=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

o2~ . . JOURNAL OF
*s” ScienceDirect Functional
Analysis

ELSEVIER Journal of Functional Analysis 261 (2011) 1028-1082 —_—
www.elsevier.com/locate/jfa

Local entropy theory for a countable discrete amenable
group action

Wen Huang **, Xiangdong Ye*, Guohua Zhang "

4 Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences and Department of Mathematics,
University of Science and Technology of China, Hefei, Anhui 230026, China
b School of Mathematical Sciences and LMNS, Fudan University, Shanghai 200433, China

Received 4 January 2011; accepted 25 April 2011
Available online 11 May 2011

Communicated by D. Voiculescu

Abstract

The local properties of entropy for a countable discrete amenable group action are studied. For such an
action, a local variational principle for a given finite open cover is established, from which the variational
relation between the topological and measure-theoretic entropy tuples is deduced. While doing this it is
shown that two kinds of measure-theoretic entropy for finite Borel covers coincide. Moreover, two special
classes of such an action: systems with uniformly positive entropy and completely positive entropy are
investigated.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Rohlin and Sinai [38] introduced the notion of completely positive entropy (c.p.e.) for Z-
actions on a Lebesgue space. It is also known as K -actions of Z. K -actions played an important
role in the classic ergodic theory. In 1992, Blanchard introduced the notions of uniformly positive
entropy (u.p.e.) and c.p.e. as topological analogues of the K -actions in topological dynamics of
Z-actions [1]. By localizing the concepts of u.p.e. and c.p.e., he defined the notion of entropy
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pairs, and used it to show that a u.p.e. system is disjoint from all minimal zero entropy systems [2]
and to obtain the maximal zero entropy factor for any topological dynamical system of Z-actions
(namely the topological Pinsker factor) [5]. From then, on the local entropy theory of Z-actions
there have been made great achievements [1-5,11,16,21,23-25,27,39,45], see also the relevant
chapters in [17] and the survey papers [19,20]. A key point in the local entropy theory of Z-
actions is the local variational principle for finite open covers.

Note that for each dynamical system (X, T') of Z-actions (or call it TDS), there always exist
T -invariant Borel probability measures on X so that the classic ergodic theory involves the study
of the entropy theory of (X, T'). Whereas, there are some groups G such that there exists no any
invariant Borel probability measures on some compact metric space with G-actions, for example
the rank two free group F3. It is well known that, for a dynamical system of group actions, the
amenability of the group ensures the existence of invariant Borel probability measures, which
includes all finite groups, solvable groups and compact groups.

Comparing to dynamical systems of Z-actions, the level of development of dynamical sys-
tems of an amenable group action lagged behind. However, this situation is rapidly changing
in recent years. A turning point occurred with Ornstein and Weiss’s pioneering paper [34] in
1987 which laid a foundation of an amenable group action. In 2000, Rudolph and Weiss [40]
showed that K-actions for a countable discrete amenable group is mixing of all orders (an
open important question for years) by using methods from orbit equivalence. Inspired by this,
Danilenko [7] pushed further the idea used by Rudolph and Weiss providing new short proofs
of results in [18,34,40,43]. Meanwhile, based on the result of [40] and with the help of the re-
sults from [6], Dooley and Golodets in [9] proved that every free ergodic actions of a countable
discrete amenable group with c.p.e. has a countable Lebesgue spectrum. Another long standing
open problem is the generalization of pointwise convergence results, even such basic theorems
as the L!-pointwise ergodic theorem and the Shannon-McMillan—Breiman (SMB) Theorem for
general amenable groups, for related results see for example [13,29,35]. In [30] Lindenstrauss
gave a satisfactory answer to the question by proving the pointwise ergodic theorem for general
locally compact amenable groups along Fglner sequences obeying some restrictions (such se-
quences must exist for all amenable groups) and obtaining a generalization of the SMB Theorem
to all countable discrete amenable groups (see also the survey [44] written by Weiss). Moreover,
using the tools built in [30] Lindenstrauss also proved other pointwise results, for example [35]
and so on.

