}\left(f \mid I_{\mu}\right)(x)=\int_{X} f d \mu_{x} \text { for } \mu \text {-a.e. } x \in X \text {. } \tag{3.17}
\end{equation*}
$$

Then for $f \in L^{1}\left(X, \mathcal{B}_{X}, \mu\right)$,

$$
\begin{equation*}
\int_{X}\left(\int_{X} f d \mu_{x}\right) d \mu(x)=\int_{X} f d \mu . \tag{3.18}
\end{equation*}
$$

Note that the disintegration exists uniquely in the sense that if $\mu=\int_{X} \mu_{x} d \mu(x)$ and $\mu=$ $\int_{X} \mu_{x}^{\prime} d \mu(x)$ are both the disintegrations of μ over I_{μ}, then $\mu_{x}=\mu_{x}^{\prime}$ for μ-a.e. $x \in X$. Moreover, there exists a G-invariant subset $X_{0} \subseteq X$ such that $\mu\left(X_{0}\right)=1$ and if for $x \in X_{0}$ we define $\Gamma_{x}=\left\{y \in X_{0}: \mu_{x}=\mu_{y}\right\}$ then $\Gamma_{x}=\alpha(x) \cap X_{0}$ and Γ_{x} is G-invariant.

Lemma 3.10. Let $\mu \in \mathcal{M}(X, G)$ with $\mu=\int_{X} \mu_{x} d \mu(x)$ the ergodic decomposition of μ and $\mathcal{V} \in \mathcal{C}_{X}$. Then $H_{\mu}\left(\mathcal{V} \mid I_{\mu}\right)=\int_{X} H_{\mu_{x}}(\mathcal{V}) d \mu(x)$.

Proof. Let $\mathcal{V}=\left\{V_{1}, \ldots, V_{n}\right\}$. For any $s=(s(1), \ldots, s(n)) \in\{0,1\}^{n}$, set $V_{s}=\bigcap_{i=1}^{n} V_{i}(s(i))$, where $V_{i}(0)=V_{i}$ and $V_{i}(1)=X \backslash V_{i}$. Let $\alpha=\left\{V_{s}: s \in\{0,1\}^{n}\right\}$. Then α is the Borel partition generated by \mathcal{V} and put $P(\mathcal{V})=\left\{\beta \in \mathcal{P}_{X}: \alpha \succcurlyeq \beta \succcurlyeq \mathcal{V}\right\}$, which is a finite family of partitions. It is well known that, for each $\theta \in \mathcal{M}(X)$ one has

$$
\begin{equation*}
H_{\theta}(\mathcal{V})=\min _{\beta \in P(\mathcal{V})} H_{\theta}(\beta), \tag{3.19}
\end{equation*}
$$

see for example the proof of [39, Proposition 6]. Now denote $P(\mathcal{V})=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ and put

$$
A_{i}=\left\{x \in X: H_{\mu_{x}}\left(\beta_{i}\right)=\min _{\beta \in P(\mathcal{V})} H_{\mu_{x}}(\beta)\right\}, \quad i \in\{1, \ldots, l\}
$$

Let $B_{1}=A_{1}, B_{2}=A_{2} \backslash B_{1}, \ldots, B_{l}=A_{l} \backslash \bigcup_{i=1}^{l-1} B_{i}$ and $B_{0}=X \backslash \bigcup_{i=1}^{l} A_{i}$. By (3.19), $\mu\left(B_{0}\right)=0$.

Set $\beta^{*}=\left\{B_{0} \cap \beta_{1}\right\} \cup\left\{B_{i} \cap \beta_{i}: i=1, \ldots, l\right\} \in \mathcal{P}_{X}(\bmod \mu)$. Then $\beta^{*} \succcurlyeq \mathcal{V}$. Clearly, for $i \in$ $\{1, \ldots, l\}$ and μ-a.e. $x \in B_{i}, H_{\mu_{x}}\left(\beta^{*}\right)=H_{\mu_{x}}\left(\beta_{i}\right)=\min _{\beta \in P(\mathcal{V})} H_{\mu_{x}}(\beta)=H_{\mu_{x}}(\mathcal{V})$ where the last equality follows from (3.19). Combining this fact with $\mu\left(B_{0}\right)=0$ one gets $H_{\mu_{x}}\left(\beta^{*}\right)=H_{\mu_{x}}(\mathcal{V})$ for μ-a.e. $x \in X$. This implies

$$
\begin{aligned}
H_{\mu}\left(\mathcal{V} \mid I_{\mu}\right) & \leqslant H_{\mu}\left(\beta^{*} \mid I_{\mu}\right)=\int_{X} H_{\mu_{x}}\left(\beta^{*}\right) d \mu(x) \quad(\operatorname{using}(3.17)) \\
& =\int_{X} H_{\mu_{x}}(\mathcal{V}) d \mu(x) \leqslant \inf _{\beta \in \mathcal{P}_{X}: \beta \succcurlyeq \mathcal{V}} \int_{X} H_{\mu_{x}}(\beta) d \mu(x) \\
& =\inf _{\beta \in \mathcal{P}_{X}: \beta \succcurlyeq \mathcal{V}} H_{\mu}\left(\beta \mid I_{\mu}\right) \\
& =H_{\mu}\left(\mathcal{V} \mid I_{\mu}\right) .
\end{aligned}
$$

Thus $H_{\mu}\left(\mathcal{V} \mid I_{\mu}\right)=\int_{X} H_{\mu_{x}}(\mathcal{V}) d \mu(x)$. This finishes the proof.

Then we have

Proposition 3.11. Let $\mathcal{U} \in \mathcal{C}_{X}$ and $\mu \in \mathcal{M}(X, G)$. If $e_{G} \in F_{1} \subseteq F_{2} \subseteq \cdots$ then

$$
h_{\mu}^{-}(G, \mathcal{U})=\lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}} \mid I_{\mu}\right) .
$$

Proof. It is easy to check that $F \in F(G) \mapsto H_{\mu}\left(\mathcal{U}_{F} \mid I_{\mu}\right)$ is a m.n.i.s.a. function, and so the sequence $\left\{\frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}} \mid I_{\mu}\right)\right\}_{n \in \mathbb{N}}$ converges, say it converges to $f_{\mathcal{U}}$ (see Lemma 2.4). Clearly $h_{\mu}^{-}(G, \mathcal{U}) \geqslant f_{\mathcal{U}}$.

Now we aim to prove $h_{\mu}^{-}(G, \mathcal{U}) \leqslant f \mathcal{U}$. Let $\epsilon \in\left(0, \frac{1}{4}\right)$ and $N \in \mathbb{N}$. By Proposition 2.3 there exist integers n_{1}, \ldots, n_{k} with $N \leqslant n_{1}<\cdots<n_{k}$ such that if n is large enough then $F_{n_{1}}, \ldots, F_{n_{k}}$ ϵ-quasi-tile the set F_{n} with tiling centers $C_{1}^{n}, \ldots, C_{k}^{n}$ and so

$$
\begin{equation*}
F_{n} \supseteq \bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n} \quad \text { and } \quad\left|\bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right| \geqslant \max \left\{(1-\epsilon)\left|F_{n}\right|,(1-\epsilon) \sum_{i=1}^{k}\left|C_{i}^{n}\right| \cdot\left|F_{n_{i}}\right|\right\} . \tag{3.20}
\end{equation*}
$$

Thus if $\alpha \in \mathcal{P}_{X}$ and n is large enough then

$$
\begin{align*}
H_{\mu}\left(\mathcal{U}_{F_{n}} \mid \alpha_{F_{n}}\right) & \leqslant H_{\mu}\left(\mathcal{U}_{F_{n} \backslash \bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}} \mid \alpha_{F_{n}}\right)+\sum_{i=1}^{k} H_{\mu}\left(\mathcal{U}_{F_{n_{i}}} C_{i}^{n} \mid \alpha_{F_{n}}\right) \\
& \leqslant\left|F_{n} \backslash \bigcup_{i=1}^{k} F_{n_{i}} C_{i}^{n}\right| \cdot \log N(\mathcal{U})+\sum_{i=1}^{k} H_{\mu}\left(\mathcal{U}_{F_{n_{i}}} C_{i}^{n} \mid \alpha_{F_{n_{i}} C_{i}^{n}}\right) . \tag{3.21}
\end{align*}
$$

This implies

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}} \mid \alpha_{F_{n}}\right) \\
& \quad \leqslant \epsilon \log N(\mathcal{U})+\limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \sum_{i=1}^{k} \sum_{g \in C_{i}^{n}} H_{\mu}\left(\mathcal{U}_{F_{n_{i}} g} \mid \alpha_{F_{n_{i}} g} \quad \quad \quad \quad\right. \text { using (3.20) and (3.21)) } \\
& \quad \leqslant \epsilon \log N(\mathcal{U})+\limsup _{n \rightarrow+\infty} \frac{\sum_{i=1}^{k}\left|F_{n_{i}}\right|\left|C_{i}^{n}\right|}{\left|F_{n}\right|} \max _{1 \leqslant i \leqslant k} \frac{1}{\left|F_{n_{i}}\right|} H_{\mu}\left(\mathcal{U}_{F_{n_{i}}} \mid \alpha_{F_{n_{i}}}\right) \\
& \leqslant \epsilon \log N(\mathcal{U})+\frac{1}{1-\epsilon} \max _{1 \leqslant i \leqslant k} \frac{1}{\left|F_{n_{i}}\right|} H_{\mu}\left(\mathcal{U}_{F_{n_{i}}} \mid \alpha_{F_{n_{i}}}\right) \quad(\text { using (3.20)). }
\end{aligned}
$$

Thus

$$
\begin{align*}
h_{\mu}^{-}(G, \mathcal{U}) & \leqslant \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|}\left(H_{\mu}\left(\mathcal{U}_{F_{n}} \mid \alpha_{F_{n}}\right)+H_{\mu}\left(\alpha_{F_{n}}\right)\right) \\
& \leqslant h_{\mu}(G, \alpha)+\epsilon \log N(\mathcal{U})+\frac{1}{1-\epsilon} \max _{1 \leqslant i \leqslant k} \frac{1}{\left|F_{n_{i}}\right|} H_{\mu}\left(\mathcal{U}_{F_{n_{i}}} \mid \alpha_{F_{n_{i}}}\right) . \tag{3.22}
\end{align*}
$$

Note that if $\alpha \in \mathcal{P}_{X}$ satisfies $\alpha \subseteq I_{\mu}$ then $h_{\mu}(G, \alpha)=0$. In particular, in (3.22) we replace α by a sequence $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}}$ in \mathcal{P}_{X} with $\alpha_{i} \nearrow I_{\mu}$, then

$$
h_{\mu}^{-}(G, \mathcal{U}) \leqslant \epsilon \log N(\mathcal{U})+\frac{1}{1-\epsilon} \sup _{m \geqslant N} \frac{1}{\left|F_{m}\right|} H_{\mu}\left(\mathcal{U}_{F_{m}} \mid I_{\mu}\right) .
$$

Since the above inequality is true for any $\epsilon \in\left(0, \frac{1}{4}\right)$ and $N \in \mathbb{N}$, one has $h_{\mu}^{-}(G, \mathcal{U}) \leqslant f_{\mathcal{U}}$.
Lemma 3.12. Let $\mathcal{U} \in \mathcal{C}_{X}$ and $\mu \in \mathcal{M}(X, G)$ with $\mu=\int_{X} \mu_{x} d \mu(x)$ the ergodic decomposition of μ. Then

$$
h_{\mu}^{-}(G, \mathcal{U})=\int_{X} h_{\mu_{x}}^{-}(G, \mathcal{U}) d \mu(x) \quad \text { and } \quad h_{\mu}(G, \mathcal{U})=\int_{X} h_{\mu_{x}}(G, \mathcal{U}) d \mu(x)
$$

Proof. With no loss of generality we assume $e_{G} \in F_{1} \subseteq F_{2} \subseteq \cdots$ (by Lemma 2.4). Then we have

$$
\begin{aligned}
h_{\mu}^{-}(G, \mathcal{U}) & =\lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu}\left(\mathcal{U}_{F_{n}} \mid I_{\mu}\right) \quad \text { (by Proposition 3.11) } \\
& =\lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \int_{X} H_{\mu_{x}}\left(\mathcal{U}_{F_{n}}\right) d \mu(x) \quad \text { (by Lemma 3.10) } \\
& =\int_{X} \lim _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} H_{\mu_{x}}\left(\mathcal{U}_{F_{n}}\right) d \mu(x) \quad \text { (by Dominant Convergence Theorem). }
\end{aligned}
$$

That is, $h_{\mu}^{-}(G, \mathcal{U})=\int_{X} h_{\mu_{x}}^{-}(G, \mathcal{U}) d \mu(x)$. In particular, if $\alpha \in \mathcal{P}_{X}$ then

$$
\begin{equation*}
h_{\mu}(G, \alpha)=\int_{X} h_{\mu_{x}}(G, \alpha) d \mu(x) . \tag{3.23}
\end{equation*}
$$

Next we follow the idea of the proof of [23, Lemma 4.8] to prove $h_{\mu}(G, \mathcal{U})=$ $\int_{X} h_{\mu_{x}}(G, \mathcal{U}) d \mu(x)$. Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{M}\right\}$ and put $\mathcal{U}^{*}=\left\{\alpha=\left\{A_{1}, \ldots, A_{M}\right\} \in \mathcal{P}_{X}: A_{m} \subseteq\right.$ $\left.U_{m}, m=1, \ldots, M\right\}$. As (X, \mathcal{B}_{X}) is a standard Borel space, there exists a countable algebra $\mathcal{A} \subseteq \mathcal{B}_{X}$ such that \mathcal{B}_{X} is the σ-algebra generated by \mathcal{A}. It is well known that if $v \in \mathcal{M}(X)$ then

$$
\begin{equation*}
\mathcal{B}_{X}=\left\{A \in \mathcal{B}_{X}: \forall \epsilon>0, \exists B \in \mathcal{A} \text { such that } v(A \Delta B)<\epsilon\right\} . \tag{3.24}
\end{equation*}
$$

Take \mathcal{C} to be the countable algebra generated by \mathcal{A} and $\left\{U_{1}, \ldots, U_{M}\right\}$, then $\mathcal{F}=\left\{P \in \mathcal{U}^{*}\right.$: $P \subseteq \mathcal{C}\}$ is a countable set and for each $\alpha \in \mathcal{U}^{*}, \epsilon>0$ and $v \in \mathcal{M}(X)$ there exists $\beta \in \mathcal{F}$ such that $\nu(\alpha \Delta \beta)<\epsilon$ by (3.24), i.e. \mathcal{F} is $L^{1}\left(X, \mathcal{B}_{X}, v\right)$-dense in \mathcal{U}^{*}. In particular, say $\mathcal{F}=\left\{\alpha_{k}: k \in \mathbb{N}\right\}$ (denote $\alpha_{k}=\left\{A_{1}^{k}, \ldots, A_{M}^{k}\right\}$ for each $k \in \mathbb{N}$), if $v \in \mathcal{M}(X, G)$ then

$$
\begin{equation*}
h_{v}(G, \mathcal{U})=\inf _{\alpha \in \mathcal{U}^{*}} h_{v}(G, \alpha)=\inf _{k \in \mathbb{N}} h_{\nu}\left(G, \alpha_{k}\right) \tag{3.25}
\end{equation*}
$$

First, for one inequality one has

$$
\begin{aligned}
h_{\mu}(G, \mathcal{U}) & =\inf _{k \in \mathbb{N}} h_{\mu}\left(G, \alpha_{k}\right)=\inf _{k \in \mathbb{N}} \int_{X} h_{\mu_{x}}\left(G, \alpha_{k}\right) d \mu(x) \quad(\text { by }(3.23)) \\
& \geqslant \int_{X} \inf _{k \in \mathbb{N}} h_{\mu_{x}}\left(G, \alpha_{k}\right) d \mu(x)=\int_{X} h_{\mu_{x}}(G, \mathcal{U}) d \mu(x) \quad(\text { by }(3.25)) .
\end{aligned}
$$

For the other inequality, let $\epsilon>0$. For each $n \in \mathbb{N}$ define $B_{n}^{\epsilon}=\left\{x \in X: h_{\mu_{x}}\left(G, \alpha_{n}\right)<\right.$ $\left.h_{\mu_{x}}(G, \mathcal{U})+\epsilon\right\}$. Then B_{n}^{ϵ} is G-invariant and $\mu\left(\bigcup_{n \in \mathbb{N}} B_{n}^{\epsilon}\right)=1$ by (3.25), and so there exists a measurable partition $\left\{X_{n}: n \in \mathbb{N}\right\}$ of X with $X_{n} \in I_{\mu}$ and $\mu\left(X_{n}\right)>0$, and a sequence $\left\{\alpha_{k_{n}}\right\}_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$ and μ-a.e. $x \in X_{n}$ one has $h_{\mu_{x}}\left(G, \alpha_{k_{n}}\right)<h_{\mu_{x}}(G, \mathcal{U})+\epsilon$. For every $n \in \mathbb{N}$ we define $\mu_{n}(\cdot)=\frac{1}{\mu\left(X_{n}\right)} \int_{X} \mu_{x}\left(\cdot \cap X_{n}\right) d \mu(x) \in \mathcal{M}(X, G)$. We deduce

$$
\begin{align*}
h_{\mu_{n}}\left(G, \alpha_{k_{n}}\right) & =\frac{1}{\mu\left(X_{n}\right)} \int_{X_{n}} h_{\mu_{x}}\left(G, \alpha_{k_{n}}\right) d \mu(x) \tag{3.23}\\
& \leqslant \frac{1}{\mu\left(X_{n}\right)} \int_{X_{n}} h_{\mu_{x}}(G, \mathcal{U}) d \mu(x)+\epsilon
\end{align*}
$$

Note that, by definition, for every $n \in \mathbb{N}, \mu_{n}\left(X_{n}\right)=1$ and $\mu_{n}\left(X_{k}\right)=0$ if $k \neq n$. For $m \in$ $\{1, \ldots, M\}$ define $A_{m}=\bigcup_{n \in \mathbb{N}}\left(X_{n} \cap A_{m}^{k_{n}}\right)$, then $\alpha=\left\{A_{1}, \ldots, A_{M}\right\} \in \mathcal{U}^{*}$. We get,

$$
\begin{aligned}
h_{\mu}(G, \mathcal{U}) & \leqslant h_{\mu}(G, \alpha)=\sum_{n \in \mathbb{N}} \mu\left(X_{n}\right) h_{\mu_{n}}(G, \alpha) \quad(\text { by }(3.23)) \\
& =\sum_{n \in \mathbb{N}} \mu\left(X_{n}\right) h_{\mu_{n}}\left(G, \alpha_{k_{n}}\right) \leqslant \int_{X} h_{\mu_{x}}(G, \mathcal{U}) d \mu(x)+\epsilon .
\end{aligned}
$$

Letting $\epsilon \rightarrow 0+$ we conclude $h_{\mu}(G, \mathcal{U}) \leqslant \int_{X} h_{\mu_{x}}(G, \mathcal{U}) d \mu(x)$ and the desired equality holds.

Denote by $C(X ; \mathbb{R})$ the Banach space of the set of all continuous real-valued functions on X equipped with the maximal norm $\|\cdot\|$. Note that the Banach space $C(X ; \mathbb{R})$ is separable, let $\left\{f_{n}: n \in \mathbb{N}\right\} \subseteq C(X ; \mathbb{R}) \backslash\{0\}$ be a countable dense subset, where 0 is the constant 0 function on X, then a compatible metric on $\mathcal{M}(X)$ is given by

$$
\rho(\mu, \nu)=\sum_{n \in \mathbb{N}} \frac{\left|\int_{X} f_{n} d \mu-\int_{X} f_{n} d \nu\right|}{2^{n}\left\|f_{n}\right\|}, \quad \text { for each } \mu, \nu \in \mathcal{M}(X) .
$$

Let $\mu \in \mathcal{M}(X, G)$ with $\mu=\int_{X} \mu_{x} d \mu(x)$ the ergodic decomposition of μ. Then there exists a G-invariant subset $X_{0} \subseteq X$ with $\mu\left(X_{0}\right)=1$ such that the map $\Phi: X_{0} \rightarrow \mathcal{M}^{e}(X, G)$ with $\Phi(x)=\mu_{x}$ is well defined. We extend Φ to the whole space X such that $\Phi(x) \in \mathcal{M}^{e}(X, G)$ for each $x \in X$. For any $g_{i} \in C(X ; \mathbb{R}), \mu_{i} \in \mathcal{M}(X, G)$ and $\epsilon_{i}>0, i=1, \ldots, k$, note that for any $f \in C(X ; \mathbb{R})$, the function $x \in X_{0} \mapsto \int_{X} f d \mu_{x}$ is an element of $L^{1}\left(X, I_{\mu}, \mu\right)$, we
have $\Phi^{-1}\left(\bigcap_{i=1}^{k}\left\{v \in \mathcal{M}(X, G):\left|\int_{X} g_{i} d v-\int_{X} g_{i} d \mu_{i}\right|<\epsilon_{i}\right\}\right) \in I_{\mu}$. Since all the sets having the form of $\bigcap_{i=1}^{k}\left\{\nu \in \mathcal{M}(X, G):\left|\int_{X} g_{i} d v-\int_{X} g_{i} d \mu_{i}\right|<\epsilon_{i}\right\}$ form a topological base of $\mathcal{M}(X, G)$, the map $\Phi:\left(X, I_{\mu}\right) \rightarrow\left(\mathcal{M}(X, G), \mathcal{B}_{\mathcal{M}(X, G)}\right)$ is measurable, i.e. $\Phi^{-1}(A) \in I_{\mu}$ for any $A \in \mathcal{B}_{\mathcal{M}(X, G)}$. Now we define $m \in \mathcal{M}(\mathcal{M}(X, G))$ as following: $m(A)=\mu\left(\Phi^{-1}(A)\right)$ for any $A \in \mathcal{B}_{\mathcal{M}(X, G)}$. Then if g is a bounded Borel function on $\mathcal{M}(X, G)$ then $g \circ \Phi \in L^{1}\left(X, I_{\mu}, \mu\right)$ and

$$
\begin{equation*}
\int_{X} g \circ \Phi(x) d \mu(x)=\int_{\mathcal{M}(X, G)} g(\theta) d m(\theta) \tag{3.26}
\end{equation*}
$$

Now if $f \in C(X ; \mathbb{R})$, let $L_{f}: \theta \in \mathcal{M}(X, G) \mapsto \int_{X} f d \theta$, then L_{f} is a continuous function, and so

$$
\int_{X}\left(\int_{X} f d \mu_{x}\right) d \mu(x)=\int_{X} L_{f} \circ \Phi(x) d \mu(x)=\int_{\mathcal{M}(X, G)} L_{f}(\theta) d m(\theta) \quad(\operatorname{using}(3.26)),
$$

moreover,

$$
\begin{equation*}
\int_{X} f(x) d \mu(x)=\int_{\mathcal{M}(X, G)}\left(\int_{X} f(x) d \theta(x)\right) d m(\theta) \quad \text { for any } f \in C(X ; \mathbb{R}) \quad(\text { using }(3.18)) \text {. } \tag{3.27}
\end{equation*}
$$

Note that $m\left(\mathcal{M}^{e}(X, G)\right) \geqslant \mu\left(X_{0}\right)=1, m$ can be viewed as a Borel probability measure on $\mathcal{M}^{e}(X, G)$. So (3.27) can also be written as

$$
\begin{equation*}
\int_{X} f(x) d \mu(x)=\int_{\mathcal{M}^{e}(X, G)}\left(\int_{X} f(x) d \theta(x)\right) d m(\theta) \quad \text { for any } f \in C(X ; \mathbb{R}) \text {, } \tag{3.28}
\end{equation*}
$$

which is denoted by $\mu=\int_{\mathcal{M}^{e}(X, G)} \theta d m(\theta)$ (also called the ergodic decomposition of μ). Finally, it is not hard to check that if m^{\prime} is another Borel probability measure on $\mathcal{M}(X, G)$ satisfying $m^{\prime}\left(\mathcal{M}^{e}(X, G)\right)=1$ and (3.28) then $m^{\prime}=m$. That is, for any given $\mu \in \mathcal{M}(X, G)$ there exists uniquely a Borel probability measure m^{\prime} on $\mathcal{M}(X, G)$ with $m^{\prime}\left(\mathcal{M}^{e}(X, G)\right)=1$ satisfying (3.28).

Theorem 3.13. Let $\mathcal{U} \in \mathcal{C}_{X}$. Then the function $\eta \in \mathcal{M}(X, G) \mapsto h_{\eta}(G, \mathcal{U})$ and the function $\eta \in$ $\mathcal{M}(X, G) \mapsto h_{\eta}^{-}(G, \mathcal{U})$ are both bounded affine Borel functions on $\mathcal{M}(X, G)$. Moreover, if we let $\mu \in \mathcal{M}(X, G)$ with $\mu=\int_{\mathcal{M}^{e}(X, G)} \theta d m(\theta)$ the ergodic decomposition of μ, then

$$
\begin{align*}
& h_{\mu}(G, \mathcal{U})=\int_{\mathcal{M}^{e}(X, G)} h_{\theta}(G, \mathcal{U}) d m(\theta) \quad \text { and } \\
& h_{\mu}^{-}(G, \mathcal{U})=\int_{\mathcal{M}^{e}(X, G)} h_{\theta}^{-}(G, \mathcal{U}) d m(\theta) \tag{3.29}
\end{align*}
$$

Proof. First we aim to establish (3.29). Similar to the proof of Lemma 3.12, there exists $\left\{\alpha_{k}\right\}_{k \in \mathbb{N}} \subseteq \mathcal{P}_{X}$ such that $\alpha_{k} \succcurlyeq \mathcal{U}$ for each $k \in \mathbb{N}$ and $H_{\eta}(\mathcal{U})=\inf _{k \in \mathbb{N}} H_{\eta}\left(\alpha_{k}\right), h_{\eta}(G, \mathcal{U})=$ $\inf _{k \in \mathbb{N}} h_{\eta}\left(G, \alpha_{k}\right)$ for each $\eta \in \mathcal{M}(X, G)$. Note that, for any $A \in \mathcal{B}_{X}$, the function $\eta \in$ $\mathcal{M}(X, G) \mapsto \eta(A)$ is Borel measurable and hence if $\alpha \in \mathcal{P}_{X}$ then the function $\eta \in \mathcal{M}(X, G) \mapsto$ $H_{\eta}(\alpha)$ and the function $\eta \in \mathcal{M}(X, G) \mapsto h_{\eta}(G, \alpha)$ are both bounded Borel functions. Moreover, the function $\eta \in \mathcal{M}(X, G) \mapsto H_{\eta}(\mathcal{U})$ is a bounded Borel function. Thus, the function $\eta \in \mathcal{M}(X, G) \mapsto h_{\eta}(G, \mathcal{U})$ and the function $\eta \in \mathcal{M}(X, G) \mapsto h_{\eta}^{-}(G, \mathcal{U})$ are both bounded Borel functions. In particular, (3.29) follows directly from Lemma 3.12 and (3.26).

Now let $\mu_{1}, \mu_{2} \in \mathcal{M}(X, G)$ and $\lambda \in(0,1)$. For $i=1,2$, let $\mu_{i}=\int_{\mathcal{M}^{e}(X, T)} \theta d m_{i}(\theta)$ be the ergodic decomposition of μ_{i}, where m_{i} is a Borel probability measure on $\mathcal{M}^{e}(X, G)$. Consider $\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}$ and $m=\lambda m_{1}+(1-\lambda) m_{2}$. Then m is a Borel probability measure on $\mathcal{M}^{e}(X, G)$ and $\mu=\int_{\mathcal{M}^{e}(X, G)} \theta d m(\theta)$ is the ergodic decomposition of μ. By (3.29), we have

$$
\begin{aligned}
h_{\mu}(G, \mathcal{U}) & =\int_{\mathcal{M}^{e}(X, G)} h_{\theta}(G, \mathcal{U}) d m(\theta) \\
& =\lambda \int_{\mathcal{M}^{e}(X, G)} h_{\theta}(G, \mathcal{U}) d m_{1}(\theta)+(1-\lambda) \int_{\mathcal{M}^{e}(X, G)} h_{\theta}(G, \mathcal{U}) d m_{2}(\theta) \\
& =\lambda h_{\mu_{1}}(G, \mathcal{U})+(1-\lambda) h_{\mu_{2}}(G, \mathcal{U}) .
\end{aligned}
$$

This shows the affinity of $h_{\{\cdot\}}(G, \mathcal{U})$. We can obtain similarly the affinity of $h_{\{\cdot\}}^{-}(G, \mathcal{U})$.

4. The equivalence of measure-theoretic entropy of covers

In the section, following arguments of Danilenko in [7], we will develop an orbital approach to local entropy theory for actions of an amenable group. Then combining it with the equivalence of measure-theoretic entropy of covers in the case of $G=\mathbb{Z}$, we will establish the equivalence of those two kinds of measure-theoretic entropy of covers for a general G.

4.1. Backgrounds of orbital theory

Let $\left(X, \mathcal{B}_{X}, \mu\right)$ be a Lebesgue space. Denote by $\operatorname{Aut}(X, \mu)$ the group of all μ-measure preserving invertible transformations of $\left(X, \mathcal{B}_{X}, \mu\right)$, which is endowed with the weak topology, i.e. the weakest topology which makes continuous the following unitary representation: $\operatorname{Aut}(X, \mu) \ni$ $\gamma \mapsto U_{\gamma} \in \mathcal{U}\left(L^{2}(X, \mu)\right)$ with $U_{\gamma} f=f \circ \gamma^{-1}$, where the unitary group $\mathcal{U}\left(L^{2}(X, \mu)\right)$ is the set of all unitary operators on $L^{2}(X, \mu)$ endowed with the strong operator topology. Let a Borel subset $\mathcal{R} \subseteq X \times X$ be an equivalence relation on X. For each $x \in X$, we denote $\mathcal{R}(x)=\{y \in X:(x, y) \in \mathcal{R}\}$. Following [14], \mathcal{R} is called measure preserving if it is generated by some countable sub-group $G \subseteq \operatorname{Aut}(X, \mu)$, in general, this generating sub-group is highly non-unique; \mathcal{R} is ergodic if A belongs to the trivial sub- σ-algebra of \mathcal{B}_{X} when $A \in \mathcal{B}_{X}$ is \mathcal{R} invariant (i.e. $A=\bigcup_{x \in A} \mathcal{R}(x)$); \mathcal{R} is discrete if $\# \mathcal{R}(x) \leqslant \# \mathbb{Z}$ for μ-a.e. $x \in X ; \mathcal{R}$ is of type I if $\# \mathcal{R}(x)<+\infty$ for μ-a.e. $x \in X$, equivalently, there is a subset $B \in \mathcal{B}_{X}$ with $\#(B \cap \mathcal{R}(x))=1$ for μ-a.e. $x \in X$, such a B is called an \mathcal{R}-fundamental domain; \mathcal{R} is countable if $\# \mathcal{R}(x)=+\infty$ for μ-a.e. $x \in X$, observe that if \mathcal{R} is measure preserving then it is countable iff it is conservative, i.e.
$\mathcal{R} \cap(B \times B) \backslash \Delta_{2}(X) \neq \emptyset$ for each $B \in \mathcal{B}_{X}$ satisfying $\mu(B)>0$, where $\Delta_{2}(X)=\{(x, x): x \in X\} ;$ \mathcal{R} is hyperfinite if there exists a sequence $\mathcal{R}_{1} \subseteq \mathcal{R}_{2} \subseteq \cdots$ of type I sub-relations of \mathcal{R} such that $\bigcup_{n \in \mathbb{N}} \mathcal{R}_{n}=\mathcal{R}$, the sequence $\left\{\mathcal{R}_{n}\right\}_{n \in \mathbb{N}}$ is called a filtration of \mathcal{R}. Note that a measure preserving discrete equivalence relation is hyperfinite iff it is generated by a single invertible transformation [12], the orbit equivalence relation of a measure preserving action of a countable discrete amenable group is hyperfinite [6,46], any two ergodic hyperfinite measure preserving countable equivalence relations are isomorphic in the natural sense (i.e. there exists an isomorphism between the Lebesgue spaces which intertwines the corresponding equivalent classes) [12]. Everywhere below \mathcal{R} is a measure preserving discrete equivalence relation on a Lebesgue space (X, \mathcal{B}_{X}, μ).

The full group $[\mathcal{R}]$ of \mathcal{R} and its normalizer $N[\mathcal{R}]$ are defined, respectively, by

$$
\begin{aligned}
{[\mathcal{R}] } & =\{\gamma \in \operatorname{Aut}(X, \mu):(x, \gamma x) \in \mathcal{R} \text { for } \mu \text {-a.e. } x \in X\}, \\
N[\mathcal{R}] & =\{\theta \in \operatorname{Aut}(X, \mu): \theta \mathcal{R}(x)=\mathcal{R}(\theta x) \text { for } \mu \text {-a.e. } x \in X\} .
\end{aligned}
$$

Let A be a Polish group. A Borel map $\phi: \mathcal{R} \rightarrow A$ is called a cocycle if

$$
\phi(x, z)=\phi(x, y) \phi(y, z) \quad \text { for all }(x, y),(y, z) \in \mathcal{R}
$$

Letting $\theta \in N[\mathcal{R}]$, we define a cocycle $\phi \circ \theta$ by setting $\phi \circ \theta(x, y)=\phi(\theta x, \theta y)$ for all $(x, y) \in \mathcal{R}$. Let $\left(Y, \mathcal{B}_{Y}, \nu\right)$ be another Lebesgue space and A be embedded continuously into $\operatorname{Aut}(Y, v)$. For each cocycle $\phi: \mathcal{R} \rightarrow A$, we associate a measure preserving discrete equivalence relation $\mathcal{R}(\phi)$ on $\left(X \times Y, \mathcal{B}_{X} \times \mathcal{B}_{Y}, \mu \times \nu\right)$ by setting $(x, y) \sim_{\mathcal{R}(\phi)}\left(x^{\prime}, y^{\prime}\right)$ if $\left(x, x^{\prime}\right) \in \mathcal{R}$ and $y^{\prime}=\phi\left(x^{\prime}, x\right) y$. Then a one-to-one group homomorphism [$\left.\mathcal{R}\right] \ni \gamma \mapsto \gamma_{\phi} \in\left[\mathcal{R}_{\phi}\right]$ is well defined via the formula

$$
\gamma_{\phi}(x, y)=(\gamma x, \phi(\gamma x, x) y) \quad \text { for each }(x, y) \in X \times Y .
$$

The transformation γ_{ϕ} is called the ϕ-skew product extension of γ, and the equivalence relation $\mathcal{R}(\phi)$ is called the ϕ-skew product extension of \mathcal{R}.

4.2. Local entropy for a cocycle of a discrete measure preserving equivalence relation

Denote by $I(\mathcal{R})$ the set of all type I sub-relations of \mathcal{R}. Let $\epsilon>0$ and $\mathcal{T}, \mathcal{S} \in I(\mathcal{R})$. We write $\mathcal{T} \subseteq_{\epsilon} \mathcal{S}$ if there is $A \in \mathcal{B}_{X}$ such that $\mu(A)>1-\epsilon$ and

$$
\#\{y \in \mathcal{S}(x): \mathcal{T}(y) \subseteq \mathcal{S}(x)\}>(1-\epsilon) \# \mathcal{S}(x) \quad \text { for each } x \in A
$$

Replacing, if necessary, A by $\bigcup_{x \in A} \mathcal{S}(x)$ we may (and so shall) assume that A is \mathcal{S}-invariant. Let $A_{0}=\{x \in A: \mathcal{T}(x) \subseteq \mathcal{S}(x)\}$. The following two lemmas are proved in [7].

Lemma 4.1. A_{0} is \mathcal{T}-invariant, $\mu\left(A_{0}\right)>1-2 \epsilon$ and $\#\left(\mathcal{S}(x) \cap A_{0}\right)>(1-\epsilon) \# \mathcal{S}(x)$ for each $x \in A_{0}$.

Lemma 4.2. Let $\epsilon>0$ and \mathcal{R} be hyperfinite with $\left\{\mathcal{R}_{n}\right\}_{n \in \mathbb{N}}$ a filtration of \mathcal{R}.

1. If $\Gamma \subseteq[\mathcal{R}]$ is a countable subset satisfying $\#(\Gamma x)<+\infty$ for μ-a.e. $x \in X$ then for each sufficiently large n there is an \mathcal{R}_{n}-invariant subset A_{n} such that $\mu\left(A_{n}\right)>1-\epsilon$ and

$$
\#\left\{y \in \mathcal{R}_{n}(x): \Gamma y \subseteq \mathcal{R}_{n}(x)\right\}>(1-\epsilon) \# \mathcal{R}_{n}(x) \quad \text { for each } x \in A_{n} .
$$

2. If $\mathcal{S} \in I(\mathcal{R})$ then $\mathcal{S} \subseteq_{\epsilon} \mathcal{R}_{n}$ if n is large enough.

Let $\left(Y, \mathcal{B}_{Y}, v\right)$ be a Lebesgue space and $\phi: \mathcal{R} \rightarrow \operatorname{Aut}(Y, v)$ a cocycle. For $\mathcal{U} \in \mathcal{C}_{X \times Y}$, we consider \mathcal{U} as a measurable field $\left\{\mathcal{U}_{x}\right\}_{x \in X} \subseteq \mathcal{C}_{Y}$, where $\{x\} \times \mathcal{U}_{x}=\mathcal{U} \cap(\{x\} \times Y)$.

Definition 4.3. For $\mathcal{U} \in \mathcal{C}_{X \times Y}$, we define

$$
\begin{aligned}
& h_{\nu}^{-}(\mathcal{S}, \phi, \mathcal{U})=\int_{X} \frac{1}{\# \mathcal{S}(x)} H_{\nu}\left(\bigvee_{y \in \mathcal{S}(x)} \phi(x, y) \mathcal{U}_{y}\right) d \mu(x) \quad \text { and } \\
& h_{\nu}(\mathcal{S}, \phi, \mathcal{U})=\inf _{\alpha \in \mathcal{P}_{X \times Y}: \alpha \succcurlyeq \mathcal{U}} h_{\nu}^{-}(\mathcal{S}, \phi, \alpha)
\end{aligned}
$$

Then we define the ν^{-}-entropy $h_{v}^{-}(\phi, \mathcal{U})$ and the v-entropy $h_{v}(\phi, \mathcal{U})$ of (ϕ, \mathcal{U}), respectively, by

$$
h_{v}^{-}(\phi, \mathcal{U})=\inf _{\mathcal{S} \in I(\mathcal{R})} h_{\nu}^{-}(\mathcal{S}, \phi, \mathcal{U}) \quad \text { and } \quad h_{\nu}(\phi, \mathcal{U})=\inf _{\mathcal{S} \in I(\mathcal{R})} h_{\nu}(\mathcal{S}, \phi, \mathcal{U}) .
$$

It is clear that if $\beta \in \mathcal{P}_{X \times Y}$ and $\mathcal{U} \in \mathcal{C}_{X \times Y}$ then $h_{\nu}(\mathcal{S}, \phi, \beta)=h_{\nu}^{-}(\mathcal{S}, \phi, \beta), h_{\nu}(\phi, \beta)=$ $h_{\nu}^{-}(\phi, \beta)$ and $h_{\nu}(\phi, \mathcal{U})=\inf _{\alpha \in \mathcal{P}_{X \times Y}: \alpha \succcurlyeq \mathcal{U}} h_{\nu}^{-}(\phi, \alpha)$. Moreover, if $\mathcal{U}, \mathcal{V} \in \mathcal{C}_{X \times Y}$ satisfy $\mathcal{U} \succcurlyeq \mathcal{V}$ then $h_{\nu}(\mathcal{S}, \phi, \mathcal{U}) \geqslant h_{\nu}(\mathcal{S}, \phi, \mathcal{V})$ and $h_{v}^{-}(\mathcal{S}, \phi, \mathcal{U}) \geqslant h_{v}^{-}(\mathcal{S}, \phi, \mathcal{V})$. It's not hard to obtain

Proposition 4.4. Let $\left(Z, \mathcal{B}_{Z}, \kappa\right)$ be a Lebesgue space, $\mathcal{S} \in I(\mathcal{R}), \beta: \mathcal{S} \rightarrow \operatorname{Aut}(Z, \kappa)$ a cocycle and $\sigma: Z \times X \rightarrow X \times Z,(z, x) \mapsto(x, z)$ the flip.

1. Let $\alpha^{\prime}: \sigma^{-1} \mathcal{S}(\beta) \sigma \rightarrow \operatorname{Aut}(Y, v)$ and $\alpha: \mathcal{S} \rightarrow \operatorname{Aut}(Y, v)$ be cocycles satisfying $\alpha^{\prime}((z, x)$, $\left.\left(z^{\prime}, x^{\prime}\right)\right)=\alpha\left(x, x^{\prime}\right)$ when $\left((z, x),\left(z^{\prime}, x^{\prime}\right)\right) \in \sigma^{-1} \mathcal{S}(\beta) \sigma$. Then $h_{v}^{-}\left(\sigma^{-1} \mathcal{S}(\beta) \sigma, \alpha^{\prime}, Z \times \mathcal{U}\right)=$ $h_{\nu}^{-}(\mathcal{S}, \alpha, \mathcal{U})$ for any $\mathcal{U} \in \mathcal{C}_{X \times Y}$.
2. Let $\alpha^{\prime \prime}: \mathcal{S}(\beta) \rightarrow \operatorname{Aut}(Y, v)$ and $\alpha: \mathcal{S} \rightarrow \operatorname{Aut}(Y, v)$ be cocycles satisfying $\alpha^{\prime \prime}((x, z)$, $\left.\left(x^{\prime \prime}, z^{\prime \prime}\right)\right)=\alpha\left(x, x^{\prime \prime}\right)$ when $\left((x, z),\left(x^{\prime \prime}, z^{\prime \prime}\right)\right) \in \mathcal{S}(\beta)$. Then if $\mathcal{U}^{\prime \prime} \in \mathcal{C}_{X \times Z \times Y}$ and $\mathcal{U} \in \mathcal{C}_{X \times Y}$ satisfies $\mathcal{U}_{(x, z)}^{\prime \prime}=\mathcal{U}_{x}$ for each $(x, z) \in X \times Z$ then $h_{v}^{-}\left(\mathcal{S}(\beta), \alpha^{\prime \prime}, \mathcal{U}^{\prime \prime}\right)=h_{v}^{-}(\mathcal{S}, \alpha, \mathcal{U})$.

Proof. As the proof is similar, we only present the proof for 1 . Let $\mathcal{U} \in \mathcal{C}_{X \times Y}$. Then

$$
\begin{aligned}
& h_{\nu}^{-}\left(\sigma^{-1} \mathcal{S}(\beta) \sigma, \alpha^{\prime}, Z \times \mathcal{U}\right) \\
& =\int_{Z \times X} \frac{1}{\# \sigma^{-1} \mathcal{S}(\beta) \sigma(z, x)} H_{\nu}\left(\bigvee_{\left(z^{\prime}, x^{\prime}\right) \in \sigma^{-1} \mathcal{S}(\beta) \sigma(z, x)} \alpha^{\prime}\left((z, x),\left(z^{\prime}, x^{\prime}\right)\right)(Z \times \mathcal{U})_{\left(z^{\prime}, x^{\prime}\right)}\right) d \kappa \\
& \quad \times \mu(z, x)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{Z \times X} \frac{1}{\# \mathcal{S}(x)} H_{\nu}\left(\bigvee_{\left(x^{\prime}, z^{\prime}\right) \in \mathcal{S}(\beta)(x, z)} \alpha\left(x, x^{\prime}\right) \mathcal{U}_{x^{\prime}}\right) d \kappa \times \mu(z, x) \\
& =\int_{X} \frac{1}{\# \mathcal{S}(x)} H_{\nu}\left(\bigvee_{x^{\prime} \in \mathcal{S}(x)} \alpha\left(x, x^{\prime}\right) \mathcal{U}_{x^{\prime}}\right) d \mu(x)=h_{v}^{-}(\mathcal{S}, \alpha, \mathcal{U}) .
\end{aligned}
$$

Proposition 4.5. Let $\epsilon>0$ and $\mathcal{T}, \mathcal{S} \in I(\mathcal{R})$. If $\mathcal{T} \subseteq \epsilon \mathcal{S}$ then
$h_{v}^{-}(\mathcal{S}, \phi, \mathcal{U}) \leqslant h_{v}^{-}(\mathcal{T}, \phi, \mathcal{U})+3 \epsilon \log N(\mathcal{U}) \quad$ and $\quad h_{\nu}(\mathcal{S}, \phi, \mathcal{U}) \leqslant h_{v}(\mathcal{T}, \phi, \mathcal{U})+3 \epsilon \log N(\mathcal{U})$.
In particular, if $\mathcal{T} \subseteq \mathcal{S}$ then $h_{\nu}^{-}(\mathcal{S}, \phi, \mathcal{U}) \leqslant h_{\nu}^{-}(\mathcal{T}, \phi, \mathcal{U})$ and $h_{\nu}(\mathcal{S}, \phi, \mathcal{U}) \leqslant h_{\nu}(\mathcal{T}, \phi, \mathcal{U})$.
Proof. The proof follows the arguments of the proof of [7, Proposition 2.6]. Let $A_{0}=\{x \in$ $A: \mathcal{T}(x) \subseteq \mathcal{S}(x)\}$. Then $\mu\left(A_{0}\right)>1-2 \epsilon$ by Lemma 4.1. We define the maps $f, g: A_{0} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& f(x)=\frac{1}{\#\left(\mathcal{S}(x) \cap A_{0}\right)} H_{v}\left(\bigvee_{y \in \mathcal{S}(x) \cap A_{0}} \phi(x, y) \mathcal{U}_{y}\right) \text { and } \\
& g(x)=\frac{1}{\# \mathcal{T}(x)} H_{v}\left(\bigvee_{y \in \mathcal{T}(x)} \phi(x, y) \mathcal{U}_{y}\right)
\end{aligned}
$$

Since A_{0} is \mathcal{T}-invariant, for each $x \in A_{0}$ there are $x_{1}, \ldots, x_{k} \in X$ such that $\mathcal{S}(x) \cap A_{0}=$ $\bigsqcup_{i=1}^{k} \mathcal{T}\left(x_{i}\right)$, here the sign \bigsqcup denotes the union of disjoint subsets. It follows that

$$
\begin{aligned}
f(x) & \leqslant \frac{1}{\#\left(\mathcal{S}(x) \cap A_{0}\right)} \sum_{i=1}^{k} H_{v}\left(\phi\left(x, x_{i}\right) \bigvee_{y \in \mathcal{T}\left(x_{i}\right)} \phi\left(x_{i}, y\right) \mathcal{U}_{y}\right) \\
& =\frac{1}{\#\left(\mathcal{S}(x) \cap A_{0}\right)} \sum_{i=1}^{k} \# \mathcal{T}\left(x_{i}\right) \cdot g\left(x_{i}\right) \\
& =\frac{1}{\#\left(\mathcal{S}(x) \cap A_{0}\right)} \sum_{i=1}^{k} \sum_{y \in \mathcal{T}\left(x_{i}\right)} g(y) \\
& =\frac{1}{\#\left(\mathcal{S}(x) \cap A_{0}\right)} \sum_{z \in \mathcal{S}(x) \cap A_{0}} g(z)=\mathbb{E}\left(g \mid \mathcal{S} \cap\left(A_{0} \times A_{0}\right)\right)(x)
\end{aligned}
$$

where $\mathbb{E}\left(g \mid \mathcal{S} \cap\left(A_{0} \times A_{0}\right)\right)$ denotes the conditional expectation of g w.r.t. $\mathcal{S}_{A_{0}}$, the σ-algebra of all measurable $\mathcal{S} \cap\left(A_{0} \times A_{0}\right)$-invariant subsets. Hence

$$
\begin{aligned}
h_{\nu}^{-}(\mathcal{S}, \phi, \mathcal{U}) & =\int_{X} \frac{1}{\# \mathcal{S}(x)} H_{\nu}\left(\bigvee_{y \in \mathcal{S}(x)} \phi(x, y) \mathcal{U}_{y}\right) d \mu(x) \\
& \leqslant \int_{A_{0}} \frac{1}{\# \mathcal{S}(x)} H_{\nu}\left(\bigvee_{y \in \mathcal{S}(x)} \phi(x, y) \mathcal{U}_{y}\right) d \mu(x)+\int_{X \backslash A_{0}} \frac{1}{\# \mathcal{S}(x)} \sum_{y \in \mathcal{S}(x)} H_{\nu}\left(\mathcal{U}_{y}\right) d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \int_{A_{0}}\left(f(x)+\frac{1}{\# \mathcal{S}(x)} H_{v}\left(\bigvee_{y \in \mathcal{S}(x) \backslash A_{0}} \phi(x, y) \mathcal{U}_{y}\right)\right) d \mu(x)+\int_{X \backslash A_{0}} \log N(\mathcal{U}) d \mu(x) \\
& \leqslant \int_{A_{0}}\left(\mathbb{E}\left(g \mid \mathcal{S} \cap\left(A_{0} \times A_{0}\right)\right)(x)+\frac{\#\left(\mathcal{S}(x) \backslash A_{0}\right)}{\# \mathcal{S}(x)} \log N(\mathcal{U})\right) d \mu(x)+2 \epsilon \log N(\mathcal{U}) \\
& \leqslant \int_{A_{0}} \mathbb{E}\left(g \mid \mathcal{S} \cap\left(A_{0} \times A_{0}\right)\right)(x) d \mu(x)+3 \epsilon \log N(\mathcal{U}) \\
& =\int_{A_{0}} g(x) d \mu(x)+3 \epsilon \log N(\mathcal{U}) \leqslant h_{v}^{-}(\mathcal{T}, \phi, \mathcal{U})+3 \epsilon \log N(\mathcal{U})
\end{aligned}
$$

By the same reason, one has $h_{\nu}(\mathcal{S}, \phi, \alpha) \leqslant h_{\nu}(\mathcal{T}, \phi, \alpha)+3 \epsilon \log N(\alpha)$ for any $\alpha \in \mathcal{P}_{X \times Y}$. Thus

$$
\begin{aligned}
h_{v}(\mathcal{S}, \phi, \mathcal{U}) & =\inf \left\{h_{v}(\mathcal{S}, \phi, \alpha): \alpha \in \mathcal{P}_{X \times Y} \text { with } \alpha \succcurlyeq \mathcal{U}, N(\alpha) \leqslant N(\mathcal{U})\right\} \\
& \leqslant \inf \left\{h_{v}(\mathcal{T}, \phi, \alpha)+3 \epsilon \log N(\alpha): \alpha \in \mathcal{P}_{X \times Y} \text { with } \alpha \succcurlyeq \mathcal{U}, N(\alpha) \leqslant N(\mathcal{U})\right\} \\
& \leqslant \inf \left\{h_{v}(\mathcal{T}, \phi, \alpha)+3 \epsilon \log N(\mathcal{U}): \alpha \in \mathcal{P}_{X \times Y} \text { with } \alpha \succcurlyeq \mathcal{U}, N(\alpha) \leqslant N(\mathcal{U})\right\} \\
& =h_{v}(\mathcal{T}, \phi, \mathcal{U})+3 \in \log N(\mathcal{U}) .
\end{aligned}
$$

Now if $\mathcal{T} \subseteq \mathcal{S}$ then $\mathcal{T} \subseteq \epsilon \mathcal{S}$ for each $\epsilon>0$, so letting $\epsilon \rightarrow 0+$ we have $h_{\nu}^{-}(\mathcal{S}, \phi, \mathcal{U}) \leqslant$ $h_{v}^{-}(\mathcal{T}, \phi, \mathcal{U})$ and $h_{\nu}(\mathcal{S}, \phi, \mathcal{U}) \leqslant h_{\nu}(\mathcal{T}, \phi, \mathcal{U})$. This finishes the proof.