Along with the development of the local entropy theory for Z-actions, a natural question
arises: to what extends the theory can be generalized to an amenable group action? In [27] Kerr
and Li studied the local entropy theory of an amenable group action for topological dynamics
via independence. In this paper we try to study systematically the local properties of entropy
for actions of a countable discrete amenable group both in topological and measure theoretical
settings.

First, we shall establish a local variational principle for a given finite open cover of a count-
able discrete amenable group action. Note that the classical variational principle of a countable
discrete amenable group action (see [33,41]) can be deduced from our result by proceeding some
simple arguments. In the way to build the local variational principle, we also introduce two
kinds of measure-theoretic entropy for finite Borel covers following the ideas of [39], prove the
upper semi-continuity (u.s.c.) of them (when considering a finite open cover) on the set of invari-
ant measures, and show that they coincide. We note that completely different from the case of
Z-actions, in our proving of the u.s.c. we need a deep convergence lemma related to a countable
discrete amenable group; and in our proving of the equivalence of these two kinds of entropy, we
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need the result that they are equivalent for Z-actions, and Danilenko’s orbital approach method
(since we can’t obtain a universal Rohlin Lemma and a result similar to Glasner—Weiss Theorem
[19] in this setting). Meanwhile, inspired by [44, Lemma 5.11] we shall give a local version of
the well-known Katok’s result [26, Theorem LI] for a countable discrete amenable group action.

Then we introduce entropy tuples in both topological and measure-theoretic settings. The
set of measure-theoretic entropy tuples for an invariant measure is characterized, the variational
relation between these two kinds of entropy tuples is obtained as an application of the local
variational principle for a given finite open cover. Based on the ideas of topological entropy pairs,
we discuss two classes of dynamical systems: having u.p.e. and having c.p.e. Precisely speaking,
for a countable discrete amenable group action, it is proved: u.p.e. and c.p.e. are both preserved
under a finite production; u.p.e. implies c.p.e.; c.p.e. implies the existence of an invariant measure
with full support; u.p.e. implies mild mixing; and minimal topological K implies strong mixing
if the group considered is commutative.

We note that when we finished our writing of the paper, we received a preprint by Kerr and
Li [28], where the authors investigated the local entropy theory of an amenable group action for
measure-preserving systems via independence. They obtained the variational relation between
these two kinds of entropy tuples defined by them, and stated the local variational principle for
a given finite open cover as an open question, see [28, Question 2.10]. Moreover, the results ob-
tained in this paper have been applied to consider the co-induction of dynamical systems in [10].

The paper is organized as following. In Section 2, we introduce the terminology from [34,43]
that we shall use, and obtain some convergence lemmas which play key roles in the following
sections. In Section 3, for a countable discrete amenable group action we introduce the entropy
theory of it, including two kinds of measure-theoretic entropy for a finite Borel cover, and es-
tablish some basic properties of them, such as u.s.c., affinity and so on. Then in Section 4 we
prove the equivalence of those two kinds of entropy introduced for a finite Borel cover, and
give a local version of the well-known Katok’s result [26, Theorem L.I] for a countable discrete
amenable group action. In Section 5, we aim to establish the local variational principle for a finite
open cover. In Section 6, we introduce entropy tuples in both topological and measure-theoretic
settings and establish the variational relation between them. Based on the ideas of topological
entropy pairs, in Section 7 we discuss two special classes of dynamical systems: having u.p.e.
and having c.p.e., respectively.

2. Backgrounds of a countable discrete amenable group

Let G be a countable discrete infinite group and F(G) the set of all finite non-empty subsets
of G. G is called amenable, if for each K € F(G) and § > 0 there exists F € F(G) such that

|FAKF|

<4,
|F|

where | - | is the counting measure, KF = {kf: k€ K, f € F} and FAKF =(F\ KF)U
(KF\F).Let K € F(G)and 8§ > 0.Set K~ ={k~!: k e K}. A € F(G) is (K, 8)-invariant if

|B(A, K)|

<4,
[A]

where B(A,K) ={ge€G: KgNA#PandKgN (G\A) #0 =K 'ANK G\ A).
A sequence {F,},en C F(G) is called a Fglner sequence, if for each K € F(G) and § > 0,
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F, is (K, §)-invariant when n is large enough. It is not hard to obtain the following asymp-
totic invariance property that G is amenable if and only if G has a Fglner sequence {F,},cN.
For example, for Z we may take Fglner sequence F,, = {0, 1,...,n — 1}, or for that matter
{an,a, +1,...,a, +n — 1} for any sequence {a, },en C Z.