As a direct application of Lemma 4.2(2) and Proposition 4.5 we have

Corollary 4.6. Let \mathcal{R} be hyperfinite with $\left\{\mathcal{R}_{n}\right\}_{n \in \mathbb{N}}$ a filtration of \mathcal{R}. Then

$$
\lim _{n \rightarrow+\infty} h_{v}\left(\mathcal{R}_{n}, \phi, \mathcal{U}\right)=h_{v}(\phi, \mathcal{U}) \quad \text { and } \quad \lim _{n \rightarrow+\infty} h_{\nu}^{-}\left(\mathcal{R}_{n}, \phi, \mathcal{U}\right)=h_{v}^{-}(\phi, \mathcal{U})
$$

4.3. Two kinds virtual entropy of covers

Everywhere below, \mathcal{R} is generated by a free G-measure preserving system $\left(X, \mathcal{B}_{X}, \mu, G\right)$. Then \mathcal{R} is hyperfinite and conservative. Let $\mathcal{S} \in I(\mathcal{R})$ with $B \subseteq X$ an \mathcal{S}-fundamental domain. Then there is a measurable map $B \ni x \mapsto G_{x} \in F(G)$ with $G_{x} x=\mathcal{S}(x)$ and hence $X=\bigsqcup_{x \in B} G_{x} x$. Noting that $F(G)$ is a countable set, we obtain that $X=\bigsqcup_{i} \bigsqcup_{g \in G_{i}} g B_{i}$ for a countable family $\left\{G_{i}\right\}_{i} \subseteq F(G)$ and a decomposition $B=\bigsqcup_{i} B_{i}$ with $G_{i} x=\mathcal{S}(x)$ for each $x \in B_{i}$. We shall write it as $\mathcal{S} \sim\left(B_{i}, G_{i}\right)$. Then

$$
\begin{aligned}
h_{v}^{-}(\mathcal{S}, \phi, \mathcal{U}) & =\sum_{i} \sum_{g \in G_{i}} \int_{g B_{i}} \frac{1}{\# \mathcal{S}(x)} H_{\nu}\left(\bigvee_{y \in \mathcal{S}(x)} \phi(x, y) \mathcal{U}_{y}\right) d \mu(x) \\
& =\sum_{i} \sum_{g \in G_{i}} \int_{B_{i}} \frac{1}{\left|G_{i}\right|} H_{\nu}\left(\bigvee_{g^{\prime} \in G_{i}} \phi\left(g x, g^{\prime} x\right) \mathcal{U}_{g^{\prime} x}\right) d \mu(x)
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{i} \sum_{g \in G_{i}} \int_{B_{i}} \frac{1}{\left|G_{i}\right|} H_{\nu}\left(\bigvee_{g^{\prime} \in G_{i}} \phi\left(x, g^{\prime} x\right) \mathcal{U}_{g^{\prime} x}\right) d \mu(x) \\
& =\sum_{i} \int_{B_{i}} H_{\nu}\left(\bigvee_{g \in G_{i}} \phi(x, g x) \mathcal{U}_{g x}\right) d \mu(x) . \tag{4.1}
\end{align*}
$$

Definition 4.7. Let $\left(Y, \mathcal{B}_{Y}, v, G\right)$ be a G-measure preserving system, $\mathcal{U} \in \mathcal{C}_{Y}, \Pi_{g} \in \operatorname{Aut}(Y, v)$ the action of $g \in G$ on $\left(Y, \mathcal{B}_{Y}, v\right)$ and $\phi_{G}: \mathcal{R} \rightarrow \operatorname{Aut}(Y, v)$ a cocycle given by $\phi_{G}(g x, x)=\Pi_{g}$ for any $x \in X, g \in G$. The ν^{-}-virtual entropy and ν-virtual entropy of \mathcal{U} are defined respectively by

$$
{\widehat{h_{v}}}^{-}(G, \mathcal{U})=h_{v}^{-}\left(\phi_{G}, X \times \mathcal{U}\right) \quad \text { and } \quad \widehat{h_{v}}(G, \mathcal{U})=h_{v}\left(\phi_{G}, X \times \mathcal{U}\right)
$$

Clearly, if $\alpha \in \mathcal{P}_{Y}$ then $\widehat{h_{v}}(G, \alpha)=\widehat{h_{\nu}}{ }^{-}(G, \alpha)$. Thus, for $\mathcal{U} \in \mathcal{C}_{Y}, \widehat{h_{v}}(G, \mathcal{U})=$ $\inf _{\alpha \in \mathcal{P}_{Y}: \alpha \succcurlyeq \mathcal{U}} \widehat{h_{v}}(G, \alpha)$. Note that there may exist plenty of free G-actions generating \mathcal{R}, ϕ_{G} is not determined uniquely by Π_{g}. Hence, we need to show that $\widehat{h_{v}}{ }^{-}(G, \mathcal{U})$ and $\widehat{h_{v}}(G, \mathcal{U})$ are well defined.

Proposition 4.8. Let $\left\{U_{g}\right\}_{g \in G}$ and $\left\{U_{g}^{\prime}\right\}_{g \in G}$ be two free G-actions on $\left(X, \mathcal{B}_{X}, \mu\right)$ such that

$$
\left\{U_{g} x: g \in G\right\}=\left\{U_{g}^{\prime} x: g \in G\right\}=\mathcal{R}(x)
$$

for μ-a.e. $x \in X$. Define cocycles $\phi, \phi^{\prime}: \mathcal{R} \rightarrow \operatorname{Aut}(Y, v)$ by

$$
\phi\left(U_{g} x, x\right)=\phi^{\prime}\left(U_{g}^{\prime} x, x\right)=\Pi_{g} \quad \text { for any } g \in G, x \in X
$$

Then for any $\mathcal{U} \in \mathcal{C}_{Y}, h_{v}^{-}(\phi, X \times \mathcal{U})=h_{v}^{-}\left(\phi^{\prime}, X \times \mathcal{U}\right)$ and $h_{v}(\phi, X \times \mathcal{U})=h_{v}\left(\phi^{\prime}, X \times \mathcal{U}\right)$.
Proof. Denote by \mathcal{S} the equivalence relation on $X \times X$ generated by the diagonal G-action $\left\{U_{g} \times U_{g}^{\prime}\right\}_{g \in G}$. Clearly, \mathcal{S} is measure preserving and hyperfinite. Let $\varphi_{U}, \varphi_{U^{\prime}}: \mathcal{R} \rightarrow \operatorname{Aut}(X, \mu)$ and $\phi_{G}: \mathcal{S} \rightarrow \operatorname{Aut}(Y, \nu)$ be cocycles defined by

$$
\varphi_{U}\left(U_{g}^{\prime} x, x\right)=U_{g}, \quad \varphi_{U^{\prime}}\left(U_{g} x, x\right)=U_{g}^{\prime} \quad \text { and } \quad \phi_{G}\left(\left(U_{g} x, U_{g}^{\prime} x^{\prime}\right),\left(x, x^{\prime}\right)\right)=\Pi_{g}
$$

for any $g \in G, x, x^{\prime} \in X$. Then $\mathcal{S}=\mathcal{R}\left(\varphi_{U^{\prime}}\right)=\sigma^{-1} \mathcal{R}\left(\varphi_{U}\right) \sigma$, where $\sigma: X \times X \rightarrow X \times X$ is the flip map, that is, $\sigma\left(x, x^{\prime}\right)=\left(x^{\prime}, x\right)$. Hence if $\left\{\mathcal{R}_{n}\right\}_{n \in \mathbb{N}}$ is a filtration of \mathcal{R} then $\left\{\mathcal{R}_{n}\left(\varphi_{U^{\prime}}\right)\right\}_{n \in \mathbb{N}}$ and $\left\{\sigma^{-1} \mathcal{R}_{n}\left(\varphi_{U}\right) \sigma\right\}_{n \in \mathbb{N}}$ are both filtrations of \mathcal{S}.

For each $n \in \mathbb{N}$, one has $\phi_{G}\left((x, z),\left(x^{\prime \prime}, z^{\prime \prime}\right)\right)=\phi\left(x, x^{\prime \prime}\right)$ if $\left((x, z),\left(x^{\prime \prime}, z^{\prime \prime}\right)\right) \in \mathcal{R}_{n}\left(\varphi_{U^{\prime}}\right)$ and $\phi_{G}\left((z, x),\left(z^{\prime}, x^{\prime}\right)\right)=\phi^{\prime}\left(x, x^{\prime}\right)$ if $\left((z, x),\left(z^{\prime}, x^{\prime}\right)\right) \in \sigma^{-1} \mathcal{R}_{n}\left(\varphi_{U}\right) \sigma$. Then by Proposition 4.4, for any $\mathcal{U} \in \mathcal{C}_{Y}$ one has

$$
\begin{aligned}
h_{v}^{-}\left(\mathcal{R}_{n}\left(\varphi_{U^{\prime}}\right), \phi_{G}, X \times X \times \mathcal{U}\right) & =h_{v}^{-}\left(\mathcal{R}_{n}, \phi, X \times \mathcal{U}\right), \\
h_{v}^{-}\left(\sigma^{-1} \mathcal{R}_{n}\left(\varphi_{U}\right) \sigma, \phi_{G}, X \times X \times \mathcal{U}\right) & =h_{v}^{-}\left(\mathcal{R}_{n}, \phi^{\prime}, X \times \mathcal{U}\right) .
\end{aligned}
$$

Letting $n \rightarrow+\infty$ we obtain $h_{v}^{-}\left(\phi_{G}, X \times X \times \mathcal{U}\right)=h_{v}^{-}(\phi, X \times \mathcal{U})$ and $h_{v}^{-}\left(\phi_{G}, X \times X \times \mathcal{U}\right)=$ $h_{v}^{-}\left(\phi^{\prime}, X \times \mathcal{U}\right)$ for any $\mathcal{U} \in \mathcal{C}_{Y}$ (see Corollary 4.6). This implies that $h_{v}^{-}(\phi, X \times \mathcal{U})=h_{v}^{-}\left(\phi^{\prime}\right.$, $X \times \mathcal{U})$ for any $\mathcal{U} \in \mathcal{C}_{Y}$. Moreover, for $\mathcal{U} \in \mathcal{C}_{Y}$ we have

$$
\begin{aligned}
h_{\nu}(\phi, X \times \mathcal{U}) & =\inf _{\alpha \in \mathcal{P}_{X \times Y}: \alpha \succcurlyeq X \times \mathcal{U}} h_{\nu}^{-}(\phi, \alpha)=\inf _{\beta \in \mathcal{P}_{Y}: \beta \succcurlyeq \mathcal{U}} h_{v}^{-}(\phi, X \times \beta) \\
& =\inf _{\beta \in \mathcal{P}_{Y}: \beta \succcurlyeq \mathcal{U}} h_{\nu}^{-}\left(\phi^{\prime}, X \times \beta\right)=h_{v}\left(\phi^{\prime}, X \times \mathcal{U}\right) .
\end{aligned}
$$

This finishes the proof of the proposition.

Before proceeding, we need the following result. Let $K \in F(G)$ and $\epsilon>0 . F \in F(G)$ is called $[K, \epsilon]$-invariant if $|\{g \in F \mid K g \subseteq F\}|>(1-\epsilon)|F|$.

Lemma 4.9. Let $\left(Y, \mathcal{B}_{Y}, v, G\right)$ be a G-measure preserving system, $\mathcal{U} \in \mathcal{C}_{Y}$ and $\epsilon>0$. Then there exist $K \in F(G)$ and $0<\epsilon^{\prime}<\epsilon$ such that if $F \in F(G)$ is $\left[K, \epsilon^{\prime}\right]$-invariant then

$$
\left|\frac{1}{|F|} H_{\nu}\left(\mathcal{U}_{F}\right)-h_{\nu}(G, \mathcal{U})\right|<\epsilon .
$$

Proof. Choose $e_{G} \in K_{1} \subseteq K_{2} \subseteq \cdots$ with $\bigcup_{i \in \mathbb{N}} K_{i}=G$. For each $i \in \mathbb{N}$ set $\delta_{i}=\frac{1}{2^{i}\left(\left|K_{i}\right|+1\right)}$. Now if the lemma is not true then there exists $\epsilon>0$ such that for each $i \in \mathbb{N}$ there exists $F_{i} \in F(G)$ such that it is [$K_{i}^{-1} K_{i}, \delta_{i}$]-invariant and

$$
\begin{equation*}
\left|\frac{1}{\left|F_{i}\right|} H_{\nu}\left(\mathcal{U}_{F_{i}}\right)-h_{\nu}(G, \mathcal{U})\right| \geqslant \epsilon . \tag{4.2}
\end{equation*}
$$

Let $K \in F(G)$ with $e_{G} \in K$ and $\delta>0$. If $F \in F(G)$ is [$\left.K^{-1} K, \delta\right]$-invariant then

$$
\begin{aligned}
B(F, K) & =\{g \in G: K g \cap F \neq \emptyset \text { and } K g \cap(G \backslash F) \neq \emptyset\} \\
& =K^{-1} F \backslash\{g \in F: K g \subseteq F\}=\left(K^{-1} F \backslash F\right) \cup(F \backslash\{g \in F: K g \subseteq F\}) \\
& \subseteq K^{-1}\left(F \backslash\left\{g \in F: K^{-1} g \subseteq F\right\}\right) \cup(F \backslash\{g \in F: K g \subseteq F\}) \\
& \subseteq K^{-1}\left(F \backslash\left\{g \in F: K^{-1} K g \subseteq F\right\}\right) \cup\left(F \backslash\left\{g \in F: K^{-1} K g \subseteq F\right\}\right),
\end{aligned}
$$

hence $|B(F, K)| \leqslant(|K|+1) \cdot\left|F \backslash\left\{g \in F: K^{-1} K g \subseteq F\right\}\right| \leqslant \delta(|K|+1)|F|$ (as $F \in F(G)$ is [$\left.K^{-1} K, \delta\right]$-invariant), i.e. F is a $(K,(|K|+1) \delta)$-invariant set. Particularly, we have that F_{i} is ($K_{i}, \frac{1}{2^{i}}$)-invariant for each $i \in \mathbb{N}$. Moreover, since $e_{G} \in K_{1} \subseteq K_{2} \subseteq \cdots$ and $\bigcup_{i \in \mathbb{N}} K_{i}=G$, we have that $\left\{F_{i}\right\}_{i \in \mathbb{N}}$ is a Følner sequence of G. Hence $\lim _{i \rightarrow+\infty} \frac{1}{\left|F_{i}\right|} H_{\nu}\left(\mathcal{U}_{F_{i}}\right)=h_{v}^{-}(G, \mathcal{U})$, a contradiction with (4.2).

Theorem 4.10. Let $\left(Y, \mathcal{B}_{Y}, v, G\right)$ be a G-measure preserving system and $\mathcal{U} \in \mathcal{C}_{Y}$. Then

$$
h_{v}^{-}(G, \mathcal{U})={\widehat{h_{v}}}^{-}(G, \mathcal{U}) \quad \text { and } \quad h_{v}(G, \mathcal{U})=\widehat{h_{v}}(G, \mathcal{U})
$$

Proof. By Lemma 4.9 for each $\epsilon>0$ there exist $K \in F(G)$ and $0<\epsilon^{\prime}<\epsilon$ such that if $F \in F(G)$ is [K, ϵ^{\prime}]-invariant then $\left|\frac{1}{|F|} H_{v}\left(\mathcal{U}_{F}\right)-h_{\nu}(G, \mathcal{U})\right|<\epsilon$. Let $\left\{\mathcal{R}_{n}\right\}_{n \in \mathbb{N}}$ be a filtration of \mathcal{R} with $\mathcal{R}_{n} \sim\left(B_{i}^{(n)}, G_{i}^{(n)}\right)$ for each $n \in \mathbb{N}$. Thus by Lemma 4.2(1), for each sufficiently large n there is a measurable \mathcal{R}_{n}-invariant subset $A_{n} \subseteq X$ such that $\mu\left(A_{n}\right)>1-\epsilon^{\prime}$ and

$$
\begin{equation*}
\#\left\{x^{\prime} \in \mathcal{R}_{n}(x): K x^{\prime} \subseteq \mathcal{R}_{n}(x)\right\}>\left(1-\epsilon^{\prime}\right) \# \mathcal{R}_{n}(x) \quad \text { for each } x \in A_{n} \tag{4.3}
\end{equation*}
$$

Since A_{n} is \mathcal{R}_{n}-invariant, $A_{n}=\bigsqcup_{i \in J} G_{i}^{(n)} C_{i}^{(n)}$ for some subset $J \subseteq \mathbb{N}$ and a family of measurable subsets $C_{i}^{(n)} \subseteq B_{i}^{(n)}$ with $\mu\left(C_{i}^{(n)}\right)>0, i \in J$. By (4.3), if $i \in J, x \in C_{i}^{(n)}$ and $g^{\prime} \in G_{i}^{(n)}$ then

$$
\left(1-\epsilon^{\prime}\right) \# \mathcal{R}_{n}\left(g^{\prime} x\right)<\#\left\{x^{\prime} \in \mathcal{R}_{n}\left(g^{\prime} x\right): K x^{\prime} \subseteq \mathcal{R}_{n}\left(g^{\prime} x\right)\right\}=\#\left\{x^{\prime} \in \mathcal{R}_{n}(x): K x^{\prime} \subseteq \mathcal{R}_{n}(x)\right\}
$$

That is, $\left(1-\epsilon^{\prime}\right)\left|G_{i}^{(n)}\right|<\left|\left\{g \in G_{i}^{(n)}: K g \subseteq G_{i}^{(n)}\right\}\right|$, i.e. $G_{i}^{(n)}$ is $\left[K, \epsilon^{\prime}\right]$-invariant. Set

$$
f(x)=\frac{1}{\# \mathcal{R}_{n}(x)} H_{\nu}\left(\bigvee_{y \in \mathcal{R}_{n}(x)} \phi_{G}(x, y) \mathcal{U}\right) \leqslant \log N(\mathcal{U}) \quad \text { for each } x \in X
$$

Then by similar reasoning of (4.1), one has

$$
\int_{A_{n}} f(x) d \mu(x)=\sum_{j \in J} \int_{C_{j}^{(n)}} H_{v}\left(\bigvee_{g \in G_{j}^{(n)}} \Pi_{g}^{-1} \mathcal{U}\right) d \mu(x)
$$

Hence

$$
\begin{aligned}
\mid h_{v}^{-} & \left(\mathcal{R}_{n}, \phi_{G}, X \times \mathcal{U}\right)-\mu\left(A_{n}\right) h_{v}^{-}(G, \mathcal{U}) \mid \\
& \leqslant\left|\int_{A_{n}}\left(f(x)-h_{v}^{-}(G, \mathcal{U})\right) d \mu(x)\right|+\left|\int_{X \backslash A_{n}} f(x) d \mu(x)\right| \\
& \leqslant\left|\sum_{j \in J} \int_{C_{j}^{(n)}}\right| G_{j}^{(n)}\left|\left(\frac{1}{\left|G_{j}^{(n)}\right|} H_{\nu}\left(\bigvee_{g \in G_{j}^{(n)}} \Pi_{g}^{-1} \mathcal{U}\right)-h_{v}^{-}(G, \mathcal{U})\right) d \mu(x)\right|+\left(1-\mu\left(A_{n}\right)\right) \log N(\mathcal{U}) \\
& \left.\leqslant\left(\sum_{j \in J}\left|G_{j}^{(n)}\right| \mu\left(C_{j}^{(n)}\right)\right) \epsilon+\left(1-\mu\left(A_{n}\right)\right) \log N(\mathcal{U}) \quad \text { (by the selection of } K \text { and } \epsilon^{\prime}\right) .
\end{aligned}
$$

Noting that $A_{n}=\bigsqcup_{i \in J} G_{i}^{(n)} C_{i}^{(n)}$ and $\mu\left(A_{n}\right)>1-\epsilon^{\prime}$ where $0<\epsilon^{\prime}<\epsilon$, first let $n \rightarrow+\infty$ and then let $\epsilon \rightarrow 0+$, thus we have ${\widehat{h_{v}}}^{-}(G, \mathcal{U})=h_{\nu}^{-}\left(\phi_{G}, X \times \mathcal{U}\right)=h_{\nu}^{-}(G, \mathcal{U})$ (see Corollary 4.6). Moreover,

$$
\widehat{h_{v}}(G, \mathcal{U})=\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}}{\widehat{h_{v}}}^{-}(G, \alpha)=\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} h_{v}(G, \alpha)=h_{v}(G, \mathcal{U}) .
$$

This finishes the proof.

Let $\left(Z, \mathcal{B}_{Z}, \kappa\right)$ be a Lebesgue space with T an invertible measure-preserving transformation, $\mathcal{W} \in \mathcal{C}_{Z}$ and $\mathcal{D} \subseteq \mathcal{B}_{Z}$ a T-invariant sub- σ-algebra, i.e. $T^{-1} \mathcal{D}=\mathcal{D}$. Set $\mathcal{W}_{0}^{n-1}=\bigvee_{i=0}^{n-1} T^{-i} \mathcal{W}$ for each $n \in \mathbb{N}$. It is clear that the sequence $\left\{H_{\kappa}\left(\mathcal{W}_{0}^{n-1} \mid \mathcal{D}\right)\right\}_{n \in \mathbb{N}}$ is non-negative and sub-additive. So we may define

$$
\begin{gathered}
h_{\kappa}(T, \mathcal{W} \mid \mathcal{D})=\inf _{\gamma \in \mathcal{P}_{Z}: \gamma \succcurlyeq \mathcal{W}} h_{\kappa}^{-}(T, \gamma \mid \mathcal{D}), \\
h_{\kappa}^{-}(T, \mathcal{W} \mid \mathcal{D})=\lim _{n \rightarrow+\infty} \frac{1}{n} H_{\kappa}\left(\mathcal{W}_{0}^{n-1} \mid \mathcal{D}\right)=\inf _{n \in \mathbb{N}} \frac{1}{n} H_{\kappa}\left(\mathcal{W}_{0}^{n-1} \mid \mathcal{D}\right) .
\end{gathered}
$$

Clearly $h_{\kappa}^{-}(T, \mathcal{W} \mid \mathcal{D})=h_{\kappa}(T, \mathcal{W} \mid \mathcal{D})$ when $\mathcal{W} \in \mathcal{P}_{Z}$. We shall write simply

$$
h_{\kappa}^{-}(T, \mathcal{W})=h_{\kappa}^{-}(T, \mathcal{W} \mid\{\emptyset, Z\}) \quad \text { and } \quad h_{\kappa}(T, \mathcal{W})=h_{\kappa}(T, \mathcal{W} \mid\{\emptyset, Z\})
$$

Theorem 4.11. Let γ be an invertible measure-preserving transformation on $\left(X, \mathcal{B}_{X}, \mu\right)$ generating $\mathcal{R}, \phi: \mathcal{R} \rightarrow \operatorname{Aut}(Y, \nu)$ a cocycle and γ_{ϕ} stand for the ϕ-skew product extension of γ. Then for each $\mathcal{U} \in \mathcal{C}_{X \times Y}$, one has

$$
h_{v}^{-}(\phi, \mathcal{U})=h_{\mu \times v}^{-}\left(\gamma_{\phi}, \mathcal{U} \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right) \quad \text { and } \quad h_{\nu}(\phi, \mathcal{U})=h_{\mu \times v}\left(\gamma_{\phi}, \mathcal{U} \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right) .
$$

Proof. Let $\Sigma=\prod_{i=1}^{+\infty}\{0,1\}$ be the product space of the discrete space $\{0,1\}$. If $x=\left(x_{1}, x_{2}, \ldots\right)$, $y=\left(y_{1}, y_{2}, \ldots\right) \in \Sigma$ then the sum $x \oplus y=\left(z_{1}, z_{2}, \ldots\right)$ is defined as follows. If $x_{1}+y_{1}<2$ then $z_{1}=x_{1}+y_{1}$, if $x_{1}+y_{1} \geqslant 2$ then $z_{1}=x_{1}+y_{1}-2$ and we carry 1 to the next position. The other terms z_{2}, \ldots are successively determined in the same fashion. Let $\delta: \Sigma \rightarrow \Sigma, z \mapsto z \oplus 1$ with $1=(1,0,0, \ldots)$. It is known that (Σ, δ) is minimal, which is called an adding machine. Let λ be the Haar measure on (Σ, \oplus). Denote by \mathcal{S} the $\delta \times \gamma$-orbit equivalence relation on $\Sigma \times X$. Let $\sigma: \Sigma \times X \rightarrow X \times \Sigma$ be the flip map. We have $\mathcal{S}=\sigma^{-1} \mathcal{R}(\varphi) \sigma$ for the cocycle $\varphi: \mathcal{R} \rightarrow \operatorname{Aut}(\Sigma, \lambda)$ given by $\left(\gamma^{n} x, x\right) \mapsto \delta^{n}, n \in \mathbb{Z}$ (as \mathcal{R} is conservative, γ is aperiodic and so φ is well defined).

Now we define a cocycle $1 \oplus \phi: \mathcal{S} \rightarrow \operatorname{Aut}(Y, v)$ by setting $\left((z, x),\left(z^{\prime}, x^{\prime}\right)\right) \mapsto \phi\left(x, x^{\prime}\right)$. Let $\left\{\mathcal{R}_{n}\right\}_{n \in \mathbb{N}}$ be a filtration of \mathcal{R}. Then $\left\{\sigma^{-1} \mathcal{R}_{n}(\varphi) \sigma\right\}_{n \in \mathbb{N}}$ is a filtration of \mathcal{S} and so for each $\mathcal{U} \in$ $\mathcal{C}_{X \times Y}$

$$
\begin{align*}
h_{v}^{-}(1 \oplus \phi, \Sigma \times \mathcal{U}) & =\lim _{n \rightarrow+\infty} h_{v}^{-}\left(\sigma^{-1} \mathcal{R}_{n}(\varphi) \sigma, 1 \oplus \phi, \Sigma \times \mathcal{U}\right) \quad \text { (by Corollary 4.6) } \\
& =\lim _{n \rightarrow+\infty} h_{v}^{-}\left(\mathcal{R}_{n}, \phi, \mathcal{U}\right) \quad \text { (by Proposition 4.4(1)) } \\
& =h_{v}^{-}(\phi, \mathcal{U}) \quad(\text { by Corollary 4.6). } \tag{4.4}
\end{align*}
$$

On the other hand, for each $n \in \mathbb{N}$ we let $A_{n}=\left\{z \in \Sigma: z_{i}=0\right.$ for $\left.1 \leqslant i \leqslant n\right\}$. Then $A_{1} \supseteq$ $A_{2} \supseteq \cdots$ is a sequence of measurable subsets of Σ such that $\Sigma=\bigsqcup_{i=0}^{2^{n}-1} \delta^{i} A_{n}$ and so $\Sigma \times X=$ $\bigsqcup_{i=0}^{2^{n}-1}(\delta \times \gamma)^{i}\left(A_{n} \times X\right)$ for each $n \in \mathbb{N}$. Let $\mathcal{S}_{n} \in I(\mathcal{S})$ with $\mathcal{S}_{n} \sim\left(A_{n} \times X,\left\{(\delta \times \gamma)^{i}: i=\right.\right.$ $\left.\left.0,1, \ldots, 2^{n}-1\right\}\right)$. By (4.1) we obtain that

$$
\begin{aligned}
& h_{\nu}^{-}\left(\mathcal{S}_{n}, 1 \oplus \phi, \Sigma \times \mathcal{U}\right) \\
& \quad=\int_{A_{n} \times X} H_{\nu}\left(\bigvee_{i=0}^{2^{n}-1} \phi\left(x, \gamma^{i} x\right) \mathcal{U}_{\gamma^{i} x}\right) d \lambda \times \mu(z, x) \\
& \quad=\frac{1}{2^{n}} \int_{X} H_{\nu}\left(\bigvee_{i=0}^{2^{n}-1} \phi\left(x, \gamma^{i} x\right) \mathcal{U}_{\gamma^{i} x}\right) d \mu(x) \quad\left(\text { as } \lambda\left(A_{n}\right)=\frac{1}{2^{n}}\right) \\
& \quad=\frac{1}{2^{n}} \int_{X} H_{\nu}\left(\left(\bigvee_{i=0}^{2^{n}-1} \gamma_{\phi}^{-i} \mathcal{U}\right)_{x}\right) d \mu(x) \quad\left(\text { as } \bigvee_{i=0}^{2^{n}-1} \phi\left(x, \gamma^{i} x\right) \mathcal{U}_{\gamma^{i} x}=\left(\bigvee_{i=0}^{2^{n}-1} \gamma_{\phi}^{-i} \mathcal{U}\right)_{x}\right) \\
& \quad=\frac{1}{2^{n}} \int_{X} H_{\delta_{x} \times v}\left(\bigvee_{i=0}^{2^{n}-1} \gamma_{\phi}^{-i} \mathcal{U}\right) d \mu(x)=\frac{1}{2^{n}} H_{\mu \times \nu}\left(\bigvee_{i=0}^{2^{n}-1} \gamma_{\phi}^{-i} \mathcal{U} \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right) .
\end{aligned}
$$

Note that $\mathcal{S}_{1} \subseteq \mathcal{S}_{2} \subseteq \cdots$ and $\bigcup_{n \in \mathbb{N}} \mathcal{S}_{n}=\mathcal{S}$, then

$$
\begin{aligned}
h_{\nu}^{-}(1 \oplus \phi, \Sigma \times \mathcal{U}) & =\lim _{n \rightarrow+\infty} h_{\nu}^{-}\left(\mathcal{S}_{n}, 1 \oplus \phi, \Sigma \times \mathcal{U}\right) \quad \text { (by Corollary 4.6) } \\
& =\lim _{n \rightarrow+\infty} \frac{1}{2^{n}} H_{\mu \times \nu}\left(\bigvee_{i=0}^{2^{n}-1} \gamma_{\phi}^{-i} \mathcal{U} \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right) \\
& =h_{\mu \times v}^{-}\left(\gamma_{\phi}, \mathcal{U} \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right)
\end{aligned}
$$

and so $h_{\nu}^{-}(\phi, \mathcal{U})=h_{\mu \times \nu}^{-}\left(\gamma_{\phi}, \mathcal{U} \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right)$ for each $\mathcal{U} \in \mathcal{C}_{X \times Y}$ by (4.4). Finally,

$$
\begin{aligned}
h_{\nu}(\phi, \mathcal{U}) & =\inf _{\alpha \in \mathcal{P}_{X \times Y}: \alpha \succcurlyeq \mathcal{U}} h_{\nu}^{-}(\phi, \alpha)=\inf _{\alpha \in \mathcal{P}_{X \times Y}: \alpha \succcurlyeq \mathcal{U}} h_{\mu \times v}^{-}\left(\gamma_{\phi}, \alpha \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right) \\
& =h_{\mu \times \nu}\left(\gamma_{\phi}, \mathcal{U} \mid \mathcal{B}_{X} \otimes\{\emptyset, Y\}\right)
\end{aligned}
$$

for each $\mathcal{U} \in \mathcal{C}_{X \times Y}$. This finishes the proof of the theorem.

4.4. The proof of the equivalence of measure-theoretic entropy of covers

The following result was proved by the same authors [24, Theorem 6.4] (see also [19,21]).
Lemma 4.12. Let (X, T) be a TDS with $\mathcal{U} \in \mathcal{C}_{X}$ and $\mu \in \mathcal{M}(X, T)$. Then $h_{\mu}^{-}(T, \mathcal{U})=h_{\mu}(T, \mathcal{U})$.
Lemma 4.13. Let $\left(Z, \mathcal{B}_{Z}, \kappa\right)$ be a Lebesgue space with T an invertible measure-preserving transformation, $\mathcal{W} \in \mathcal{C}_{Z}$ and $\mathcal{D} \subseteq \mathcal{B}_{Z}$ a T-invariant sub- σ-algebra. Then $h_{\kappa}^{-}(T, \mathcal{W} \mid \mathcal{D})=$ $h_{\kappa}(T, \mathcal{W} \mid \mathcal{D})$.

Proof. First we claim the conclusion for the case $\mathcal{D}=\{\emptyset, Z\}$. By the ergodic decomposition of $h_{\kappa}^{-}(T, \mathcal{W})$ and $h_{\kappa}(T, \mathcal{W})$ (see (3.29) in the case of $G=\mathbb{Z}$), it suffices to prove it when κ is ergodic. By the Jewett-Krieger Theorem (see for example [8]), (Z, κ, T) is measure theoretical
isomorphic to a uniquely ergodic zero-dimensional topological dynamical system $(\widehat{Z}, \widehat{\kappa}, \widehat{T})$. Let $\pi:(\widehat{Z}, \widehat{\kappa}, \widehat{T}) \rightarrow(Z, \kappa, T)$ be such an isomorphism. Then using Lemma 4.12 we have

$$
h_{\kappa}^{-}(T, \mathcal{W})=h_{\widehat{\kappa}}^{-}\left(\widehat{T}, \pi^{-1} \mathcal{W}\right)=h_{\widehat{\kappa}}\left(\widehat{T}, \pi^{-1} \mathcal{W}\right)=h_{\kappa}(T, \mathcal{W})
$$

In general case, let $\left\{\beta_{j}\right\}_{j \in \mathbb{N}} \subseteq \mathcal{P}_{Z}$ with $\beta_{j} \nearrow \mathcal{D}(\bmod \mu)$. For simplicity, we write $\mathcal{P}(\mathcal{V})=$ $\left\{\alpha \in \mathcal{P}_{Z}: \alpha \succcurlyeq \mathcal{V}\right\}$ for $\mathcal{V} \in \mathcal{C}_{X}$. Then

$$
\begin{align*}
h_{\kappa}^{-}(T, \mathcal{W} \mid \mathcal{D}) & =\inf _{n \geqslant 1} \frac{1}{n} H_{\kappa}\left(\mathcal{W}_{0}^{n-1} \mid \mathcal{D}\right)=\inf _{n \geqslant 1} \frac{1}{n}\left(\inf _{\alpha \in \mathcal{P}\left(\mathcal{W}_{0}^{n-1}\right)} H_{\kappa}(\alpha \mid \mathcal{D})\right) \\
& =\inf _{n \geqslant 1} \frac{1}{n}\left(\inf _{\alpha \in \mathcal{P}\left(\mathcal{W}_{0}^{n-1}\right)} \inf _{j \geqslant 1} H_{\kappa}\left(\alpha \mid\left(\beta_{j}\right)_{0}^{n-1}\right)\right) \quad\left(\text { as } \beta_{j} \nearrow \mathcal{D}(\bmod \mu)\right) \\
& =\inf _{j \geqslant 1} \inf _{n \geqslant 1} \frac{1}{n}\left(\inf _{\alpha \in \mathcal{P}\left(\mathcal{W}_{0}^{n-1}\right)} H_{\kappa}\left(\alpha \mid\left(\beta_{j}\right)_{0}^{n-1}\right)\right) \\
& =\inf _{j \geqslant 1} \inf _{n \geqslant 1} \frac{1}{n} H_{\kappa}\left(\mathcal{W}_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right) . \tag{4.5}
\end{align*}
$$

Let $j \in \mathbb{N}$. Since for any $n, m \in \mathbb{N}$ and $\mathcal{V} \in \mathcal{C}_{X}$ one has

$$
\begin{aligned}
H_{\kappa}\left(\mathcal{V}_{0}^{n+m-1} \mid\left(\beta_{j}\right)_{0}^{n+m-1}\right) & \leqslant H_{\kappa}\left(\mathcal{V}_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n+m-1}\right)+H_{\kappa}\left(T^{-n} \mathcal{V}_{0}^{m-1} \mid\left(\beta_{j}\right)_{0}^{n+m-1}\right) \\
& \leqslant H_{\kappa}\left(\mathcal{V}_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right)+H_{\kappa}\left(T^{-n} \mathcal{V}_{0}^{m-1} \mid T^{-n}\left(\beta_{j}\right)_{0}^{m-1}\right) \\
& =H_{\kappa}\left(\mathcal{V}_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right)+H_{\kappa}\left(\mathcal{V}_{0}^{m-1} \mid\left(\beta_{j}\right)_{0}^{m-1}\right),
\end{aligned}
$$

hence

$$
\begin{equation*}
\inf _{n \geqslant 1} \frac{1}{n} H_{\kappa}\left(\mathcal{V}_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right)=\lim _{n \rightarrow+\infty} \frac{1}{n} H_{\kappa}\left(\mathcal{V}_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right) . \tag{4.6}
\end{equation*}
$$

Combining (4.6) for $\mathcal{V}=\mathcal{W}$ with (4.5), one has

$$
\begin{aligned}
h_{\kappa}^{-}(T, \mathcal{W} \mid \mathcal{D}) & =\inf _{j \geqslant 1} \lim _{n \rightarrow+\infty} \frac{1}{n} H_{\kappa}\left(\mathcal{W}_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right) \\
& =\inf _{j \geqslant 1} \lim _{n \rightarrow+\infty} \frac{1}{n} \inf _{\alpha \in \mathcal{P}\left(\mathcal{W}_{0}^{n-1}\right)} H_{\kappa}\left(\alpha \mid\left(\beta_{j}\right)_{0}^{n-1}\right) \\
& =\inf _{j \geqslant 1} \lim _{n \rightarrow+\infty} \frac{1}{n}\left(\inf _{\alpha \in \mathcal{P}\left(\mathcal{W}_{0}^{n-1}\right)} H_{\kappa}\left(\alpha \vee\left(\beta_{j}\right)_{0}^{n-1}\right)-H_{\kappa}\left(\left(\beta_{j}\right)_{0}^{n-1}\right)\right) \\
& \geqslant \inf _{j \geqslant 1} \lim _{n \rightarrow+\infty} \frac{1}{n}\left(H_{\kappa}\left(\mathcal{W}_{0}^{n-1} \vee\left(\beta_{j}\right)_{0}^{n-1}\right)-H_{\kappa}\left(\left(\beta_{j}\right)_{0}^{n-1}\right)\right) \\
& =\inf _{j \geqslant 1}\left(h_{\kappa}^{-}\left(T, \mathcal{W} \vee \beta_{j}\right)-h_{\kappa}^{-}\left(T, \beta_{j}\right)\right) \\
& =\inf _{j \geqslant 1}\left(h_{\kappa}\left(T, \mathcal{W} \vee \beta_{j}\right)-h_{\kappa}\left(T, \beta_{j}\right)\right) \quad \text { (by the first part) }
\end{aligned}
$$

$$
\begin{aligned}
& =\inf _{j \geqslant 1}\left(\inf _{\alpha \in \mathcal{P}(\mathcal{W})} h_{\kappa}\left(T, \alpha \vee \beta_{j}\right)-h_{\kappa}\left(T, \beta_{j}\right)\right) \\
& =\inf _{j \geqslant 1} \inf _{\alpha \in \mathcal{P}(\mathcal{W})} \lim _{n \rightarrow+\infty} \frac{1}{n}\left(H_{\kappa}\left(\left(\alpha \vee \beta_{j}\right)_{0}^{n-1}\right)-H_{\kappa}\left(\left(\beta_{j}\right)_{0}^{n-1}\right)\right) \\
& \geqslant \inf _{j \geqslant 1} \inf _{\alpha \in \mathcal{P}(\mathcal{W})} \inf _{n \geqslant 1} \frac{1}{n} H_{\kappa}\left(\alpha_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right) \quad(\text { by }(4.6) \text { for } \mathcal{V}=\alpha) \\
& =\inf _{\alpha \in \mathcal{P}(\mathcal{W})} \inf _{n \geqslant 1} \inf _{j \geqslant 1} \frac{1}{n} H_{\kappa}\left(\alpha_{0}^{n-1} \mid\left(\beta_{j}\right)_{0}^{n-1}\right) \\
& =\inf _{\alpha \in \mathcal{P}(\mathcal{W})} \inf _{n \geqslant 1} \frac{1}{n} H_{\kappa}\left(\alpha_{0}^{n-1} \mid \mathcal{D}\right) \quad\left(\text { as } \beta_{j} \nearrow \mathcal{D}(\bmod \mu)\right) \\
& =h_{\kappa}(T, \mathcal{W} \mid \mathcal{D}) .
\end{aligned}
$$

As the inequality of $h_{\kappa}^{-}(T, \mathcal{W} \mid \mathcal{D}) \leqslant h_{\kappa}(T, \mathcal{W} \mid \mathcal{D})$ is straightforward, this finishes the proof.
The following result is our main result in the section.
Theorem 4.14. Let $\left(Y, \mathcal{B}_{Y}, v, G\right)$ be a G-measure preserving system with $\left(Y, \mathcal{B}_{Y}, v\right)$ a Lebesgue space and $\mathcal{U} \in \mathcal{C}_{Y}$. Then $h_{v}(G, \mathcal{U})=h_{v}^{-}(G, \mathcal{U})$.

Proof. Let $\left(X, \mathcal{B}_{X}, \mu, G\right)$ be a free G-measure preserving system with $\mathcal{R} \subseteq X \times X$ the G-orbit equivalence relation and γ an invertible measure-preserving transformation on (X, \mathcal{B}_{X}, μ) generating \mathcal{R}. The cocycle $\phi_{G}: \mathcal{R} \rightarrow \operatorname{Aut}(Y, v)$ is given by $\phi_{G}(g x, x)=\Pi_{g}$, where $\Pi_{g} \in \operatorname{Aut}(Y, v)$ is the action of $g \in G$ on $\left(Y, \mathcal{B}_{Y}, \nu\right)$. By Definition 4.7 of virtual entropy and Theorem 4.10, we have

$$
\begin{equation*}
h_{v}^{-}(G, \mathcal{U})=h_{v}^{-}\left(\phi_{G}, X \times \mathcal{U}\right) \quad \text { and } \quad h_{v}(G, \mathcal{U})=h_{v}\left(\phi_{G}, X \times \mathcal{U}\right) \tag{4.7}
\end{equation*}
$$

Let $T=\gamma_{\phi_{G}}$ be the ϕ-skew production extension of γ. Using Theorem 4.11 one has

$$
\begin{align*}
h_{\nu}^{-}\left(\phi_{G}, X \times \mathcal{U}\right) & =h_{\mu \times \nu}^{-}\left(T, \mathcal{U} \mid \mathcal{B}_{X} \times\{\emptyset, Y\}\right) \quad \text { and } \\
h_{\nu}\left(\phi_{G}, X \times \mathcal{U}\right) & =h_{\mu \times v}\left(T, \mathcal{U} \mid \mathcal{B}_{X} \times\{\emptyset, Y\}\right) \tag{4.8}
\end{align*}
$$

As $\mathcal{B}_{X} \times\{\emptyset, Y\}$ is T-invariant, $h_{\mu \times \nu}^{-}\left(T, \mathcal{U} \mid \mathcal{B}_{X} \times\{\emptyset, Y\}\right)=h_{\mu \times v}\left(T, \mathcal{U} \mid \mathcal{B}_{X} \times\{\emptyset, Y\}\right)$ by Lemma 4.13. Combining this fact with (4.7) and (4.8), we get $h_{v}^{-}(G, \mathcal{U})=h_{\nu}(G, \mathcal{U})$. This finishes the proof.

4.5. A local version of Katok's result

At the end of this section, we shall give a local version of a well-known result of Katok [26, Theorem I.I] for a G-action. Let (X, G) be a G-system, $\mu \in \mathcal{M}(X, G)$ and $\mathcal{U} \in \mathcal{C}_{X}$. Let $a \in(0,1)$ and $F \in F(G)$. Set

$$
b(F, a, \mathcal{U})=\min \left\{\#(\mathcal{C}): \mathcal{C} \subseteq \mathcal{U}_{F} \text { and } \mu(\bigcup \mathcal{C}) \geqslant a\right\}
$$

The following simple fact is inspired by [44, Lemma 5.11].

Lemma 4.15. $H_{\mu}\left(\mathcal{U}_{F}\right) \leqslant \log b(F, a, \mathcal{U})+(1-a)|F| \log N(\mathcal{U})+\log 2$.
Proof. Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{\ell}\right\} \subseteq \mathcal{U}_{F}$ such that $\mu(\cup \mathcal{C}) \geqslant a$ and $\ell=b(F, a, \mathcal{U})$. Let $\alpha_{1}=\left\{C_{1}, C_{2} \backslash\right.$ $\left.C_{1}, \ldots, C_{\ell} \backslash \bigcup_{j=1}^{\ell-1} C_{j}\right\}$. Then α_{1} is a partition of $\bigcup_{i=1}^{\ell} C_{i}$ and $\# \alpha_{1}=b(F, a, \mathcal{U})$. Similarly, we take $\alpha_{2}^{\prime} \in \mathcal{P}_{X}$ satisfying $\# \alpha_{2}^{\prime}=N\left(\mathcal{U}_{F}\right)$. Then let $\alpha_{2}=\left\{A \cap\left(X \backslash \bigcup_{i=1}^{\ell} C_{i}\right): A \in \alpha_{2}^{\prime}\right\}$. Then $\# \alpha_{2} \leqslant$ $N\left(\mathcal{U}_{F}\right)$. Set $\alpha=\alpha_{1} \cup \alpha_{2}$. Then $\alpha \in \mathcal{P}_{X}$ and $\alpha \succcurlyeq \mathcal{U}_{F}$. Note that if $x_{1}, \ldots, x_{m} \geqslant 0$ then

$$
\begin{equation*}
\sum_{i=1}^{m} \phi\left(x_{i}\right) \leqslant\left(\sum_{i=1}^{m} x_{i}\right) \log m+\phi\left(\sum_{i=1}^{m} x_{i}\right) \tag{4.9}
\end{equation*}
$$

thus one has

$$
\begin{aligned}
H_{\mu}\left(\mathcal{U}_{F}\right) \leqslant & H_{\mu}(\alpha) \\
\leqslant & \mu\left(\bigcup_{i=1}^{\ell} C_{i}\right)\left(\log \# \alpha_{1}-\log \mu\left(\bigcup_{i=1}^{\ell} C_{i}\right)\right) \\
& +\left(1-\mu\left(\bigcup_{i=1}^{\ell} C_{i}\right)\right)\left(\log \# \alpha_{2}-\log \left(1-\mu\left(\bigcup_{i=1}^{\ell} C_{i}\right)\right)\right)(\operatorname{by}(\\
\leqslant & \log b(F, a, \mathcal{U})+(1-a) \log N\left(\mathcal{U}_{F}\right)-\mu\left(\bigcup_{i=1}^{\ell} C_{i}\right) \log \mu\left(\bigcup_{i=1}^{\ell} C_{i}\right) \\
& -\left(1-\mu\left(\bigcup_{i=1}^{\ell} C_{i}\right)\right) \log \left(1-\mu\left(\bigcup_{i=1}^{\ell} C_{i}\right)\right) \\
\leqslant & \log b(F, a, \mathcal{U})+(1-a)|F| \log N(\mathcal{U})+\log 2 .
\end{aligned}
$$

As a direct application of Lemma 4.15 by letting $a \rightarrow 1$ - we have

Proposition 4.16. Let $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ be a Følner sequence of G. Then

$$
h_{\mu}^{-}(G, \mathcal{U}) \leqslant \lim _{\epsilon \rightarrow 0+} \liminf _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \mathcal{U}\right)
$$

The following result is [30, Theorem 1.3].
Lemma 4.17. Let $\alpha \in \mathcal{P}_{X}$ and $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ be a Følner sequence of G such that $\lim _{n \rightarrow+\infty} \frac{\left|F_{n}\right|}{\log n}=$ $+\infty$ and for some constant $C>0$ one has $\left|\bigcup_{k=1}^{n-1} F_{k}^{-1} F_{n}\right| \leqslant C\left|F_{n}\right|$ for each $n \in \mathbb{N}$. If μ is ergodic then for μ-a.e. $x \in X$ and in the sense of $L^{1}\left(X, \mathcal{B}_{X}, \mu\right)$-norm one has

$$
\lim _{n \rightarrow+\infty}-\frac{\log \mu\left(\alpha_{F_{n}}(x)\right)}{\left|F_{n}\right|}=h_{\mu}(G, \alpha) .
$$

Proposition 4.18. Let $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ be a Følner sequence of G. If $\mu \in \mathcal{M}^{e}(X, G)$ then

$$
h_{\mu}(G, \mathcal{U}) \geqslant \lim _{\epsilon \rightarrow 0+} \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \mathcal{U}\right)
$$

Proof. First for any $\mathcal{P} \in \mathcal{P}_{X}$ we claim the conclusion by proving

$$
\begin{equation*}
h_{\mu}(G, \alpha) \geqslant \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \alpha\right) \quad \text { for each } \epsilon \in(0,1) . \tag{4.10}
\end{equation*}
$$

Proof of the claim. Fix $\epsilon \in(0,1)$. In $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ we can select a sub-sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ satisfying

$$
\limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \alpha\right)=\lim _{n \rightarrow+\infty} \frac{1}{\left|E_{n}\right|} \log b\left(E_{n}, 1-\epsilon, \alpha\right),
$$

$\lim _{n \rightarrow+\infty} \frac{\left|E_{n}\right|}{\log n}=+\infty$ and for some constant $C>0$ one has $\left|\bigcup_{k=1}^{n-1} E_{k}^{-1} E_{n}\right| \leqslant C\left|E_{n}\right|$ for each $n \in \mathbb{N}$. Now applying Lemma 4.17 to $\left\{E_{n}\right\}_{n \in \mathbb{N}}$, for each $\delta>0$ there exists $N \in \mathbb{N}$ such that for each $n \geqslant N, \mu\left(A_{n}\right) \geqslant 1-\epsilon$ where

$$
\begin{aligned}
A_{n} & =\left\{x \in X:-\frac{\log \mu\left(\alpha_{E_{n}}(x)\right)}{\left|E_{n}\right|} \leqslant h_{\mu}(G, \alpha)+\delta\right\} \\
& \supseteq\left\{x \in X:-\frac{\log \mu\left(\alpha_{E_{m}}(x)\right)}{\left|E_{m}\right|} \leqslant h_{\mu}(G, \alpha)+\delta \text { if } m \geqslant n\right\} .
\end{aligned}
$$

Note that A_{n} must be a union of some atoms in $\alpha_{E_{n}}$, where each atom has measure at least $e^{-\left|E_{n}\right|\left(h_{\mu}(G, \alpha)+\delta\right)}$, which implies $b\left(E_{n}, 1-\epsilon, \alpha\right) \leqslant(1-\epsilon) e^{\left|E_{n}\right|\left(h_{\mu}(G, \alpha)+\delta\right)}$ when $n \geqslant N$. So

$$
\limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \alpha\right)=\lim _{n \rightarrow+\infty} \frac{1}{\left|E_{n}\right|} \log b\left(E_{n}, 1-\epsilon, \alpha\right) \leqslant h_{\mu}(G, \alpha)+\delta .
$$

Since $\delta>0$ is arbitrary, one claims (4.10).