Throughout the paper, any amenable group considered is assumed to be a countable discrete
amenable infinite group, and G will always be such a group with the unit eg.

2.1. Quasi-tiling for an amenable group
The following terminology and results are due to Ornstein and Weiss [34] (see also

[40,43]). Let {A1,..., Ak} € F(G) and € € (0, 1). Subsets Ajy,..., A; are e-disjoint if there
are {Bj, ..., By} C F(G) such that

(1) B; € A; and }fi;‘_'l >l—efori=1,...,k,

(2 BiNB;=0if 1 <i#j<k.

For o € (0, 1], we say that {Aq, ..., Ax} a-covers A € F(G) if

AN Uiz 401
Al g

For 6 €[0, 1), {Ay, ..., Ag} is called a §-even cover of A € F(G) if

(1) A;CAfori=1,...,k,
(2) there is M € N such that Zle 14,(g) < M foreach g € G and Zle [A;]| = (1 —8)M|A|.

We say that Ay, ..., Ax e-quasi-tile A € F(G) if there exists {C, ..., Cx} C F(G) such that
(1) fori=1,...,k, A;C; € A and {A;c: c € C;} forms an e-disjoint family,

(2) AiCiNA;C; =0if1<i#j<k,

3) {AiCi:i=1,...,k} forms a (1 — €)-cover of A.

The subsets Cq, ..., Cy are called the tiling centers.
The following lemmas are proved in [34, §1.2].

Lemma 2.1. Let § € [0, 1),eg € S € F(G) and A € F(G) satisfy that A is (SS’1 , 8)-invariant.
Then the right translates of S that lie in A, {Sg: g € G, Sg C A}, form a §-even cover of A.

Lemma 2.2. Let § € [0, 1) and let A C F(G) be a §-even cover of A € F(G). Then for each
€ € (0, 1) there is an e-disjoint sub-collection of A which €(1 — §)-covers A.

Then we can claim the following proposition (see [34] or [43, Theorem 2.6]).
Proposition 2.3. Let {F,},en with eg € FI € F2 C --- and {F,},eN be two Fglner sequences

of G. Then for any € € (0, 4—11) and N € N, there exist integers ny,...,ng with N <njp < --- < ng
such that Fy,, ..., F,, €-quasi-tile F,, when m is large enough.
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Proof. We follow the arguments in the proof of [43, Theorem 2.6]. Fix € € (0, %) and N e N.

Let k € N and § > O such that (1 — %)k <€ and 658 < % We can choose integers ny, ..., ng
. . . . Fy, .
with N <nj <--- <ngsuchthat Fy, | is (Fn,E;l,8)-1nvarlantand “L tll <é6,i=1,...,k—1.
! nj41
. . . Fil
Now for each enough large m, F), is (Fy, Fn’kl, 8)-invariant and % < §, thus by Lemma 2.1

m

the right translates of F;,, that lie in F,, form a §-even cover of F,,, and so by Lemma 2.2 there
exists Cx € F(G) such that F,,, Cx € F,, and the family {Fy, c: ¢ € Ci} is e-disjoint and € (1 — §)-
covers F,. Let ¢x € Cy. Without loss of generality assume that | Fy,, Cx \ Fy,ck| < e€(1 — 8)|F),|
(if necessary we may take a subset of Cy to replace with Cy). Then (1 — €)|Fy, ||Ck| < |F,,| and

|Fr/n\Fnka| —1— |Fnkck\Fnka| + |Fnkck|
[Fl [Fol
>1—€e(1-6)-34. 2.1

l—e(1—8)>

Set Ay_1 = F), \ Fy,Cx, Kk—1 = Fy,_, F,;! . We have

Rg—1" ng—q

B(Ak-1. Kio1) = Ky (Fy, \ Fu Ce) N K ((G\ F) U F Cie)