Now for general case, by the above discussions we have

$$
\begin{aligned}
h_{\mu}(G, \mathcal{U}) & =\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} h_{\mu}(G, \alpha) \\
& \geqslant \inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} \lim _{\epsilon \rightarrow 0+} \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \alpha\right) \\
& \geqslant \lim _{\epsilon \rightarrow 0+} \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \mathcal{U}\right) .
\end{aligned}
$$

Now combining Theorem 4.14 with Propositions 4.16 and 4.18 we obtain (when $G=\mathbb{Z}$, it can be viewed as a local version of Katok's result [26, Theorem I.I]):

Theorem 4.19. Let $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ be a Følner sequence of G. If $\mu \in \mathcal{M}^{e}(X, G)$ then

$$
\begin{aligned}
h_{\mu}(G, \mathcal{U}) & =\lim _{\epsilon \rightarrow 0+} \limsup _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \mathcal{U}\right) \\
& =\lim _{\epsilon \rightarrow 0+} \liminf _{n \rightarrow+\infty} \frac{1}{\left|F_{n}\right|} \log b\left(F_{n}, 1-\epsilon, \mathcal{U}\right) .
\end{aligned}
$$

5. A local variational principle of topological entropy

The main result of this section is
Theorem 5.1 (Local variational principle of topological entropy). Let $\mathcal{U} \in \mathcal{C}_{X}^{o}$. Then

$$
h_{\text {top }}(G, \mathcal{U})=\max _{\mu \in \mathcal{M}(X, G)} h_{\mu}(G, \mathcal{U})=\max _{\mu \in \mathcal{M}^{e}(X, G)} h_{\mu}(G, \mathcal{U}) .
$$

We remark that Theorem 5.1 generalizes the results in [33,41]:
Theorem 5.2 (Variational principle of topological entropy). (See [33,41].)

$$
h_{\text {top }}(G, X)=\sup _{\mu \in \mathcal{M}(X, G)} h_{\mu}(G, X)=\sup _{\mu \in \mathcal{M}^{e}(X, G)} h_{\mu}(G, X) .
$$

Proof. It is a direct corollary of Lemma 3.4(3), Theorems 3.5 and 5.1.
Before proving Theorem 5.1, we need a key lemma.
Lemma 5.3. Let $\mathcal{U} \in \mathcal{C}_{X}^{o}$ and $\alpha_{l} \in \mathcal{P}_{X}$ with $\alpha_{l} \succcurlyeq \mathcal{U}, 1 \leqslant l \leqslant K$. Then for each $F \in F(G)$ there exists a finite subset $B_{F} \subseteq X$ such that each atom of $\left(\alpha_{l}\right)_{F}$ contains at most one point of B_{F}, $l=1, \ldots, K$ and $\# B_{F} \geqslant \frac{N\left(\mathcal{U}_{F}\right)}{K}$.

Proof. We follow the arguments in the proof of [24, Lemma 3.5]. Let $F \in F(G)$. For each $l=1, \ldots, K$ and $x \in X$, let $A_{l}(x)$ be the atom of $\left(\alpha_{l}\right)_{F}$ containing x, then for $x_{1}, x_{2} \in X, x_{1}$ and x_{2} are contained in the same atom of $\left(\alpha_{l}\right)_{F}$ iff $A_{l}\left(x_{1}\right)=A_{l}\left(x_{2}\right)$.

To construct the subset B_{F} we first take any $x_{1} \in X$. If $\bigcup_{l=1}^{K} A_{l}\left(x_{1}\right)=X$, then we take $B_{F}=$ $\left\{x_{1}\right\}$. Otherwise, we take $X_{1}=X \backslash \bigcup_{l=1}^{K} A_{l}\left(x_{1}\right) \neq \emptyset$ and take any $x_{2} \in X_{1}$. If $\bigcup_{l=1}^{K} A_{l}\left(x_{2}\right) \supseteq X_{1}$, then we take $B_{F}=\left\{x_{1}, x_{2}\right\}$. Otherwise, we take $X_{2}=X_{1} \backslash \bigcup_{l=1}^{K} A_{l}\left(x_{2}\right) \neq \emptyset$. Since $\left\{A_{l}(x): 1 \leqslant\right.$ $l \leqslant K, x \in X\}$ is a finite cover of X, we can continue the above procedure inductively to obtain a finite subset $B_{F}=\left\{x_{1}, \ldots x_{m}\right\}$ and non-empty subsets $X_{j}, j=1, \ldots, m-1$ such that
(1) $X_{1}=X \backslash \bigcup_{l=1}^{K} A_{l}\left(x_{1}\right)$,
(2) $X_{j+1}=X_{j} \backslash \bigcup_{l=1}^{K} A_{l}\left(x_{j+1}\right)$ for $j=1, \ldots, m-1$,
(3) $\bigcup_{j=1}^{m} \bigcup_{l=1}^{K} A_{l}\left(x_{j}\right)=X$.

From the construction of B_{F}, clearly each atom of $\left(\alpha_{l}\right)_{F}, l=1, \ldots, K$, contains at most one point of B_{F}. Since for any $1 \leqslant i \leqslant m$ and $1 \leqslant l \leqslant K, A_{l}\left(x_{i}\right)$ is an atom of $\left(\alpha_{l}\right)_{F}$, and thus is contained in some element of \mathcal{U}_{F}, so $m K \geqslant N\left(\mathcal{U}_{F}\right)$ (using (3)), that is, \#B $B_{F}=m \geqslant \frac{N\left(\mathcal{U}_{F}\right)}{K}$.

Proposition 5.4. Let $\mathcal{U} \in \mathcal{C}_{X}^{o}$. If X is zero-dimensional then there exists $\mu \in \mathcal{M}(X, G)$ satisfying

$$
\begin{equation*}
h_{\mu}(G, \mathcal{U}) \geqslant h_{\mathrm{top}}(G, \mathcal{U}) \tag{5.1}
\end{equation*}
$$

Proof. Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{d}\right\}$ and $\mathcal{U}^{*}=\left\{\alpha=\left\{A_{1}, \ldots, A_{d}\right\} \in \mathcal{P}_{X}: A_{m} \subseteq U_{m}, m=1, \ldots, d\right\}$. Since X is zero-dimensional, the family of partitions in \mathcal{U}^{*} consisting of clopen (closed and open) subsets, which are finer than \mathcal{U}, is countable. We let $\left\{\alpha_{l}: l \geqslant 1\right\}$ denote an enumeration of this family. Then $h_{\nu}(G, \mathcal{U})=\inf _{l \in \mathbb{N}} h_{\nu}\left(G, \alpha_{l}\right)$ for each $v \in \mathcal{M}(X, G)$ by Lemma 3.7.

Let $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ be a Følner sequence of G satisfying $\left|F_{n}\right| \geqslant n$ for each $n \in \mathbb{N}$ (obviously, such a sequence exists since $|G|=+\infty$). By Lemma 5.3, for each $n \in \mathbb{N}$ there exists a finite subset $B_{n} \subseteq X$ such that

$$
\begin{equation*}
\# B_{n} \geqslant \frac{N\left(\mathcal{U}_{F_{n}}\right)}{n}, \tag{5.2}
\end{equation*}
$$

and each atom of $\left(\alpha_{l}\right)_{F_{n}}$ contains at most one point of B_{n}, for each $l=1, \ldots, n$. Let

$$
v_{n}=\frac{1}{\# B_{n}} \sum_{x \in B_{n}} \delta_{x} \quad \text { and } \quad \mu_{n}=\frac{1}{\left|F_{n}\right|} \sum_{g \in F_{n}} g v_{n} .
$$

We can choose a sub-sequence $\left\{n_{j}\right\}_{j \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mu_{n_{j}} \rightarrow \mu$ in the weak*-topology of $\mathcal{M}(X)$ as $j \rightarrow+\infty$. It is not hard to check the invariance of μ, i.e. $\mu \in \mathcal{M}(X, G)$. Now we aim to show that μ satisfies (5.1). It suffices to show that $h_{\text {top }}(G, \mathcal{U}) \leqslant h_{\mu}\left(G, \alpha_{l}\right)$ for each $l \in \mathbb{N}$.

Fix an $l \in \mathbb{N}$ and each $n>l$. Using (5.2) we know from the construction of B_{n} that

$$
\begin{equation*}
\log N\left(\mathcal{U}_{F_{n}}\right)-\log n \leqslant \log \left(\# B_{n}\right)=\sum_{x \in B_{n}}-v_{n}(\{x\}) \log v_{n}(\{x\})=H_{v_{n}}\left(\left(\alpha_{l}\right)_{F_{n}}\right) \tag{5.3}
\end{equation*}
$$

On the other hand, for each $B \in F(G)$, using Lemma 3.1(3) one has

$$
\begin{align*}
\frac{1}{\left|F_{n}\right|} H_{\nu_{n}}\left(\left(\alpha_{l}\right)_{F_{n}}\right) & \leqslant \frac{1}{\left|F_{n}\right|} \sum_{g \in F_{n}} \frac{1}{|B|} H_{\nu_{n}}\left(\left(\alpha_{l}\right)_{B g}\right)+\frac{\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right|}{\left|F_{n}\right|} \cdot \log \# \alpha_{l} \\
& =\frac{1}{|B| \cdot\left|F_{n}\right|} \sum_{g \in F_{n}} H_{g v_{n}}\left(\left(\alpha_{l}\right)_{B}\right)+\frac{\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right|}{\left|F_{n}\right|} \cdot \log d \\
& \leqslant \frac{1}{|B|} H_{\mu_{n}}\left(\left(\alpha_{l}\right)_{B}\right)+\frac{\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right|}{\left|F_{n}\right|} \cdot \log d . \tag{5.4}
\end{align*}
$$

Now by dividing (5.3) on both sides by $\left|F_{n}\right|$, then combining it with (5.4) we obtain

$$
\begin{equation*}
\frac{1}{\left|F_{n}\right|} \log N\left(\mathcal{U}_{F_{n}}\right) \leqslant \frac{1}{|B|} H_{\mu_{n}}\left(\left(\alpha_{l}\right)_{B}\right)+\frac{\log n}{\left|F_{n}\right|}+\frac{\left|F_{n} \backslash\left\{g \in G: B^{-1} g \subseteq F_{n}\right\}\right|}{\left|F_{n}\right|} \cdot \log d . \tag{5.5}
\end{equation*}
$$

Noting that $\lim _{j \rightarrow+\infty} H_{\mu_{n_{j}}}\left(\left(\alpha_{l}\right)_{B}\right)=H_{\mu}\left(\left(\alpha_{l}\right)_{B}\right)$, by substituting n with n_{j} in (5.5) one has

$$
h_{\mathrm{top}}(G, \mathcal{U}) \leqslant \frac{1}{|B|} H_{\mu}\left(\left(\alpha_{l}\right)_{B}\right) \quad(\text { using }(3.6))
$$

Now, taking the infimum over $B \in F(G)$, we get $h_{\text {top }}(G, \mathcal{U}) \leqslant h_{\mu}\left(G, \alpha_{l}\right)$. This ends the proof.

A continuous map $\pi:(X, G) \rightarrow(Y, G)$ is called a homomorphism or a factor map if it is onto and $\pi \circ g=g \circ \pi$ for each $g \in G$. In this case, (X, G) is called an extension of (Y, G) and (Y, G) is called a factor of (X, G). If π is also injective then it is called an isomorphism.

Proof of Theorem 5.1. First, by Lemma 3.4(1) and Theorem 4.14, it suffices to prove $h_{\theta}(G, \mathcal{U}) \geqslant h_{\text {top }}(G, \mathcal{U})$ for some $\theta \in \mathcal{M}^{e}(X, G)$. It is well known that there exists a surjective continuous map $\phi_{1}: C \rightarrow X$, where C is a cantor set. Let C^{G} be the product space equipped with the G-shift $G \times C^{G} \rightarrow C^{G},\left(g^{\prime},\left(z_{g}\right)_{g \in G}\right) \mapsto\left(z_{g}^{\prime}\right)_{g \in G}$ where $z_{g}^{\prime}=z_{g^{\prime} g}, g^{\prime}, g \in G$. Define

$$
Z=\left\{\bar{z}=\left(z_{g}\right)_{g \in G} \in C^{G}: \phi_{1}\left(z_{g_{1} g_{2}}\right)=g_{1} \phi_{1}\left(z_{g_{2}}\right) \text { for each } g_{1}, g_{2} \in G\right\},
$$

and $\varphi: Z \rightarrow X,\left(z_{g}\right)_{g \in G} \mapsto \phi_{1}\left(z_{e_{G}}\right)$. It's not hard to check that $Z \subseteq C^{G}$ is a closed invariant subset under the G-shift. Moreover, $\varphi:(Z, G) \rightarrow(X, G)$ becomes a factor map between G-systems. Applying Proposition 5.4 to the G-system (Z, G), there exists $v \in \mathcal{M}(Z, G)$ with $h_{\nu}\left(G, \varphi^{-1}(\mathcal{U})\right) \geqslant h_{\mathrm{top}}\left(G, \varphi^{-1}(\mathcal{U})\right)=h_{\text {top }}(G, \mathcal{U})$. Let $\mu=\varphi \nu \in \mathcal{M}(X, G)$. Then

$$
\begin{aligned}
h_{\mu}(G, \mathcal{U}) & =\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} h_{\mu}(G, \alpha) \\
& =\inf _{\alpha \in \mathcal{P}_{X}: \alpha \succcurlyeq \mathcal{U}} h_{v}\left(G, \varphi^{-1}(\alpha)\right) \geqslant h_{v}\left(G, \varphi^{-1}(\mathcal{U})\right) \geqslant h_{\text {top }}(G, \mathcal{U}) .
\end{aligned}
$$

Let $\mu=\int_{\mathcal{M}^{e}(X, T)} \theta d m(\theta)$ be the ergodic decomposition of μ. Then by Theorem 3.13 one has

$$
\int_{\mathcal{M}^{e}(X, T)} h_{\theta}(G, \mathcal{U}) d m(\theta)=h_{\mu}(G, \mathcal{U})
$$

Hence, $h_{\theta}(G, \mathcal{U}) \geqslant h_{\text {top }}(G, \mathcal{U})$ for some $\theta \in \mathcal{M}^{e}(X, G)$. This ends the proof.
At last, we ask an open question.

Question 5.5. In the proof of [19, Proposition 7.10] (or its relative version [24, Theorem A.3]), a universal version of the well-known Rohlin Lemma [19, Proposition 7.9] plays a key role. Thus, a natural open question arises: for actions of a countable discrete amenable group, are there a universal version of Rohlin Lemma and a similar result to [19, Proposition 7.10] or [24, Theorem A.3]? Whereas, up to now they still stand as open questions.

6. Entropy tuples

In this section we will firstly introduce entropy tuples in both topological and measuretheoretic settings. Then we characterize the set of entropy tuples for an invariant measure as the support of some specific relative product measure. Finally by the lift property of entropy tuples, we will establish the variational relation of entropy tuples. At the same time, we also discuss entropy tuples of a finite product. We need to mention that the proof of those results in
this section is similar to the proof of corresponding results in [23,25] for the case $G=\mathbb{Z}$, but for completion we provide the detailed proof.

6.1. Topological entropy tuples

First we are going to define the topological entropy tuples.
Let $n \geqslant 2$. Set $X^{(n)}=X \times \cdots \times X$ (n-times); $\Delta_{n}(X)=\left\{\left(x_{i}\right)_{1}^{n} \in X^{(n)} \mid x_{1}=\cdots=x_{n}\right\}$, the n-th diagonal of X. Let $\left(x_{i}\right)_{1}^{n} \in X^{(n)} \backslash \Delta_{n}(X)$. We say $\mathcal{U} \in \mathcal{C}_{X}$ admissible w.r.t. $\left(x_{i}\right)_{1}^{n}$, if for any $U \in \mathcal{U}, \bar{U} \nsupseteq\left\{x_{1}, \ldots, x_{n}\right\}$.

Definition 6.1. Let $n \geqslant 2 .\left(x_{i}\right)_{1}^{n} \in X^{(n)} \backslash \Delta_{n}(X)$ is called a topological entropy n-tuple if $h_{\text {top }}(G, \mathcal{U})>0$ when $\mathcal{U} \in \mathcal{C}_{X}$ is admissible w.r.t. $\left(x_{i}\right)_{1}^{n}$.

Remark 6.2. We may replace all admissible finite covers by admissible finite open or closed covers in the definition. Moreover, we can choose all covers to be of the forms $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$, where U_{i}^{c} is a neighborhood of $x_{i}, 1 \leqslant i \leqslant n$ such that if $x_{i} \neq x_{j}, 1 \leqslant i<j \leqslant n$ then $U_{i}^{c} \cap$ $U_{j}^{c}=\emptyset$. Thus, our definition of topological entropy n-tuples is the same as the one defined by Kerr and Li in [27].

For each $n \geqslant 2$, denote by $E_{n}(X, G)$ the set of all topological entropy n-tuples. Then following the ideas of [2] we obtain directly

Proposition 6.3. Let $n \geqslant 2$.

1. If $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\} \in \mathcal{C}_{X}^{o}$ satisfies $h_{\text {top }}(G, \mathcal{U})>0$, then $E_{n}(X, G) \cap \bigcap_{i=1}^{n} U_{i}^{c} \neq \emptyset$.
2. If $h_{\mathrm{top}}(G, X)>0$, then $\emptyset \neq \overline{E_{n}(X, G)} \subseteq X^{(n)}$ is G-invariant. Moreover, $\overline{E_{n}(X, G)} \backslash$ $\Delta_{n}(X)=E_{n}(X, G)$.
3. Let $\pi:(Z, G) \rightarrow(X, G)$ be a factor map between G-systems. Then

$$
E_{n}(X, G) \subseteq(\pi \times \cdots \times \pi) E_{n}(Z, G) \subseteq E_{n}(X, G) \cup \Delta_{n}(X)
$$

4. Let (W, G) be a sub- G-system of (X, G). Then $E_{n}(W, G) \subseteq E_{n}(X, G)$.

The notion of disjointness of two TDSs was introduced in [15]. Blanchard proved that any u.p.e. TDS was disjoint from all minimal TDSs with zero topological entropy (see [2, Proposition 6]). This is also true for actions of a countable discrete amenable group. First we introduce

Definition 6.4. Let $n \geqslant 2$. We say that
(1) (X, G) has u.p.e. of order n, if any cover of X by n non-dense open sets has positive topological entropy. When $n=2$, we say simply that (X, G) has u.p.e.;
(2) (X, G) has u.p.e. of all orders or topological K if any cover of X by finite non-dense open sets has positive topological entropy, equivalently, it has u.p.e. of order m for any $m \geqslant 2$.

Thus, for each $n \geqslant 2,(X, G)$ has u.p.e. of order n iff $E_{n}(X, G)=X^{(n)} \backslash \Delta_{n}(X)$.

We say (X, G) is minimal if it contains properly no other sub- G-systems. Let (X, G) and (Y, G) be two G-systems and $\pi_{X}: X \times Y \rightarrow X, \pi_{Y}: X \times Y \rightarrow Y$ the natural projections. $J \subseteq$ $X \times Y$ is called a joining of (X, G) and (Y, G) if J is a G-invariant closed subset satisfying $\pi_{X}(J)=X$ and $\pi_{Y}(J)=Y$. Clearly, $X \times Y$ is always a joining of (X, G) and (Y, G). We say that (X, G) and (Y, G) are disjoint if $X \times Y$ is the unique joining of (X, G) and (Y, G). The proof of the following theorem is similar to that of [2, Proposition 6] or [25, Theorem 2.5].

Theorem 6.5. Let (X, G) be a G-system having u.p.e. and (Y, G) a minimal G-system with zero topological entropy. Then (X, G) and (Y, G) are disjoint.

6.2. Measure-theoretic entropy tuples

Now we aim to define the measure-theoretic entropy tuples for an invariant Borel probability measure.

Let $\mu \in \mathcal{M}(X, G) . A \subseteq X$ is called a μ-set if $A \in \mathcal{B}_{X}^{\mu}$. If $\alpha=\left\{A_{1}, \ldots, A_{k}\right\} \subseteq \mathcal{B}_{X}^{\mu}$ satisfies $\bigcup_{i=1}^{k} A_{i}=X$ and $A_{i} \cap A_{j}=\emptyset$ when $1 \leqslant i<j \leqslant k$ then we say α is a finite μ-measurable partition of X. Denote by \mathcal{P}_{X}^{μ} the set of all finite μ-measurable partitions of X. Similarly, we can introduce \mathcal{C}_{X}^{μ} and define $\alpha_{1} \succcurlyeq \alpha_{2}$ for $\alpha_{1}, \alpha_{2} \in \mathcal{C}_{X}^{\mu}$ and so on.

Definition 6.6. Let $n \geqslant 2 .\left(x_{i}\right)_{1}^{n} \in X^{(n)} \backslash \Delta_{n}(X)$ is called a measure-theoretic entropy n-tuple for μ if $h_{\mu}(G, \alpha)>0$ for any admissible $\alpha \in \mathcal{P}_{X}$ w.r.t. $\left(x_{i}\right)_{1}^{n}$.

Remark 6.7. We may replace all admissible $\alpha \in \mathcal{P}_{X}$ by all admissible $\alpha \in \mathcal{P}_{X}^{\mu}$ in the definition.
For each $n \geqslant 2$, denote by $E_{n}^{\mu}(X, G)$ the set of all measure-theoretic entropy n-tuples for $\mu \in \mathcal{M}(X, G)$. In the following, we shall investigate the structure of $E_{n}^{\mu}(X, G)$. To this purpose, let P_{μ} be the Pinsker σ-algebra of $\left(X, \mathcal{B}_{X}^{\mu}, \mu, G\right)$, i.e. $P_{\mu}=\left\{A \in \mathcal{B}_{X}^{\mu}: h_{\mu}\left(G,\left\{A, A^{c}\right\}\right)=0\right\}$. We define a measure $\lambda_{n}(\mu)$ on $\left(X^{(n)},\left(\mathcal{B}_{X}^{\mu}\right)^{(n)}, G\right)$ by letting

$$
\lambda_{n}(\mu)\left(\prod_{i=1}^{n} A_{i}\right)=\int_{X} \prod_{i=1}^{n} \mathbb{E}\left(1_{A_{i}} \mid P_{\mu}\right) d \mu
$$

where $\left(\mathcal{B}_{X}^{\mu}\right)^{(n)}=\mathcal{B}_{X}^{\mu} \times \cdots \times \mathcal{B}_{X}^{\mu}(n$ times $)$ and $A_{i} \in \mathcal{B}_{X}^{\mu}, i=1, \ldots, n$. First we need
Lemma 6.8. Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\} \in \mathcal{C}_{X}$. Then $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)>0$ iff for any finite (or n-set) μ-measurable partition α, finer than \mathcal{U} as a cover, one has $h_{\mu}(G, \alpha)>0$.

Proof. First we assume that for any finite (or n-set) μ-measurable partition α, finer than \mathcal{U} as a cover, one has $h_{\mu}(G, \alpha)>0$ and $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)=0$. For $i=1, \ldots, n$, let $C_{i}=\{x \in$ $\left.X: \mathbb{E}\left(1_{U_{i}^{c}} \mid P_{\mu}\right)(x)>0\right\} \in P_{\mu}$, and put $D_{i}=C_{i} \cup\left(U_{i}^{c} \backslash C_{i}\right), D_{i}(0)=D_{i}$ and $D_{i}(1)=D_{i}^{c}$, as

$$
0=\int_{X \backslash C_{i}} \mathbb{E}\left(1_{U_{i}^{c}} \mid P_{\mu}\right)(x) d \mu=\mu\left(U_{i}^{c} \cap\left(X \backslash C_{i}\right)\right)=\mu\left(U_{i}^{c} \backslash C_{i}\right),
$$

then $D_{i}^{c} \subseteq U_{i}$ and $D_{i}(0), D_{i}(1) \in P_{\mu}$. For any $s=(s(1), \ldots, s(n)) \in\{0,1\}^{n}$, let $D_{s}=$ $\bigcap_{i=1}^{n} D_{i}(s(i))$ and set $D_{0}^{j}=\left(\bigcap_{i=1}^{n} D_{i}\right) \cap\left(U_{j} \backslash \bigcup_{k=1}^{j-1} U_{k}\right)$ for $j=1, \ldots, n$. We consider

$$
\alpha=\left\{D_{s}: s \in\{0,1\}^{n} \text { and } s \neq(0, \ldots, 0)\right\} \cup\left\{D_{0}^{1}, \ldots, D_{0}^{n}\right\} .
$$

On one hand, for any $s \in\{0,1\}^{n}$ with $s \neq(0, \ldots, 0)$, one has $s(i)=1$ for some $1 \leqslant i \leqslant n$, then $D_{s} \subseteq D_{i}^{c} \subseteq U_{i}$. Note that $D_{0}^{j} \subseteq U_{j}, j=1, \ldots, n$, thus $\alpha \succcurlyeq \mathcal{U}$ and so $h_{\mu}(G, \alpha)>0$. On the other hand, obviously $\mu\left(\bigcap_{i=1}^{n} D_{i}\right)=\mu\left(\bigcap_{i=1}^{n} C_{i}\right)$ and

$$
0=\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)=\int_{\bigcap_{i=1}^{n} C_{i}} \prod_{i=1}^{n} \mathbb{E}\left(1_{U_{i}^{c}} \mid P_{\mu}\right)(x) d \mu(x),
$$

then $\mu\left(\bigcap_{i=1}^{n} C_{i}\right)=0$, and so $D_{0}^{1}, \ldots, D_{0}^{n} \in P_{\mu}$. As $D_{1}, \ldots, D_{n} \in P_{\mu}, D_{s} \in P_{\mu}$ for each $s \in$ $\{0,1\}^{n}$, thus $\alpha \subseteq P_{\mu}$, one gets $h_{\mu}(G, \alpha)=0$, a contradiction.

Now we assume $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)>0$. For any finite (or n-set) μ-measurable partition α which is finer than \mathcal{U}, with no loss of generality we assume $\alpha=\left\{A_{1}, \ldots, A_{n}\right\}$ with $A_{i} \subseteq U_{i}$, $i=1, \ldots, n$. As

$$
\int_{X} \prod_{i=1}^{n} \mathbb{E}\left(1_{X \backslash A_{i}} \mid P_{\mu}\right)(x) d \mu(x) \geqslant \int_{X} \prod_{i=1}^{n} \mathbb{E}\left(1_{U_{i}^{c}} \mid P_{\mu}\right)(x) d \mu(x)=\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)>0
$$

therefore $A_{j} \notin P_{\mu}$ for every $1 \leqslant j \leqslant n$, and so $h_{\mu}(G, \alpha)>0$. This finishes the proof.
Then we have (we remark that the case of $G=\mathbb{Z}$ is proved in [16] and [23]):
Theorem 6.9. Let $n \geqslant 2$ and $\mu \in \mathcal{M}(X, G)$. Then $E_{n}^{\mu}(X, G)=\operatorname{supp}\left(\lambda_{n}(\mu)\right) \backslash \Delta_{n}(X)$.
Proof. Let $\left(x_{i}\right)_{1}^{n} \in E_{n}^{\mu}(X, G)$. To show $\left(x_{i}\right)_{1}^{n} \in \operatorname{supp}\left(\lambda_{n}(\mu)\right) \backslash \Delta_{n}(X)$, it remains to prove that for any Borel neighborhood $\prod_{i=1}^{n} U_{i}$ of $\left(x_{i}\right)_{1}^{n}$ in $X^{(n)}, \lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}\right)>0$. Set $\mathcal{U}=\left\{U_{1}^{c}, \ldots, U_{n}^{c}\right\}$. With no loss of generality we assume $\mathcal{U} \in \mathcal{C}_{X}$ (if necessary we replace U_{i} by a smaller Borel neighborhood of $x_{i}, 1 \leqslant i \leqslant n$). It is clear that if $\alpha \in \mathcal{P}_{X}^{\mu}$ is finer than \mathcal{U} then α is admissible w.r.t. $\left(x_{i}\right)_{1}^{n}$, and so $h_{\mu}(G, \alpha)>0$. Using Lemma 6.8 one has $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}\right)>0$.

Now let $\left(x_{i}\right)_{1}^{n} \in \operatorname{supp}\left(\lambda_{n}(\mu)\right) \backslash \Delta_{n}(X)$. We shall show that $h_{\mu}(G, \alpha)>0$ for any admissible $\alpha=\left\{A_{1}, \ldots, A_{k}\right\} \in \mathcal{P}_{X}$ w.r.t. $\left(x_{i}\right)_{1}^{n}$. In fact, let α be such a partition. Then there exists a neighborhood U_{l} of $x_{l}, 1 \leqslant l \leqslant n$ such that for each $i \in\{1, \ldots, k\}$ we find $j_{i} \in\{1, \ldots, n\}$ with $A_{i} \subseteq U_{j_{i}}^{c}$, i.e. $\alpha \succcurlyeq \mathcal{U}=\left\{U_{1}^{c}, \ldots, U_{n}^{c}\right\}$. As $\left(x_{i}\right)_{1}^{n} \in \operatorname{supp}\left(\lambda_{n}(\mu)\right) \backslash \Delta_{n}(X), \lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}\right)>0$ and so $h_{\mu}(G, \alpha)>0$ (see Lemma 6.8). This ends the proof.

Before proceeding we also need
Theorem 6.10. (See [7, Theorem 0.1].) Let $\mu \in \mathcal{M}(X, G), \alpha \in \mathcal{P}_{X}^{\mu}$ and $\epsilon>0$. Then there exists $K \in F(G)$ such that if $F \in F(G)$ satisfies $\left(F F^{-1} \backslash\left\{e_{G}\right\}\right) \cap K=\emptyset$ then

$$
\left|\frac{1}{|F|} H_{\mu}\left(\alpha_{F} \mid P_{\mu}\right)-H_{\mu}\left(\alpha \mid P_{\mu}\right)\right|<\epsilon .
$$

The following theorem is crucial for this section of our paper, and the methods of proving it may be useful in other settings as well.

Theorem 6.11. Let $\mu \in \mathcal{M}(X, G)$ and $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\} \in \mathcal{C}_{X}^{\mu}, n \geqslant 2$. If $h_{\mu}(G, \alpha)>0$ for any finite (or n-set) μ-measurable partition α, finer than \mathcal{U}, then $h_{\mu}^{-}(G, \mathcal{U})>0$.

Proof. For any $s=(s(1), \ldots, s(n)) \in\{0,1\}^{n}$, set $A_{s}=\bigcap_{i=1}^{n} U_{i}(s(i))$, where $U_{i}(0)=U_{i}$ and $U_{i}(1)=U_{i}^{c}$. Let $\alpha=\left\{A_{s}: s \in\{0,1\}^{n}\right\}$. Note that $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)=\int_{X} \prod_{i=1}^{n} \mathbb{E}\left(1_{U_{i}^{c}}^{c} \mid P_{\mu}\right) d \mu>0$ (Lemma 6.8), hence there exists $M \in \mathbb{N}$ such that $\mu(D)>0$, where

$$
D=\left\{x \in X: \min _{1 \leqslant i \leqslant n} \mathbb{E}\left(1_{U_{i}^{c}} \mid P_{\mu}\right)(x) \geqslant \frac{1}{M}\right\} .
$$

Claim. If $\beta \in \mathcal{P}_{X}^{\mu}$ is finer than \mathcal{U} then $H_{\mu}\left(\alpha \mid \beta \vee P_{\mu}\right) \leqslant H_{\mu}\left(\alpha \mid P_{\mu}\right)-\frac{\mu(D)}{M} \log \left(\frac{n}{n-1}\right)$.
Proof. With no loss of generality we assume $\beta=\left\{B_{1}, \ldots, B_{n}\right\}$ with $B_{i} \subseteq U_{i}, i=1, \ldots, n$. Then

$$
\begin{align*}
H_{\mu}\left(\alpha \mid \beta \vee P_{\mu}\right) & =H_{\mu}\left(\alpha \vee \beta \mid P_{\mu}\right)-H_{\mu}\left(\beta \mid P_{\mu}\right) \\
& =\int_{X} \sum_{s \in\{0,1\}^{n}} \sum_{i=1}^{n} \mathbb{E}\left(1_{B_{i}} \mid P_{\mu}\right) \phi\left(\frac{\mathbb{E}\left(1_{A_{s} \cap B_{i}} \mid P_{\mu}\right)}{\mathbb{E}\left(1_{B_{i}} \mid P_{\mu}\right)}\right) d \mu \\
& =\sum_{s \in\{0,1\}^{n}} \int_{X} \sum_{1 \leqslant i \leqslant n, s(i)=0} \mathbb{E}\left(1_{B_{i}} \mid P_{\mu}\right) \phi\left(\frac{\mathbb{E}\left(1_{A_{s} \cap B_{i} \mid} \mid P_{\mu}\right)}{\mathbb{E}\left(1_{B_{i}} \mid P_{\mu}\right)}\right) d \mu, \tag{6.1}
\end{align*}
$$

where the last equality comes from the fact that, for any $s \in\{0,1\}^{n}$ and $1 \leqslant i \leqslant n$, if $s(i)=1$ then $A_{s} \cap B_{i}=\emptyset$ and so $\frac{\mathbb{E}\left(1_{A_{s} \cap B_{i} \mid} \mid P_{\mu}\right)}{\mathbb{E}\left(1_{B_{i} \mid} \mid P_{\mu}\right)}(x)=0$ for μ-a.e. $x \in X$. Put $c_{s}=\sum_{1 \leqslant k \leqslant n, s(k)=0} \mathbb{E}\left(1_{B_{k}} \mid P_{\mu}\right)$. As ϕ is a concave function,

$$
\begin{align*}
(6.1) & \leqslant \sum_{s \in\{0,1\}^{n}} \int_{X} c_{s} \cdot \phi\left(\sum_{1 \leqslant i \leqslant n, s(i)=0} \frac{\mathbb{E}\left(1_{B_{i}} \mid P_{\mu}\right)}{c_{s}} \cdot \frac{\mathbb{E}\left(1_{A_{s} \cap B_{i}} \mid P_{\mu}\right)}{\mathbb{E}\left(1_{B_{i}} \mid P_{\mu}\right)}\right) d \mu \\
& =\sum_{s \in\{0,1\}^{n}} \int_{X} c_{s} \cdot \phi\left(\frac{\mathbb{E}\left(1_{A_{s}} \mid P_{\mu}\right)}{c_{s}}\right) d \mu \\
& =\sum_{s \in\{0,1\}^{n}}\left(\int_{X} \phi\left(\mathbb{E}\left(1_{A_{s}} \mid P_{\mu}\right)\right) d \mu-\int_{X} \mathbb{E}\left(1_{A_{s}} \mid P_{\mu}\right) \log \frac{1}{c_{s}} d \mu\right) \\
& =H_{\mu}\left(\alpha \mid P_{\mu}\right)-\sum_{s \in\{0,1\}^{n}} \int_{X} \mathbb{E}\left(1_{A_{s}} \mid P_{\mu}\right) \log \frac{1}{c_{s}} d \mu . \tag{6.2}
\end{align*}
$$

Note that if $s(i)=1,1 \leqslant i \leqslant n$, then $\sum_{1 \leqslant k \leqslant n, s(k)=0} \mathbb{E}\left(1_{B_{k}} \mid P_{\mu}\right) \leqslant \mathbb{E}\left(1_{X \backslash B_{i}} \mid P_{\mu}\right)$; moreover, $\left(\frac{b_{1}+\cdots+b_{n}}{n}\right)^{n} \geqslant b_{1} \cdots b_{n}$ and $\sum_{i=1}^{n} b_{i}=\sum_{i=1}^{n} \sum_{1 \leqslant j \leqslant n, j \neq i} \mathbb{E}\left(1_{B_{j}} \mid P_{\mu}\right)=(n-1) \sum_{i=1}^{n} \mathbb{E}\left(1_{B_{i}} \mid\right.$ $\left.P_{\mu}\right)=n-1$, here $b_{i}=\mathbb{E}\left(1_{X \backslash B_{i}} \mid P_{\mu}\right), i=1, \ldots, n$. Then we have

$$
\begin{align*}
& \sum_{s \in\{0,1\}^{n}} \int_{X} \mathbb{E}\left(1_{A_{s}} \mid P_{\mu}\right) \log \left(\frac{1}{\sum_{1 \leqslant k \leqslant n, s(k)=0} \mathbb{E}\left(1_{B_{k} \mid} \mid P_{\mu}\right)}\right) d \mu \\
& \geqslant \frac{1}{n} \sum_{i=1}^{n} \int_{X}\left(\sum_{s \in\{0,1\}^{n}, s(i)=1} \mathbb{E}\left(1_{A_{s}} \mid P_{\mu}\right)\right) \log \frac{1}{b_{i}} d \mu \\
& \quad=\frac{1}{n} \sum_{i=1}^{n} \int_{X} \mathbb{E}\left(1_{U_{i}^{c}} \mid P_{\mu}\right) \log \frac{1}{b_{i}} d \mu \geqslant \frac{1}{n M} \sum_{i=1}^{n} \int_{D} \log \frac{1}{b_{i}} d \mu \\
& \quad=\frac{1}{n M} \int_{D} \log \frac{1}{\prod_{i=1}^{n} b_{i}} d \mu \geqslant \frac{1}{M} \int_{D} \log \frac{n}{\sum_{i=1}^{n} b_{i}} d \mu=\frac{\mu(D)}{M} \log \left(\frac{n}{n-1}\right) . \tag{6.3}
\end{align*}
$$

Hence, $H_{\mu}\left(\alpha \mid \beta \vee P_{\mu}\right) \leqslant H_{\mu}\left(\alpha \mid P_{\mu}\right)-\frac{\mu(D)}{M} \log \left(\frac{n}{n-1}\right)$ (using (6.2) and (6.3)).
Set $\epsilon=\frac{\mu(D)}{M} \log \left(\frac{n}{n-1}\right)>0$. By Theorem 6.10 , there exists $K \in F(G)$ such that

$$
\begin{equation*}
\left|\frac{1}{|F|} H_{\mu}\left(\alpha_{F} \mid P_{\mu}\right)-H_{\mu}\left(\alpha \mid P_{\mu}\right)\right|<\frac{\epsilon}{2} \tag{6.4}
\end{equation*}
$$

when $F \in F(G)$ satisfies $\left(F F^{-1} \backslash\left\{e_{G}\right\}\right) \cap K=\emptyset$. Let $\left\{F_{m}\right\}_{m \in \mathbb{N}}$ be a Følner sequence of G. For each $m \in \mathbb{N}$, we can take $E_{m} \subseteq F_{m}$ such that $\left(E_{m} E_{m}^{-1} \backslash\left\{e_{G}\right\}\right) \cap K=\emptyset$ and $\left|E_{m}\right| \geqslant \frac{\left|F_{m}\right|}{2|K|+1}$. Now if $\beta_{m} \in \mathcal{C}_{X}^{\mu}$ is finer than $\mathcal{U}_{F_{m}}$ then $g \beta_{m} \succcurlyeq \mathcal{U}$ for each $g \in F_{m}$, and so

$$
\begin{aligned}
H_{\mu}\left(\beta_{m}\right) & \geqslant H_{\mu}\left(\beta_{m} \vee \alpha_{E_{m}} \mid P_{\mu}\right)-H_{\mu}\left(\alpha_{E_{m}} \mid \beta_{m} \vee P_{\mu}\right) \\
& \geqslant H_{\mu}\left(\alpha_{E_{m}} \mid P_{\mu}\right)-\sum_{g \in E_{m}} H_{\mu}\left(\alpha \mid g \beta_{m} \vee P_{\mu}\right) \\
& \geqslant H_{\mu}\left(\alpha_{E_{m}} \mid P_{\mu}\right)-\left|E_{m}\right|\left(H_{\mu}\left(\alpha \mid P_{\mu}\right)-\epsilon\right) \quad \text { (by Claim) } \\
& \geqslant\left|E_{m}\right| \frac{\epsilon}{2} \quad\left(\text { by the selection of } E_{m} \text { and applying (6.4) to } E_{m}\right) .
\end{aligned}
$$

Hence, $H_{\mu}\left(\mathcal{U}_{F_{m}}\right) \geqslant\left|E_{m}\right| \frac{\epsilon}{2}$ and so $h_{\mu}^{-}(G, \mathcal{U}) \geqslant \frac{\epsilon}{2(2|K|+1)}$. This finishes the proof of the theorem.

An immediate consequence of Lemma 6.8 and Theorem 6.11 is
Corollary 6.12. Let $\mu \in \mathcal{M}(X, G)$ and $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\} \in \mathcal{C}_{X}^{\mu}$. Then the following statements are equivalent:

1. $h_{\mu}^{-}(G, \mathcal{U})>0$, equivalently, $h_{\mu}(G, \mathcal{U})>0$;
2. $h_{\mu}(G, \alpha)>0$ if $\alpha \in \mathcal{C}_{X}^{\mu}$ is finer than \mathcal{U};
3. $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)>0$.

Now with the help of Theorem 3.13 and Corollary 6.12 we can obtain Theorem 6.13 which discloses the relation of entropy tuples for an invariant measure and entropy tuples for ergodic measures in its ergodic decomposition, generalizing [3, Theorem 4] and [23, Theorem 4.9].

Theorem 6.13. Let $\mu \in \mathcal{M}(X, G)$ with $\mu=\int_{\Omega} \mu_{\omega} d m(\omega)$ the ergodic decomposition of μ. Then

1. for m-a.e. $\omega \in \Omega, E_{n}^{\mu_{\omega}}(X, G) \subseteq E_{n}^{\mu}(X, G)$ for each $n \geqslant 2$;
2. if $\left(x_{i}\right)_{1}^{n} \in E_{n}^{\mu}(X, G)$, then for every measurable neighborhood V of $\left(x_{i}\right)_{1}^{n}, m(\{\omega \in \Omega: V \cap$ $\left.\left.E_{n}^{\mu_{\omega}}(X, G) \neq \emptyset\right\}\right)>0$. Thus for an appropriate choice of Ω, we can require

$$
\overline{\cup\left\{E_{n}^{\mu_{\omega}}(X, G): \omega \in \Omega\right\}} \backslash \Delta_{n}(X)=E_{n}^{\mu}(X, G) .
$$

Proof. 1. It suffices to prove the conclusion for each given $n \geqslant 2$. Let $n \geqslant 2$ be fixed.
Let $U_{i}, i=1, \ldots, n$ be open subsets of X with $\bigcap_{i=1}^{n} \overline{U_{i}}=\emptyset$ and $\left(\prod_{i=1}^{n} \overline{U_{i}}\right) \cap E_{n}^{\mu}(X, G)=\emptyset$. Then $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} \overline{U_{i}}\right)=0$ by Theorem 6.9 , and so $h_{\mu}(G, \mathcal{U})=0$ by Corollary 6.12 , where $\mathcal{U}=\left\{U_{1}^{c}, \ldots, U_{n}^{c}\right\}$. As $\int_{\Omega} h_{\mu_{\omega}}(G, \mathcal{U}) d m(\omega)=h_{\mu}(G, \mathcal{U})=0$ (see (3.29)), for m-a.e. $\omega \in \Omega$, $h_{\mu_{\omega}}(G, \mathcal{U})=0$ and so $\lambda_{n}\left(\mu_{\omega}\right)\left(\prod_{i=1}^{n} U_{i}\right)=0$ by Corollary 6.12 , hence $\left(\prod_{i=1}^{n} U_{i}\right) \cap E_{n}^{\mu_{\omega}}(X$, $G)=\emptyset\left(\right.$ using Theorem 6.9 and the assumption of $\left.\bigcap_{i=1}^{n} \overline{U_{i}}=\emptyset\right)$.

Since $E_{n}^{\mu}(X, G) \cup \Delta_{n}(X) \subseteq X^{(n)}$ is closed, its complement can be written as a union of countable sets of the form $\prod_{i=1}^{n} U_{i}$ with $U_{i}, i=1, \ldots, n$ open subsets satisfying $\bigcap_{i=1}^{n} \overline{U_{i}}=\emptyset$. Then applying the above procedure to each such a subset $\prod_{i=1}^{n} U_{i}$ one has that for m-a.e. $\omega \in \Omega$, $E_{n}^{\mu_{\omega}}(X, G) \cap\left(E_{n}^{\mu}(X, T)\right)^{c}=\emptyset$, equivalently, $E_{n}^{\mu_{\omega}}(X, G) \subseteq E_{n}^{\mu}(X, T)$.
2. With no loss of generality we assume $V=\prod_{i=1}^{n} A_{i}$, where A_{i} is a closed neighborhood of $x_{i}, 1 \leqslant i \leqslant n$ and $\bigcap_{i=1}^{n} A_{i}=\emptyset$. As $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} A_{i}\right)>0$ by Theorem 6.9, one has

$$
\begin{aligned}
\int_{\Omega} h_{\mu_{\omega}}\left(T,\left\{A_{1}^{c}, \ldots, A_{n}^{c}\right\}\right) d m(\omega) & =h_{\mu}\left(T,\left\{A_{1}^{c}, \ldots, A_{n}^{c}\right\}\right) \\
& >0 \quad \text { (using (3.29) and Corollary 6.12) }
\end{aligned}
$$

there exists $\Omega^{\prime} \subseteq \Omega$ with $m\left(\Omega^{\prime}\right)>0$ such that if $\omega \in \Omega^{\prime}$ then

$$
h_{\mu_{\omega}}\left(G,\left\{A_{1}^{c}, \ldots, A_{n}^{c}\right\}\right)>0, \quad \text { i.e. } \quad \lambda_{n}\left(\mu_{\omega}\right)\left(\prod_{i=1}^{n} A_{i}\right)>0 \quad(\text { see Corollary 6.12), }
$$

and so $\left(\prod_{i=1}^{n} A_{i}\right) \cap E_{n}^{\mu_{\omega}}(X, G) \neq \emptyset$ (see Theorem 6.9), i.e. $m\left(\left\{\omega \in \Omega: V \cap E_{n}^{\mu_{\omega}}(X, G) \neq\right.\right.$ $\emptyset\})>0$.

Lemma 6.14. Let $\pi:(X, G) \rightarrow(Y, G)$ be a factor map between G-systems, $\mathcal{U} \in \mathcal{C}_{Y}$ and $\mu \in$ $\mathcal{M}(X, G)$. Then $h_{\mu}^{-}\left(G, \pi^{-1} \mathcal{U}\right)=h_{\pi \mu}^{-}(G, \mathcal{U})$.

Proof. Note that, for each $F \in F(G), P\left(\left(\pi^{-1} \mathcal{U}\right)_{F}\right)=\pi^{-1} P\left(\mathcal{U}_{F}\right)$, using (3.19) we have

$$
\begin{align*}
H_{\pi \mu}\left(\mathcal{U}_{F}\right) & =\inf _{\beta \in P\left(\mathcal{U}_{F}\right)} H_{\pi \mu}(\beta)=\inf _{\beta \in P\left(\mathcal{U}_{F}\right)} H_{\mu}\left(\pi^{-1} \beta\right) \\
& =\inf _{\beta^{\prime} \in P\left(\left(\pi^{-1} \mathcal{U}_{F}\right)\right.} H_{\mu}\left(\beta^{\prime}\right)=H_{\mu}\left(\left(\pi^{-1} \mathcal{U}\right)_{F}\right) \tag{6.5}
\end{align*}
$$

Then the lemma immediately follows when divide $|F|$ on both sides of (6.5) and then let F range over a fixed Følner sequence of G.