< B(Fy. Ki-1) U | B(Fuc. Kion)

ceCy

C B(Fy,, Fu, F,,")U | ) B(Fu,. Ki1)e  (as K1 S Fy FyY),

Nk * ng
ceCy
which implies
|B(Ak—1, Ki—1)| _ |B(Fpy, Fu Byl |B(Foy, Ki1))
< + | Ck|
[Ag—1] [Ar—1] [Ag—1]
8
<———(|F,,| + ICklI Fyy |
GAVI )
1 |F/ |
51+ n as (1 —€)|F,.||IC F’
- ( 1—6)|F,;1\Fnkck| (as (1 — &) Fyy 1Cel < | FL])
<s(14 : (by 2.1))
S l—e)l—el—8)—s V&

o (oee(o)

That is, Ax—1 is (Fy,_, F,;il , 68)-invariant. Moreover, using (2.1) one has

|Fue | Fu | | Fyl |F| 82
— . - ; < <8.
(A1l Ful  1F,l 1FL\FuCil  1T—e(1—8)—35
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By the same reasoning there exists Cx—_1 € F(G) such that F,
{Fyu,_,c: c € Cx—1} is e-disjoint and €(1 — 68)-covers Ax_1 and

w1 Ck—1 € Ag_1, the family

[Ak—1\ Fuy; Ci—1l

1—e(l—68)>
[Ag—1]

>1—e(l —68) — 68. 2.2)

Moreover, by (2.1) and (2.2) we have

|Ak=1 \ Fryey Comtl 1Akt \ Foy ol 1 \ Fy G
|Fy ] [Ak—1l | Fpl

2
<(1—e(1—68)(1—e(1-8)) < (1 = 5) .

2

Inductively, we get {Ck, ..., C1} € F(G) such thatif 1 <i # j <k then F,,C; N Fy,;Cj =0,
andifi =1,...,kthen F,,,;C; C F,; and the family {F,,c: ¢ € C;} is e-disjoint. Moreover,

k k
E \U PGl _ () .
[l 2

Thus, {F,,Ci: i =1,...,k} forms a (1 — €)-cover of F,,. This ends the proof. O
2.2. Convergence key lemmas
Let f : F(G) — R be a function. We say that f is

(1) monotone, if f(E) < f(F) forany E, F € F(G) satisfying E C F;
(2) non-negative, if f(F) >0 for any F € F(G);

(3) G-invariant, if f(Fg) = f(F) forany F € F(G) and g € G;

(4) sub-additive, if f(EUF)< f(E)+ f(F)forany E, F € F(G).

The following lemma is proved in [31, Theorem 6.1].

Lemma 24. Let f : F(G) — R be a monotone non-negative G-invariant sub-additive
(m.n.i.s.a.) function. Then for any Fplner sequence {F,},enN of G, the sequence {%}nel\l con-
verges and the value of the limit is independent of the selection of the Fglner sequence { Fy },eN-

Proof. We give a proof for the completion. Since f is G-invariant, there exists M € Ry such
that f({g}) =M forall g € G.

Now first we claim that if {F,},en With eg € F1 € F» € --- and {F) },en are two Fglner
sequences of G then

F) F
lim sup L/") < limsup A "). (2.3)

n——+oo IFn| n——+o0o |Fn|
Let € € (0, %) and N € N. By Proposition 2.3 there exist integers ny,...,n; with N < n; <
-+ < ng such that when n is large enough then F,,, ..., F,, e-quasi-tile F, with tiling centers

C{,...,C}. Thus, when n is large enough then
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max{(