Then we have

Theorem 6.15. Let $\pi:(X, G) \rightarrow(Y, G)$ be a factor map between G-systems, $\mu \in \mathcal{M}(X, G)$. Then

$$
E_{n}^{\pi \mu}(Y, G) \subseteq(\pi \times \cdots \times \pi) E_{n}^{\mu}(X, G) \subseteq E_{n}^{\pi \mu}(Y, G) \cup \Delta_{n}(Y) \quad \text { for each } n \geqslant 2
$$

Proof. The second inclusion follows directly from the definition. For the first inclusion, we assume $\left(y_{1}, \ldots, y_{n}\right) \in E_{n}^{\pi \mu}(Y, G)$. For $m \in \mathbb{N}$, take a closed neighborhood V_{i}^{m} of $y_{i}, i=1, \ldots, n$ with diameter at most $\frac{1}{m}$ such that $\bigcap_{i=1}^{n} V_{i}^{m}=\emptyset$. Consider $\mathcal{U}_{m}=\left\{\left(V_{1}^{m}\right)^{c}, \ldots,\left(V_{n}^{m}\right)^{c}\right\} \in \mathcal{C}_{Y}^{o}$, then $h_{\mu}^{-}\left(G, \pi^{-1} \mathcal{U}_{m}\right)=h_{\pi \mu}^{-}\left(G, \mathcal{U}_{m}\right)>0$ and so $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} \pi^{-1} V_{i}^{m}\right)>0$ by Corollary 6.12 and Lemma 6.14. Hence $\prod_{i=1}^{n} \pi^{-1} V_{i}^{m} \cap\left(\operatorname{supp}\left(\lambda_{n}(\mu)\right) \backslash \Delta_{n}(X)\right) \neq \emptyset$. Moreover, there exists $\left(x_{i}^{m}\right)_{1}^{n} \in$ $\prod_{i=1}^{n} \pi^{-1} V_{i}^{m} \cap E_{n}^{\mu}(X, G)$ by Theorem 6.9. We may assume ($x_{1}^{m}, \ldots, x_{n}^{m}$) $\rightarrow\left(x_{1}, \ldots, x_{n}\right.$) (if necessary we take a sub-sequence). Clearly, $x_{i} \in \pi^{-1}\left(y_{i}\right), i=1, \ldots, n$ and $\left(x_{1}, \ldots, x_{n}\right) \in$ $E_{n}^{\mu}(X, G)$ by Proposition 6.3(2). This finishes the proof of the theorem.

6.3. A variational relation of entropy tuples

Now we are ready to show the variational relation of topological and measure-theoretic entropy tuples.

Theorem 6.16. Let (X, G) be a G-system. Then

1. for each $\mu \in \mathcal{M}(X, G)$ and each $n \geqslant 2, E_{n}(X, G) \supseteq E_{n}^{\mu}(X, G)=\operatorname{supp}\left(\lambda_{n}(\mu)\right) \backslash \Delta_{n}(X)$;
2. there exists $\mu \in \mathcal{M}(X, G)$ such that $E_{n}(X, G)=E_{n}^{\mu}(X, G)$ for each $n \geqslant 2$.

Proof. 1. Let $\left(x_{i}\right)_{i=1}^{n} \in E_{n}^{\mu}(X, G)$ and $\mathcal{U} \in \mathcal{C}_{X}^{o}$ admissible w.r.t. $\left(x_{i}\right)_{i=1}^{n}$. Then if $\alpha \in \mathcal{P}_{X}$ is finer than \mathcal{U} then it is also admissible w.r.t. $\left(x_{i}\right)_{i=1}^{n}$, and so $h_{\mu}(G, \alpha)>0\left(\right.$ as $\left.\left(x_{i}\right)_{1}^{n} \in E_{n}^{\mu}(X, G)\right)$, thus $h_{\mu}^{-}(G, \mathcal{U})>0$ by Theorem 6.11. Moreover, $h_{\text {top }}(G, \mathcal{U}) \geqslant h_{\mu}^{-}(G, \mathcal{U})>0$. That is, $\left(x_{i}\right)_{i=1}^{n} \in$ $E_{n}(X, G)$, as \mathcal{U} is arbitrary.
2. Let $n \geqslant 2$. First we have

Claim. If $\left(x_{i}\right)_{1}^{n} \in E_{n}(X, G)$ and $\prod_{i=1}^{n} U_{i}$ is a neighborhood of $\left(x_{i}\right)_{1}^{n}$ in $X^{(n)}$ then $E_{n}^{\nu}(X, G) \cap$ $\prod_{i=1}^{n} U_{i} \neq \emptyset$ for some $v \in \mathcal{M}(X, G)$.

Proof. With no loss of generality we assume that U_{i} is a closed neighborhood of $x_{i}, 1 \leqslant i \leqslant n$ such that $U_{i} \cap U_{j}=\emptyset$ if $x_{i} \neq x_{j}$ and $U_{i}=U_{j}$ if $x_{i}=x_{j}, 1 \leqslant i<j \leqslant n$. Let $\mathcal{U}=\left\{U_{1}^{c}, \ldots, U_{n}^{c}\right\}$. Then $h_{\text {top }}(G, \mathcal{U})>0\left(\right.$ as $\left(x_{i}\right)_{1}^{n} \in E_{n}(X, G)$. By Theorem 5.1, there exists $v \in M(X, G)$ such that $h_{\nu}(G, \mathcal{U})=h_{\text {top }}(G, \mathcal{U})$, then $\lambda_{n}(\nu)\left(\prod_{i=1}^{n} U_{i}\right)>0$ by Corollary 6.12, i.e. $\operatorname{supp}\left(\lambda_{n}(\nu)\right) \cap$ $\prod_{i=1}^{n} U_{i} \neq \emptyset$. As $\prod_{i=1}^{n} U_{i} \cap \Delta_{n}(X)=\emptyset$, one has $E_{n}^{v}(X, G) \cap \prod_{i=1}^{n} U_{i} \neq \emptyset$ by Theorem 6.9. This ends the proof.

By claim, for each $n \geqslant 2$, we can choose a dense sequence of points $\left\{\left(x_{1}^{m}, \ldots, x_{n}^{m}\right)\right\}_{m \in \mathbb{N}} \subseteq$ $E_{n}(X, G)$ with $\left(x_{1}^{m}, \ldots, x_{n}^{m}\right) \in E_{n}^{\nu_{n}^{m}}(X, G)$ for some $v_{n}^{m} \in \mathcal{M}(X, G)$. Let

$$
\mu=\sum_{n \geqslant 2} \frac{1}{2^{n-1}}\left(\sum_{m \geqslant 1} \frac{1}{2^{m}} v_{n}^{m}\right) .
$$

As if $\alpha \in \mathcal{P}_{X}$ then

$$
h_{\mu}(G, \alpha) \geqslant \frac{1}{2^{m+n-1}} h_{\nu_{n}^{m}}(G, \alpha) \quad(\quad \text { using }(3.29))
$$

and so $E_{n}^{\nu_{n}^{m}}(X, G) \subseteq E_{n}^{\mu}(X, G)$ for all $n \geqslant 2$ and $m \in \mathbb{N}$. Thus $\left(x_{1}^{m}, \ldots, x_{n}^{m}\right) \in E_{n}^{\mu}(X, G)$. Hence

$$
E_{n}^{\mu}(X, G) \supseteq \overline{\left\{\left(x_{1}^{m}, \ldots, x_{n}^{m}\right): m \in \mathbb{N}\right\}} \backslash \Delta_{n}(X)=E_{n}(X, G),
$$

moreover, $E_{n}^{\mu}(X, G)=E_{n}(X, G)$ (using 1) for each $n \geqslant 2$.

6.4. Entropy tuples of a finite production

At the end of this section, we shall provide a result about topological entropy tuples of a finite product.

We say that G-measure preserving system (X, \mathcal{B}, μ, G) is free, if $g=e_{G}$ when $g \in G$ satisfies $g x=x$ for μ-a.e. $x \in X$, equivalently, for μ-a.e. $x \in X$, the mapping $G \rightarrow G x, g \mapsto g x$ is one-to-one. The following is proved in [18, Theorem 4].

Lemma 6.17. Let (X, \mathcal{B}, μ, G) and (Y, \mathcal{D}, v, G) both be a free ergodic G-measure preserving system with a Lebesgue space as its base space, with P_{μ} and P_{ν} Pinsker σ-algebras, respectively. Then $P_{\mu} \times P_{\nu}$ is the Pinsker σ-algebra of the product G-measure preserving system $(X \times Y, \mathcal{B} \times$ $\mathcal{D}, \mu \times \nu, G)$.

We say that (X, G) is free if $g=e_{G}$ when $g \in G$ satisfies $g x=x$ for each $x \in X$. Let $n \geqslant 2$. Denote by $\operatorname{supp}(X, G)$ the support of (X, G), i.e. $\operatorname{supp}(X, G)=\bigcup_{\mu \in \mathcal{M}(X, G)} \operatorname{supp}(\mu) .(X, G)$ is called fully supported if there is an invariant measure $\mu \in \mathcal{M}(X, G)$ with full support (i.e. $\operatorname{supp}(\mu)=X)$, equivalently, $\operatorname{supp}(X, G)=X . \operatorname{Set} \Delta_{n}^{S}(X)=\Delta_{n}(X) \cap(\operatorname{supp}(X, G))^{(n)}$. Then:

Theorem 6.18. Let $\left(X_{i}, G\right), i=1,2$ be two G-systems and $n \geqslant 2$. Then

$$
\begin{equation*}
E_{n}\left(X_{1} \times X_{2}, G\right)=E_{n}\left(X_{1}, G\right) \times\left(E_{n}\left(X_{2}, G\right) \cup \Delta_{n}^{S}\left(X_{2}\right)\right) \cup \Delta_{n}^{S}\left(X_{1}\right) \times E_{n}\left(X_{2}, G\right) . \tag{6.6}
\end{equation*}
$$

Proof. Obviously, $E_{n}\left(X_{1} \times X_{2}, G\right) \subseteq\left(\operatorname{supp}\left(X_{1}, G\right) \times \operatorname{supp}\left(X_{2}, G\right)\right)^{(n)}$ by Theorem 6.16(2), and so the inclusion of " \subseteq " follows directly from Proposition 6.3(3). Now let's turn the the proof of "?".

First we claim this direction if the actions are both free. Let

$$
\left(\left(x_{i}^{1}, x_{i}^{2}\right)\right)_{1}^{n} \in E_{n}\left(X_{1}, G\right) \times\left(E_{n}\left(X_{2}, G\right) \cup \Delta_{n}^{S}\left(X_{2}\right)\right) \cup \Delta_{n}^{S}\left(X_{1}\right) \times E_{n}\left(X_{2}, G\right)
$$

and let U_{1} (resp. U_{2}) be any open neighborhood of $\left(x_{i}^{1}\right)_{1}^{n}$ in $X_{1}^{(n)}$ (resp. $\left(x_{i}^{2}\right)_{1}^{n}$ in $X_{2}^{(n)}$). With no loss of generality we assume $\left(x_{i}^{1}\right)_{1}^{n} \in E_{n}\left(X_{1}, G\right)$ and $U_{1} \cap \Delta_{n}\left(X_{1}\right)=\emptyset$. Note that $\operatorname{supp}\left(\lambda_{n}(\mu)\right) \supseteq(\operatorname{supp}(\mu))^{(n)} \cap \Delta_{n}\left(X_{2}\right)$ for each $\mu \in \mathcal{M}\left(X_{2}, G\right)$, by Theorems 6.9 and 6.13 we can choose $\mu_{i} \in \mathcal{M}^{e}\left(X_{i}, G\right)$ such that $U_{i} \cap\left(\operatorname{supp}\left(\mu_{i}\right)\right)^{(n)} \neq \emptyset, i=1,2$. As the actions are both free, we have

Claim. $U_{1} \times U_{2} \cap E_{n}^{\mu_{1} \times \mu_{2}}\left(X_{1} \times X_{2}, G\right) \neq \emptyset$, and so $U_{1} \times U_{2} \cap E_{n}\left(X_{1} \times X_{2}, G\right) \neq \emptyset$, which implies $\left(\left(x_{i}^{1}, x_{i}^{2}\right)\right)_{1}^{n} \in E_{n}\left(X_{1} \times X_{2}, G\right)$ from the arbitrariness of U_{1} and U_{2} (using Proposition 6.3(2)).

Proof. Let $P_{\mu_{i}}$ be the Pinsker σ-algebra of $\left(X_{i}, \mathcal{B}_{X_{i}}, \mu_{i}, G\right), i=1$, 2. Then $P_{\mu_{1}} \times P_{\mu_{2}}$ forms the Pinsker σ-algebra of $\left(X_{1} \times X_{2}, \mathcal{B}_{X_{1}} \times \mathcal{B}_{X_{2}}, \mu_{1} \times \mu_{2}, G\right)$ by Lemma 6.17. Say $\mu_{i}=$ $\int_{X_{i}} \mu_{i, x_{i}} d \mu_{i}(x)$ to be the disintegration of μ_{i} over $P_{\mu_{i}}, i=1,2$. Then the disintegration of $\mu_{1} \times \mu_{2}$ over $P_{\mu_{1}} \times P_{\mu_{2}}$ is

$$
\mu_{1} \times \mu_{2}=\int_{X_{1} \times X_{2}} \mu_{1, x_{1}} \times \mu_{2, x_{2}} d \mu_{1} \times \mu_{2}\left(x_{1}, x_{2}\right)
$$

Moreover, $\lambda_{n}\left(\mu_{i}\right)=\int_{X_{i}} \mu_{i, x_{i}}^{(n)} d \mu_{i}\left(x_{i}\right), i=1,2$, which implies

$$
\lambda_{n}\left(\mu_{1} \times \mu_{2}\right)=\int_{X_{1} \times X_{2}} \mu_{1, x_{1}}^{(n)} \times \mu_{2, x_{2}}^{(n)} d \mu_{1} \times \mu_{2}\left(x_{1}, x_{2}\right)=\lambda_{n}\left(\mu_{1}\right) \times \lambda_{n}\left(\mu_{2}\right) .
$$

Then $\operatorname{supp}\left(\lambda_{n}\left(\mu_{1} \times \mu_{2}\right)\right)=\operatorname{supp}\left(\lambda_{n}\left(\mu_{1}\right)\right) \times \operatorname{supp}\left(\lambda_{n}\left(\mu_{2}\right)\right)$. So $U_{1} \times U_{2} \cap \operatorname{supp}\left(\lambda_{n}\left(\mu_{1} \times \mu_{2}\right)\right) \neq \emptyset$ and $U_{1} \times U_{2} \cap E_{n}^{\mu_{1} \times \mu_{2}}\left(X_{1} \times X_{2}, G\right) \neq \emptyset$ (as $U_{1} \cap \Delta_{n}\left(X_{1}\right)=\emptyset$). This ends the proof of the claim.

Now let's turn to the proof of general case. Let (Z, G) be any free G-system. Then G-systems $\left(X_{i}^{\prime}, G\right) \doteq\left(X_{i} \times Z, G\right), i=1,2$ are both free. Applying the first part to $\left(X_{i}^{\prime}, G\right), i=1,2$ we obtain

$$
\begin{equation*}
E_{n}\left(X_{1}^{\prime} \times X_{2}^{\prime}, G\right)=E_{n}\left(X_{1}^{\prime}, G\right) \times\left(E_{n}\left(X_{2}^{\prime}, G\right) \cup \Delta_{n}^{S}\left(X_{2}^{\prime}\right)\right) \cup \Delta_{n}^{S}\left(X_{1}^{\prime}\right) \times E_{n}\left(X_{2}^{\prime}, G\right) \tag{6.7}
\end{equation*}
$$

Then applying Proposition 6.3(3) to the projection factor maps ($X_{1}^{\prime} \times X_{2}^{\prime}, G$) $\rightarrow\left(X_{1} \times X_{2}, G\right)$, $\left(X_{1}^{\prime}, G\right) \rightarrow\left(X_{1}, G\right)$ and $\left(X_{2}^{\prime}, G\right) \rightarrow\left(X_{2}, G\right)$ respectively we claim the relation (6.6).

7. An amenable group action with u.p.e. and c.p.e.

In this section, we discuss two special classes of an amenable group action with u.p.e. and c.p.e. We will show that both u.p.e. and c.p.e. are preserved under a finite product; u.p.e. implies c.p.e. and actions with c.p.e. are fully supported; u.p.e. implies mild mixing; minimal topological K implies strong mixing if the group considered is commutative.

Let (X, G) be a G-system and $\alpha \in \mathcal{P}_{X}$. We say that α is topological non-trivial if $\bar{A} \subsetneq X$ for each $A \in \alpha$. It is easy to obtain

Lemma 7.1. Let $n \geqslant 2$ and $\mu \in \mathcal{M}(X, G)$. Then $E_{n}^{\mu}(X, G)=X^{(n)} \backslash \Delta_{n}(X)$ iff $h_{\mu}(G, \alpha)>0$ for any topological non-trivial $\alpha=\left\{A_{1}, \ldots, A_{n}\right\} \in \mathcal{P}_{X}$.

Proof. First assume $E_{n}^{\mu}(X, G)=X^{(n)} \backslash \Delta_{n}(X)$. If $\alpha=\left\{A_{1}, \ldots, A_{n}\right\} \in \mathcal{P}_{X}$ is topological nontrivial, we choose $x_{i} \in X \backslash \overline{A_{i}}, i=1, \ldots, n$, then $\left(x_{i}\right)_{1}^{n} \in X^{(n)} \backslash \Delta_{n}(X)$ and α is admissible w.r.t. $\left(x_{i}\right)_{1}^{n}$. Thus $h_{\mu}(G, \alpha)>0$.

Conversely, we assume $h_{\mu}(G, \alpha)>0$ for any topological non-trivial $\alpha=\left\{A_{1}, \ldots, A_{n}\right\} \in \mathcal{P}_{X}$. Let $\left(x_{i}\right)_{1}^{n} \in X^{(n)} \backslash \Delta_{n}(X)$. If $\alpha=\left\{A_{1}, \ldots, A_{n}\right\} \in \mathcal{P}_{X}$ is admissible w.r.t. $\left(x_{i}\right)_{1}^{n}$, then it is topological non-trivial and so $h_{\mu}(G, \alpha)>0$. Thus $\left(x_{i}\right)_{1}^{n} \in E_{n}^{\mu}(X, G)$. This completes the proof.

As a direct consequence of Theorem 6.16 and Lemma 7.1 one has
Theorem 7.2. Let $n \geqslant 2$. Then

1. (X, G) has u.p.e. of order n iff there exists $\mu \in \mathcal{M}(X, G)$ such that $h_{\mu}(G, \alpha)>0$ for any topological non-trivial $\alpha=\left\{A_{1}, \ldots, A_{n}\right\} \in \mathcal{P}_{X}$;
2. ($X, G)$ has topological K iff there is $\mu \in \mathcal{M}(X, G)$ such that $h_{\mu}(G, \alpha)>0$ for any topological non-trivial $\alpha \in \mathcal{P}_{X}$.

Definition 7.3. We say that (X, G) has c.p.e. if any non-trivial topological factor of (X, G) has positive topological entropy.

Blanchard proved that any c.p.e. TDS is fully supported [1, Corollary 7]. As an application of Proposition 6.3(3) and Theorem 6.16 we have a similar result.

Proposition 7.4. (X, G) has c.p.e. iff $X^{(2)}$ is the closed invariant equivalence relation generated by $E_{2}(X, G)$. Moreover, each c.p.e. G-system is fully supported and each u.p.e. G-system has c.p.e. (hence is also fully supported).

Proof. It is easy to complete the proof of the first part. Moreover, note that $(\operatorname{supp}(X, G))^{(2)} \cup$ $\Delta_{2}(X)$ is a closed invariant equivalence relation containing $E_{2}(X, G)$ (Theorem 6.16). In particular, if (X, G) has c.p.e. then it is fully supported. Now assume that (X, G) has u.p.e., thus $E_{2}(X, G)=X^{(2)} \backslash \Delta_{2}(X)$ and so $X^{(2)}$ is the closed invariant equivalence relation generated by $E_{2}(X, G)$, particularly, (X, G) has c.p.e. This finishes our proof.

The following lemma is well known, in the case of \mathbb{Z} see for example [36, Lemma 1].
Lemma 7.5. Let $\left(X_{i}, G\right)$ be a G-system and $\Delta_{2}\left(X_{i}\right) \subseteq A_{i} \subseteq X_{i} \times X_{i}$ with $\left\langle A_{i}\right\rangle$ the closed invariant equivalence relation generated by $A_{i}, i=1,2$. Then $\left\langle A_{1}\right\rangle \times\left\langle A_{2}\right\rangle$ is the closed invariant equivalence relation generated by $A_{1} \times A_{2}$.

Thus we have
Corollary 7.6. Let $\left(X_{1}, G\right)$ and $\left(X_{2}, G\right)$ be two G-systems and $n \geqslant 2$.
(1) If $\left(X_{1}, G\right)$ and $\left(X_{2}, G\right)$ both have u.p.e. of order n then so does $\left(X_{1} \times X_{2}, G\right)$.
(2) If $\left(X_{1}, G\right)$ and $\left(X_{2}, G\right)$ both have topological K then so does $\left(X_{1} \times X_{2}, G\right)$.
(3) If $\left(X_{1}, G\right)$ and $\left(X_{2}, G\right)$ both have c.p.e. then so does $\left(X_{1} \times X_{2}, G\right)$.

Proof. By Proposition 7.4, any G-system having u.p.e. is full supported, then (1) and (2) follow from Theorem 6.18 directly. Using Theorem 6.18 and Lemma 7.5, we can obtain (3) similarly.

In the following several sub-sections, we shall discuss more properties of an amenable group action with u.p.e.

7.1. U.p.e. implies weak mixing of all orders

Following the idea of the proof of [1, Proposition 2], it is easy to obtain the following result.
Lemma 7.7. Let $\left\{U_{1}^{c}, U_{2}^{c}\right\} \in \mathcal{C}_{X}$. If

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{1}{n} \log N\left(\bigvee_{i=1}^{n} g_{i}^{-1}\left\{U_{1}^{c}, U_{2}^{c}\right\}\right)>0 \tag{7.1}
\end{equation*}
$$

for some sequence $\left\{g_{i}: i \in \mathbb{N}\right\} \subseteq G$ then there exist $1 \leqslant j_{1}<j_{2}$ with $U_{1} \cap g_{j_{1}} g_{j_{2}}^{-1} U_{2} \neq \emptyset$.
Proof. Assume the contrary that for each $1 \leqslant j_{1}<j_{2}, U_{1} \cap g_{j_{1}} g_{j_{2}}^{-1} U_{2}=\emptyset$ and so $g_{j_{1}}^{-1} U_{1} \subseteq$ $g_{j_{2}}^{-1} U_{2}^{c}$. That is, for each $i \in \mathbb{N}$ one has $g_{i}^{-1} U_{1} \subseteq \bigcap_{j \geqslant i} g_{j}^{-1} U_{2}^{c}$.

Let $n \in \mathbb{N}$. Now for each $x \in X$ consider the first $i \in\{1, \ldots, n\}$ such that $g_{i} x \in U_{1}$, when there exists such an i. We get that the Borel cover $\bigvee_{j=1}^{n} g_{j}^{-1}\left\{U_{1}^{c}, U_{2}^{c}\right\}$ admits a sub-cover

$$
\left\{\bigcap_{s=1}^{i-1} g_{s}^{-1} U_{1}^{c} \cap \bigcap_{t=i}^{n} g_{t}^{-1} U_{2}^{c}: i=1, \ldots, n\right\} \cup\left\{\bigcap_{s=1}^{n} g_{s}^{-1} U_{1}^{c}\right\}
$$

Moreover, $N\left(\bigvee_{j=1}^{n} g_{j}^{-1}\left\{U_{1}^{c}, U_{2}^{c}\right\}\right) \leqslant n+1$, a contradiction with the assumption.
We say that (X, G) is transitive if for each non-empty open subsets U and V, the return time set, $N(U, V) \doteq\left\{g \in G: U \cap g^{-1} V \neq \emptyset\right\}$, is non-empty. It is not hard to see that if X has no isolated point then the transitivity of (X, G) is equivalent to that $N(U, V)$ is infinite for each non-empty open subsets U and V. Let $n \geqslant 2$. We say that (X, G) is weakly mixing of order n if the product G-system $\left(X^{(n)}, G\right)$ is transitive; if $n=2$ we call it simply weakly mixing. We say that (X, G) is called weakly mixing of all orders if for each $n \geqslant 2$ it is weakly mixing of order n, equivalently, the product G-system ($X^{\mathbb{N}}, G$) is transitive. It's well known that for \mathbb{Z}-actions u.p.e. implies weakly mixing of all orders [1]. In fact, this result holds for a general countable discrete amenable group action by applying Corollary 7.6 and Lemma 7.7 to a u.p.e. G-system as many times as required.

Theorem 7.8. Each u.p.e. G-system is weakly mixing of all orders.