FED  SENU P €D + £ Ui PG

k
Fy 2| JFC! and W =) [CH Rl @24)

k
U Fn, Cn
i=1

which implies

Pyl |F |
<y EAUL €l F U Fa €]
| Fy | Ui Fu, C1
k
< Me+ F Uiz Fn €
|Uizt Fu CP
k
C"| f(F,
< Me + | ‘,'(f (Fu) (using (2.4))
o (A=) i |CH - | Fy,l
1 F,
< Me+ ma T En) < Me+ sup ( m). (2.5)
1—61<z<k | Fo, | I—€p>n |[Funl

Now letting € — 0+ and N — +o00, we conclude the inequality (2.3).
Now let {H,},en With eg € H] € Hy C - - be a Fglner sequence of G. Clearly, there is a
sub-sequence {H,,, }meN Of {H,}nen such that

S (Hy,) f(Hn)
im = liminf
m— —+00 |Hnm | n—+oo |H,|

(2.6)

Applying the above claim to Fglner sequences {H,,, }meN and {H, },eN (see (2.3)), we obtain

lim sup J(Hn) < limsu J (H,) = liminf fgfn) (by (2.6)).

n—s4oo |Hyl m——+00 |Hnm| n—+oo |Hp

L(Hy) }nen converges (say N (f) to be the value of the limit). Then for any

[Hal
Fglner sequence {F},},en With eg € F1 € F> C --- of G, the sequence {f ‘%’i)}neN converges to

N(f) (by (2.3)).
Finally, in order to complete the proof, we only need to check that, for any given Fglner
sequence {Fy}neny of G, if {F)},en is any sub-sequence of {F,},eN such that the sequence

{%}%N converges, then it converges to N (f), which implies {f‘%F'i) Inen converges to N(f).

Thus, the sequence {

Let {F) },en be such a sub-sequence. With no loss of generality we assume lim,,_, 1 ‘ IL/" l | = =0
+1

(if necessary we take a sub- sequence of {Fn}neN), where F,' = {eg} U Ui:l Fl.’ for each n. It

is easy to check that eg € F|' C Fy - forms a Fglner sequence of G and so the sequence

{ | F* )},,EN converges to N (f) from the above discussion. Note that, for each n € N,
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FFi)  fED| ) [ Ee)  fFr)

IFial Bl D IR DIEL D Fy
<m( 4l - )
1Fyil il 1Fp
<M< Pl oL )
|F/+1| 1+ IF/HI
By letting n — +00 one has limy,_ 1o f|5r«‘F “‘) = lim,— 100 fI(FIZtlI) = N(f), that is, the se-

quence {W}”GN converges alsoto N(f). O

Remark 2.5. Recall that we say a set T tiles G if there is a subset C such that {Tc: c € C}is a
partition of G. It’s proved that if G admits a Fglner sequence {F}, },,cn of tiling sets then for each
f as in Lemma 2.4 the sequence {fl(F 'i) }neN converges to infycn A %F”) and the value of the limit

is independent of the choice of such a Fglner sequence, which is stated as [44, Theorem 5.9].

The following useful lemma is an alternative version of (2.5) in the proof of Lemma 2.4.

Lemma 2.6. Let eg € F1 C F» C --- be a Fglner sequence of G. Then for any € € (0, %) and
N € N there exist integers ny,...,n;p with N <ny <--- <ny such thatif f : F(G) > Risa
m.n.i.s.a. function with M = f({g}) for all g € G then

F, 1 F,.
lim S(Fy) < Me+ max S (Fn)
n—>+oo | F,| I —e1<i<k |Fyl

4+ max

SEn)
<M6(1+ ) 1<i<k |F |

1—e€
3. Entropy of an amenable group action

Let {F,},en be a Fglner sequence of G and fix it in the section. In this section, we aim to
introduce the entropy theory of a G-system. By a G-system (X, G) we mean that X is a compact
metric space and I' : G x X — X, (g, x) — gx is a continuous mapping satisfying

(1) I'(eg,x)=x foreachx € X,
(2) I'(g1,I'(g2,x)) =T'(g182,x) foreach g1, g2 € G and x € X.

Moreover, if a non-empty compact subset W C X is G-invariant (i.e. gW = W for any g € G)
then (W, G) is called a sub-G-system of (X, G).