7.2. U.p.e. implies mild mixing

We say that (X, G) is mildly mixing if the product G-system $(X \times Y, G)$ is transitive for each transitive G-system (Y, G) containing no isolated points. We shall prove that each u.p.e.
G-system is mildly mixing. Note that similarly to the proof of Lemma 7.7 , it is easy to show that each non-trivial u.p.e. G-system contains no any isolated point, thus the result in this sub-section strengthens Theorem 7.8. Before proceeding first we need

Lemma 7.9. Let $\mu \in \mathcal{M}(X, G), \mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\} \in \mathcal{C}_{X}^{o}, \alpha \in \mathcal{P}_{X}$ and $\left\{g_{i}\right\}_{i \in \mathbb{N}} \subseteq G$ be a sequence of pairwise distinct elements. Then

1. $\lim \sup _{n \rightarrow+\infty} \frac{1}{n} \log N\left(\bigvee_{i=1}^{n} g_{i}^{-1} \alpha\right) \geqslant h_{\mu}(G, \alpha)$;
2. if $h_{\text {top }}(G, \mathcal{U})>0$ then $\lim \sup _{n \rightarrow+\infty} \frac{1}{n} \log N\left(\bigvee_{i=1}^{n} g_{i}^{-1} \mathcal{U}\right)>0$.

Proof. 1 follows directly from Lemma 3.1(4). Now let's turn to the proof of 2.
By Theorem 5.1 there exists $\mu \in \mathcal{M}^{e}(X, G)$ such that $h_{\mu}(G, \mathcal{U})=h_{\text {top }}(G, \mathcal{U})>0$. Let P_{μ} be the Pinsker σ-algebra of $\left(X, \mathcal{B}_{X}^{\mu}, \mu, G\right)$. As $\lambda_{n}(\mu)\left(\prod_{i=1}^{n} U_{i}^{c}\right)=\int_{X} \prod_{i=1}^{n} \mathbb{E}\left(1_{U_{i}^{c}} \mid P_{\mu}\right) d \mu>0$ (see Corollary 6.12), repeating the same procedure of the proof of Theorem 6.11 we can obtain some $M \in \mathbb{N}, D \in P_{\mu}$ and $\alpha \in \mathcal{P}_{X}$ such that $\mu(D)>0$ and if $\beta \in \mathcal{P}_{X}^{\mu}$ is finer than \mathcal{U} then $H_{\mu}\left(\alpha \mid \beta \vee P_{\mu}\right) \leqslant H_{\mu}\left(\alpha \mid P_{\mu}\right)-\epsilon$, here $\epsilon=\frac{\mu(D)}{M} \log \left(\frac{n}{n-1}\right)>0$. Note that there exists $K \in F(G)$ such that if $F \in F(G)$ satisfies $\left(F F^{-1} \backslash\left\{e_{G}\right\}\right) \cap K=\emptyset$ then $\left|\frac{1}{|F|} H_{\mu}\left(\alpha_{F} \mid P_{\mu}\right)-H_{\mu}\left(\alpha \mid P_{\mu}\right)\right|<\frac{\epsilon}{2}$ (see Theorem 6.10). Obviously, there exists a sub-sequence $\left\{s_{1}<s_{2}<\cdots\right\} \subseteq \mathbb{N}$ such that $\frac{i}{s_{i}} \geqslant$ $\frac{1}{2|K|+1}$ for each $i \in \mathbb{N}$ and $g_{s_{i}} g_{s_{j}}^{-1} \notin K$ when $i \neq j$. Then for each $n \in \mathbb{N}$ one has

$$
\begin{equation*}
\left|\frac{1}{n} H_{\mu}\left(\bigvee_{i=1}^{n} g_{s_{i}}^{-1} \alpha \mid P_{\mu}\right)-H_{\mu}\left(\alpha \mid P_{\mu}\right)\right|<\frac{\epsilon}{2} . \tag{7.2}
\end{equation*}
$$

Now let $n \in \mathbb{N}$. If $\beta_{n} \in \mathcal{P}_{X}^{\mu}$ is finer than $\bigvee_{i=1}^{n} g_{s_{i}}^{-1} \mathcal{U}$, then $g_{s_{i}} \beta_{n} \succcurlyeq \mathcal{U}$ for each $i=1, \ldots, n$, and so

$$
\begin{aligned}
H_{\mu}\left(\beta_{n}\right) & \geqslant H_{\mu}\left(\beta_{n} \vee \bigvee_{i=1}^{n} g_{s_{i}}^{-1} \alpha \mid P_{\mu}\right)-H_{\mu}\left(\bigvee_{i=1}^{n} g_{s_{i}}^{-1} \alpha \mid \beta_{n} \vee P_{\mu}\right) \\
& \geqslant H_{\mu}\left(\bigvee_{i=1}^{n} g_{s_{i}}^{-1} \alpha \mid P_{\mu}\right)-\sum_{i=1}^{n} H_{\mu}\left(\alpha \mid g_{s_{i}} \beta_{n} \vee P_{\mu}\right) \\
& \geqslant H_{\mu}\left(\bigvee_{i=1}^{n} g_{s_{i}}^{-1} \alpha \mid P_{\mu}\right)-n\left(H_{\mu}\left(\alpha \mid P_{\mu}\right)-\epsilon\right) \\
& \geqslant n\left(H_{\mu}\left(\alpha \mid P_{\mu}\right)-\frac{\epsilon}{2}\right)-n\left(H_{\mu}\left(\alpha \mid P_{\mu}\right)-\epsilon\right) \quad(\text { by }(7.2)) \\
& =\frac{n \epsilon}{2}
\end{aligned}
$$

Hence, $\frac{1}{n} H_{\mu}\left(\bigvee_{i=1}^{n} g_{s_{i}}^{-1} \mathcal{U}\right) \geqslant \frac{\epsilon}{2}$, which implies

$$
\begin{aligned}
\limsup _{n \rightarrow+\infty} \frac{1}{n} \log N\left(\bigvee_{i=1}^{n} g_{i}^{-1} \mathcal{U}\right) & \geqslant \limsup _{m \rightarrow+\infty} \frac{1}{s_{m}} H_{\mu}\left(\bigvee_{i=1}^{s_{m}} g_{i}^{-1} \mathcal{U}\right) \\
& \geqslant \limsup _{m \rightarrow+\infty} \frac{m}{s_{m}} \cdot \frac{1}{m} H_{\mu}\left(\bigvee_{i=1}^{m} g_{s_{i}}^{-1} \mathcal{U}\right) \geqslant \frac{\epsilon}{2(2|K|+1)}>0
\end{aligned}
$$

This ends the proof of the lemma.
Now we claim that u.p.e. implies mild mixing.
Theorem 7.10. Let (X, G) be a u.p.e. G-system. Then (X, G) is mildly mixing.
Proof. Let (Y, G) be any transitive G-system containing no isolated points and (U_{Y}, V_{Y}) any pair of non-empty open subsets of Y. It remains to show that $N\left(\overline{U_{X}} \times U_{Y}, \overline{V_{X}} \times V_{Y}\right) \neq \emptyset$ for each pair of non-empty open subsets $\left(U_{X}, V_{X}\right)$ of X. As (Y, G) is transitive, there is $g \in G$ with $U_{Y} \cap g^{-1} V_{Y} \neq \emptyset$. Set $W_{Y}=U_{Y} \cap g^{-1} V_{Y}$. Then

$$
N\left(\overline{U_{X}} \times U_{Y}, \overline{V_{X}} \times V_{Y}\right) \supseteq g N\left(\overline{U_{X}} \times W_{Y}, \overline{g^{-1} V_{X}} \times W_{Y}\right)
$$

Now it suffices to show that $N\left(\overline{U_{X}} \times W_{Y}, \overline{g^{-1} V_{X}} \times W_{Y}\right) \neq \emptyset$.
If $\overline{U_{X}} \cap \overline{g^{-1} V_{X}} \neq \emptyset$ then the proof is finished, so we assume $\overline{U_{X}} \cap \overline{g^{-1} V_{X}}=\emptyset$. As (Y, G) is a transitive G-system containing no isolated points, there exists $g_{1}^{\prime} \in G \backslash\left\{e_{G}\right\}$ with $g_{1}^{\prime} W_{Y} \cap W_{Y} \neq \emptyset$. Now find $g_{2}^{\prime} \in G \backslash\left\{e_{G},\left(g_{1}^{\prime}\right)^{-1}\right\}$ with $g_{2}^{\prime}\left(g_{1}^{\prime} W_{Y} \cap W_{Y}\right) \cap\left(g_{1}^{\prime} W_{Y} \cap W_{Y}\right) \neq \emptyset$. By induction, similarly there exists a sequence $\left\{g_{n}^{\prime}\right\}_{n \geqslant 1} \subseteq G$ such that for each $j \geqslant 1$ one has $g_{j}^{\prime} \in G \backslash\left\{e_{G},\left(g_{j-1}^{\prime}\right)^{-1},\left(g_{j-1}^{\prime} g_{j-2}^{\prime}\right)^{-1}, \ldots,\left(g_{j-1}^{\prime} g_{j-2}^{\prime} \cdots g_{1}^{\prime}\right)^{-1}\right\}$ and for each $n \in \mathbb{N}$ it holds that

$$
\begin{equation*}
W_{Y} \cap \bigcap_{1 \leqslant i \leqslant j \leqslant n}\left(g_{j}^{\prime} g_{j-1}^{\prime} \cdots g_{i}^{\prime} W_{Y}\right) \neq \emptyset \tag{7.3}
\end{equation*}
$$

Set $g_{n}=g_{n}^{\prime} g_{n-1}^{\prime} \cdots g_{1}^{\prime}$ for each $n \in \mathbb{N}$. Then $g_{i} \neq g_{j}$ if $1 \leqslant i \neq j$. Note that $\overline{U_{X}} \cap \overline{g^{-1} V_{X}}=\emptyset$ and (X, G) is u.p.e., then $h_{\text {top }}\left(G,\left\{{\overline{U_{X}}}^{c},{\overline{g^{-1} V_{X}}}^{c}\right\}\right)>0$ and so by Lemma 7.9 one has

$$
\limsup _{n \rightarrow+\infty} \frac{1}{n} \log N\left(\bigvee_{i=1}^{n} g_{i}^{-1}\left\{{\overline{U_{X}}}^{c},{\overline{g^{-1} V_{X}}}^{c}\right\}\right)>0
$$

Then by Lemma 7.7, there exists $1 \leqslant i<j$ such that

$$
\emptyset \neq \overline{U_{X}} \cap g_{i} g_{j}^{-1} \overline{g^{-1} V_{X}}=\overline{U_{X}} \cap\left(g_{j}^{\prime} g_{j-1}^{\prime} \cdots g_{i+1}^{\prime}\right)^{-1} \overline{g^{-1} V_{X}},
$$

which implies (using (7.3))

$$
g_{j}^{\prime} g_{j-1}^{\prime} \cdots g_{i+1}^{\prime} \in N\left(\overline{U_{X}}, \overline{g^{-1} V_{X}}\right) \cap N\left(W_{Y}, W_{Y}\right)=N\left(\overline{U_{X}} \times W_{Y}, \overline{g^{-1} V_{X}} \times W_{Y}\right) \neq \emptyset
$$

This finishes the proof of the theorem.

7.3. Minimal topological K-actions of an amenable group

We say that (X, G) is strongly mixing if $N(U, V)$ is cofinite (i.e. $G \backslash N(U, V)$ is finite) for each pair of non-empty open subsets (U, V) of X. It's proved in [22] that any topological K minimal \mathbb{Z}-system is strongly mixing. In fact, this result holds again in general case of considering a commutative countable discrete amenable group. In the remaining part of this sub-section we are ready to show it.

Denote by $\mathcal{F}_{\text {inf }}(G)$ the family of all infinite subsets of G. Let d be the compatible metric on $(X, G), S=\left\{g_{1}, g_{2}, \ldots\right\} \in \mathcal{F}_{\text {inf }}(G)$ and $n \geqslant 2 . R P_{S}^{n}(X, G) \subseteq X^{(n)}$ is defined by $\left(x_{i}\right)_{1}^{n} \in$ $R P_{S}^{n}(X, G)$ iff for each neighborhood $U_{x_{i}}$ of $x_{i}, 1 \leqslant i \leqslant n$ and $\epsilon>0$ there exist $x_{i}^{\prime} \in U_{x_{i}}, 1 \leqslant$ $i \leqslant n$ and $m \in \mathbb{N}$ with $\max _{1 \leqslant k, l \leqslant n} d\left(g_{m}^{-1} x_{k}^{\prime}, g_{m}^{-1} x_{l}^{\prime}\right) \leqslant \epsilon$. Obviously, the definition of $R P_{S}^{n}(X, G)$ is independent of the selection of compatible metrics. As a direct corollary of Lemma 7.9 we have

Lemma 7.11. Let $n \geqslant 2$ and $S \in \mathcal{F}_{\text {inf }}(G)$. If (X, G) is u.p.e. of order n then $R P_{S}^{n}(X, G)=X^{(n)}$.
Proof. Assume the contrary that there is $S=\left\{g_{1}, g_{2}, \ldots\right\} \in \mathcal{F}_{\text {inf }}(G)$ such that $R P_{S}^{n}(X, G) \subsetneq$ $X^{(n)}$. Fix such an S and take $\left(x_{i}\right)_{1}^{n} \in X^{(n)} \backslash R P_{S}^{n}(X, G)$. Then we can find a closed neighborhood U_{i} of $x_{i}, 1 \leqslant i \leqslant n$ and $\epsilon>0$ such that if $x_{i}^{\prime} \in U_{i}, 1 \leqslant i \leqslant n$ and $m \in \mathbb{N}$ then $\max _{1 \leqslant k, l \leqslant n} d\left(g_{m}^{-1} x_{k}^{\prime}, g_{m}^{-1} x_{l}^{\prime}\right)>\epsilon$. Now let $\left\{C_{1}, \ldots, C_{k}\right\}(k \geqslant n)$ be a closed cover of X such that the diameter of each $C_{i}, 1 \leqslant i \leqslant k$, is at most ϵ and if $i \in\{1, \ldots, n\}$ then $x_{i} \in\left(C_{i}\right)^{0} \subseteq C_{i} \subseteq U_{i}$. Clearly $\left(x_{i}\right)_{1}^{n} \notin \Delta_{n}(X)$, we may assume that $\left\{C_{1}^{c}, \ldots, C_{n}^{c}\right\}$ forms an admissible open cover of X w.r.t. $\left(x_{i}\right)_{1}^{n}$, and so $h_{\text {top }}\left(G,\left\{C_{1}^{c}, \ldots, C_{n}^{c}\right\}\right)>0$. Moreover,

$$
\begin{equation*}
\limsup _{m \rightarrow+\infty} \frac{1}{m} \log N\left(\bigvee_{i=1}^{m} g_{i}^{-1}\left\{C_{1}^{c}, \ldots, C_{n}^{c}\right\}\right)>0 \quad \text { (by Lemma 7.9). } \tag{7.4}
\end{equation*}
$$

Whereas, it's not hard to claim that for each $i \in\{1, \ldots, k\}$ and $m \in \mathbb{N}$ there exists $j_{i}^{m} \in$ $\{1, \ldots, n\}$ such that $g_{m} C_{i} \cap C_{j_{i}^{m}}=\emptyset$. Otherwise, for some $i_{0} \in\{1, \ldots, k\}$ and $m_{0} \in \mathbb{N}$, it holds that for each $i \in\{1, \ldots, n\}, g_{m_{0}} C_{i_{0}} \cap C_{i} \neq \emptyset$, let $y_{i} \in g_{m_{0}} C_{i_{0}} \cap C_{i} \subseteq U_{i}$. Thus $\max _{1 \leqslant k, l \leqslant n} d\left(g_{m_{0}}^{-1} y_{k}, g_{m_{0}}^{-1} y_{l}\right)$ is at most the diameter of $C_{i_{0}}$, which is at most ϵ, a contradiction with the selection of y_{1}, \ldots, y_{n}. Therefore, $C_{i} \subseteq \bigcap_{m \in \mathbb{N}} g_{m}^{-1} C_{j_{i}^{m}}^{c}$ for each $i \in\{1, \ldots, k\}$, which implies $N\left(\bigvee_{i=1}^{m} g_{i}^{-1}\left\{C_{1}^{c}, \ldots, C_{n}^{c}\right\}\right) \leqslant k$ for each $m \in \mathbb{N}$, a contradiction with (7.4). This finishes the proof of the lemma.

Then we have
Theorem 7.12. Let U and V be non-empty open subsets of X. If (X, G) is minimal and topological K then there exists $g_{1}, \ldots, g_{l} \in G(l \in \mathbb{N})$ such that $\bigcup_{i=1}^{l} g_{i} N(U, V) g_{i}^{-1} \subseteq G$ is cofinite. In particular, if G is commutative then (X, G) is strongly mixing.

Proof. As (X, G) is a minimal G-system, there exist distinct elements $g_{1}, \ldots, g_{N} \in G$ such that $\bigcup_{i=1}^{N} g_{i} U=X$. Let $\delta>0$ be a Lebesgue number of $\left\{g_{1} U, \ldots, g_{N} U\right\} \in \mathcal{C}_{X}^{o}$ and set

$$
B=\left\{g \in G: \exists x_{i} \in g_{i} V(1 \leqslant i \leqslant N) \text { s.t. } \max _{1 \leqslant k, l \leqslant N} d\left(g^{-1} x_{k}, g^{-1} x_{l}\right)<\frac{\delta}{2}\right\} .
$$

As (X, G) is topological $K,\left(g_{i} x\right)_{1}^{N} \in R P_{S}^{n}(X, G)$ for each $S \in \mathcal{F}_{\text {inf }}(G)$ and $x \in X$ by Lemma 7.11. This implies $B \cap S \neq \emptyset$ for each $S \in \mathcal{F}_{\text {inf }}(G)$. Hence, $G \backslash B$ is a finite subset, i.e. $B \subseteq G$ is cofinite. Now if $g \in B$ then for each $i \in\{1, \ldots, N\}$ there exists $x_{i} \in g_{i} V$ such that $\max _{1 \leqslant k, l \leqslant N} d\left(g^{-1} x_{k}, g^{-1} x_{l}\right)<\frac{\delta}{2}$. Moreover, the diameter of $\left\{g^{1} x_{1}, \ldots, g^{-1} x_{N}\right\}$ is less than δ. So by the selection of δ, for some $1 \leqslant k \leqslant N, g^{-1} x_{1}, \ldots, g^{-1} x_{N} \in g_{k} U$, in particular, $g_{k} U \cap g^{-1} g_{k} V \neq \emptyset$. That is, for each $g \in B$ there exists $k \in\{1, \ldots, N\}$ such that $g_{k}^{-1} g g_{k} \in N(U, V)$, i.e. $B \subseteq \bigcup_{k=1}^{N} g_{k} N(U, V) g_{k}^{-1}$.

Acknowledgments

The first author is supported by NSFC (10911120388, 11071231), Fok Ying Tung Education Foundation and the Fundamental Research Funds for the Central Universities; the second author is supported by NSFC (11071231); and the third author is supported by NSFC (10801035), FANEDD (201018) and a grant from Chinese Ministry of Education (200802461004).

References

[1] F. Blanchard, Fully positive topological entropy and topological mixing, in: Symbolic Dynamics and Its Applications, in: Contemp. Math., vol. 135, American Mathematical Society, 1992, pp. 95-105.
[2] F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France 121 (1993) 465-478.
[3] F. Blanchard, E. Glasner, B. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory Dynam. Systems 17 (1) (1997) 29-43.
[4] F. Blanchard, B. Host, A. Maass, S. Martínez, D. Rudolph, Entropy pairs for a measure, Ergodic Theory Dynam. Systems 15 (4) (1995) 621-632.
[5] F. Blanchard, Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (3) (1993) 985-992.
[6] A. Connes, J. Feldman, B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (4) (1981) 431-450.
[7] A.I. Danilenko, Entropy theory from the orbital point of view, Monatsh. Math. 134 (2) (2001) 121-141.
[8] M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math., vol. 527, Springer, New York, 1976.
[9] A.H. Dooley, V.Ya. Golodets, The spectrum of completely positive entropy actions of countable amenable groups, J. Funct. Anal. 196 (1) (2002) 1-18.
[10] A.H. Dooley, G.H. Zhang, Co-induction in dynamical systems, Ergodic Theory Dynam. Systems, in press.
[11] D. Dou, X. Ye, G.H. Zhang, Entropy sequences and maximal entropy sets, Nonlinearity 19 (1) (2006) 53-74.
[12] H.A. Dye, On groups of measure preserving transformation. I, Amer. J. Math. 81 (1) (1959) 119-159.
[13] W.R. Emerson, The pointwise ergodic theorem for amenable groups, Amer. J. Math. 96 (3) (1974) 472-487.
[14] J. Feldman, C.C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (2) (1977) 289-324.
[15] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967) 1-49.
[16] E. Glasner, A simple characterization of the set of μ-entropy pairs and applications, Israel J. Math. 102 (1997) 13-27.
[17] E. Glasner, Ergodic Theory via Joinings, Math. Surveys Monogr., vol. 101, American Mathematical Society, 2003.
[18] E. Glasner, J.P. Thouvenot, B. Weiss, Entropy theory without a past, Ergodic Theory Dynam. Systems 20 (5) (2000) 1355-1370.
[19] E. Glasner, B. Weiss, On the interplay between measurable and topological dynamics, in: Handbook of Dynamical Systems, vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 597-648.
[20] E. Glasner, X. Ye, Local entropy theory, Ergodic Theory Dynam. Systems 29 (2) (2009) 321-356.
[21] W. Huang, A. Maass, P.P. Romagnoli, X. Ye, Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers, Ergodic Theory Dynam. Systems 24 (4) (2004) 1127-1153.
[22] W. Huang, S. Shao, X. Ye, Mixing via sequence entropy, in: Algebraic and Topological Dynamics, in: Contemp. Math., vol. 385, American Mathematical Society, 2005, pp. 101-122.
[23] W. Huang, X. Ye, A local variational relation and applications, Israel J. Math. 151 (2006) 237-279.
[24] W. Huang, X. Ye, G.H. Zhang, A local variational principle for conditional entropy, Ergodic Theory Dynam. Systems 26 (1) (2006) 219-245.
[25] W. Huang, X. Ye, G.H. Zhang, Relative entropy tuples, relative u.p.e. and c.p.e. extensions, Israel J. Math. 158 (2007) 249-283.
[26] A.B. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 51 (1980) 137-173.
[27] D. Kerr, H. Li, Independence in topological and C^{*}-dynamics, Math. Ann. 338 (4) (2007) 869-926.
[28] D. Kerr, H. Li, Combinatorial independence in measurable dynamics, J. Funct. Anal. 256 (5) (2009) 1341-1386.
[29] J. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probab. 3 (6) (1975) 1031-1037.
[30] E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2) (2001) 259-295.
[31] E. Lindenstrauss, B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000) 1-24.
[32] J.M. Ollagnier, Ergodic Theory and Statistical Mechanics, Lecture Notes in Math., vol. 1115, Springer-Verlag, Berlin, 1985.
[33] J.M. Ollagnier, D. Pinchon, The variational principle, Studia Math. 72 (2) (1982) 151-159.
[34] D.S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987) 1-141.
[35] D.S. Ornstein, B. Weiss, Subsequence ergodic theorems for amenable groups, Israel J. Math. 79 (1) (1992) 113-127.
[36] K.K. Park, A. Siemaszko, Relative topological Pinsker factors and entropy pairs, Monatsh. Math. 134 (1) (2001) 67-79.
[37] V.A. Rohlin, On the fundamental ideas of measure theory, Math. Sb. (N. S.) 25 (67) (1949) 107-150; English Transl.: Amer. Math. Soc. Transl. Ser. 110 (1962) 1-54.
[38] V.A. Rohlin, Yakov G. Sinai, Construction and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR 141 (1967) 1038-1041 (in Russian).
[39] P.P. Romagnoli, A local variational principle for the topological entropy, Ergodic Theory Dynam. Systems 23 (5) (2003) 1601-1610.
[40] D.J. Rudolph, B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math. (2) 151 (3) (2000) 11191150.
[41] A.M. Stepin, A.T. Tagi-Zade, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR 254 (3) (1980) 545-549 (in Russian).
[42] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math., vol. 79, Springer-Verlag, New York, Berlin, 1982.
[43] T. Ward, Q. Zhang, The Abramov-Rokhlin entropy addition formula for amenable group actions, Monatsh. Math. 114 (3-4) (1992) 317-329.
[44] B. Weiss, Actions of amenable groups, in: Topics in Dynamics and Ergodic Theory, in: London Math. Soc. Lecture Note Ser., vol. 310, Cambridge Univ. Press, Cambridge, 2003, pp. 226-262.
[45] X. Ye, G.H. Zhang, Entropy points and applications, Trans. Amer. Math. Soc. 359 (12) (2007) 6167-6186.
[46] R.J. Zimmer, Hyperfinite factors and amenable ergodic actions, Invent. Math. 41 (1) (1977) 23-31.

[^0]: * Corresponding author.

 E-mail addresses: wenh@mail.ustc.edu.cn (W. Huang), yexd@ustc.edu.cn (X. Ye), chiaths.zhang @ gmail.com (G. Zhang).