From now on, we let (X, G) always be a G-system if there is no any special statement. Denote
by By the collection of all Borel subsets of X. A cover of X is a finite family of Borel subsets
of X, whose union is X. A partition of X is a cover of X whose elements are pairwise disjoint.
Denote by Cy (resp. C%) the set of all covers (resp. finite open covers) of X. Denote by Py the
set of all partitions of X. Given two covers U,V € Cx, U is said to be finer than V (denoted
by U =V or V < U) if each element of I/ is contained in some element of V; set U« V V =
{UNnv:Uel, VeVl
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3.1. Topological entropy

Let U € Cx. Set N(U) to be the minimum among the cardinalities of all sub-families of
U covering X and denote by #(U{) the cardinality of /. Define H () = log N (). Clearly, if
UVeCx,then HUVV)SHU)+ H(V)and HV) > HU) when V = U.

Let F € F(G) and U € Cyx, setUp = \/geF g‘lu (letting Uy = {X}). It is not hard to check
that F € F(G) — H(UF) is a m.n.i.a.s. function, and so by Lemma 2.4, the quantity

1
m — HUg,)

hop(G.U = T,

exists and hop(G,U) is independent of the choice of {F}}neN. htop(G,U) is called the topo-
logical entropy of U. It is clear that hyp(G,U) < H(U). Note that if U, U € Cx, then
hiop(G, Ut V Un) < hiop (G UY) + hiop(G.Un) and hiop(G,Us) > hiop(G.Ut) when Us = Uy.
The topological entropy of (X, G) is defined by

hop(G, X) = sup hyp(G,U).
UeC

3.2. Measure-theoretic entropy

Denote by M (X) the set of all Borel probability measures on X. For u € M(X), denote by
supp(u) the support of w, i.e. the smallest closed subset W C X such that u(W) =1. u € M(X)
is called G-invariant if gu = u for each g € G; G-invariant v € M(X) is called ergodic if
v(Ugec gA)=0or 1 for any A € Byx. Denote by M (X, G) (resp. M(X, G)) the set of all G-
invariant (resp. ergodic G-invariant) elements in M (X). Note that the amenability of G ensures
that ¥ # M°(X, G) and both M (X) and M (X, G) are convex compact metric spaces when they
are endowed with the weak*-topology.

Given a € Px, u € M(X) and a sub-o-algebra A C By, define

Hy (| A) = Z/—E(IAIA)logE(lAIA)dM,

AeaX

where E(14|.4) is the expectation of 14 with respect to (w.r.t.) A. One standard fact is that
H, (a|A) increases w.r.t. « and decreases w.r.t. A. Set N = {J, X}. Define

Hy (@) = Hy(@|N) =Y —p(A)log u(A).
Aea

Let 8 € Px. Note that S generates naturally a sub-c-algebra F(8) of By, define

Hy(@|B) = Hy (| F(B)) = Hy(a vV B) — Hu(B).

Now let u € M(X, G), it is not hard to see that F € F(G) — H,(ar) is a m.n.i.a.s. function.
Thus by Lemma 2.4 we can define the measure-theoretic j-entropy of « as

. 1
h(G.a)= lim ——H,(@r,) (=

1
T —H,AaF)), (3.0)

inf
FeF(G) | F|
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where the last identity is to be proved in Lemma 3.1(4). In particular, i, (G, o) is independent
of the choice of Fglner sequence { F, },en. The measure-theoretic p-entropy of (X, G) is defined

by

hu (G, X) = sup h,(G,a).

(XEPX

3.2.1. The proof of the second identity in (3.1)
Lemma3.1. Letax € Px, ue M(X),meNand E, F,B,E,...,E, € F(G). Then

1. Hy(apur) + Hy(apnr) < Hy(ap) + Hy(aF).

2. If1g(g) = %Zle 1g; (g) holds for each g € G, then H, (ag) < %Zle H,(aE;).

3.

1
Hy(aF) < Z mHﬂ(aBg) +|F\{geG: B~'gC F}| log#().
geF

4. If in addition u € M(X, G), then h, (G, @) =infgcr(c) H;L“(;B).

Proof. 1. The conclusion follows directly from the following simple observation:
H,(apur) + Hy(apnr) = Hy(ap) + Hy(aplag) + Hy (0enr)

< Hy(ap) + Hy(arlapnr) + Hy(@gnr)

= H,(ag) + Hy(ar).

(3.2)

2. Clearly, Ule E; =E.Say {A1,..., Ay} = \/{-‘Zl{Ei, E \ E;} (neglecting all empty ele-
ments). Set Ko = 0, K,-:U;zlAj,i:l,...,n. Then W= Ko C K1 S --- C K,, = E. More-
over,if forsomei=1,...,nand j=1,...,kwith E; N (K; \ K;_1) #@0 then K; \ K;_1 C E;
and so K; = K;—1 U (K; N Ej), thus Hy(ak;) + Hy(ak, nE;) < Hulak, ) + Hu(ag,nE;)

(using 1), i.e.

H/L(“K,‘) - H/L(aK,‘,l) < H,U,(O[KiﬂEj) - H/L(aK,-,lﬂEj)'

Now foreachi =1,...,n we select k; € K; \ K;_1, one has

n k
1
H, (o) = E (; E lg; (k,~)> (H,L(aK,.) — Hu(O‘K,-_l)) (by assumptions)

i=1 j=I

IS Y (Bt - Huex, )

k
l .
S Z Z (Hu(aking;) — Hu(ag,_ng;))  (using (3.3))
M S 1<i<n: kieE;

(3.3)
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1 k n
- Z Z(Hu(aKiﬂEj) - H;L(aKl‘,lﬂEj))
=1i=1

§

1

—Z W (@E)).

§

3. Note that ly,cpp. p-1pcpy(f) = ITI?\ > ceF Lnesg: B-1ncry(f) foreach f € G. By 2, one
has

Hy(@pepr: p-1hcry) < 18| ZH (Xpepg: B-1her)) S 1B ZH (@Bg), 34
geF geF

which implies

Hy(ar) < H, (a{heBF' B-ther)) T Hu@p\hepF: B-1hery)

ZH (apg) +|F\{he BF: B'"hC F}| log#a (using (3.4))

IBI
geF

ZH (apg) + |F\ {h e G: B~'h C F}|-log#a.

B
ger

4. If in addition u is G-invariant, then by 3, for each n € N we have

1
_Hu(aFn) <

—H +—|F, G: B~ 'g C F,}| -log#
Il ol 2 7 e ne) |F|| Mg e Bg S| logha
8€ln
_ ! LH#( _1(a3))+—|F \{geG: B~'gC F,}| log#a
[Ful = [B] Il
8€ln
=iHu(aB)+ |Fu\{g€G: B~'gc F,}| log#a. 3.5)
|B| | Fal

Set =B~ U {eg}. Note that for each § > 0, F), is (B’, §)-invariant if n is large enough and

Fi\{s€G: B¢ C R} =F,NB(G\ F)C(B) F,N(B) ' (G\ F)=B(F,.B).
letting n — 400 we get

lim —|F,\{geG: B~'gcF,}|= lim M=0, (3.6)
n—>+oo|F| n——+00 | Fy

and so h, (G, ) < %H (ap) (using (3.5) and (3.6)). Since B is arbitrary, 4 is proved. O

Remark 3.2. In [32], Lemma 3.1(1) is called the strong sub-additivity of entropy. In his treatment
of entropy for amenable group actions [32, Chapter 4], Ollagnier used the property rather heavily.
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3.2.2. Measure-theoretic entropy for covers
Following Romagnoli’s ideas [39], we define a new notion that extends definition (3.1) to
covers. Let u € M(X) and A C By be a sub-o-algebra. For i € Cx, we define

HoUlA= _inf  Hy(@lA) and  H,@U) = H,UN).

AES X A=
Many properties of the function H,, («) are extended to H,, (I/) from partitions to covers.
Lemma 3.3. Ler u € M(X), A C By be a sub-c-algebra, g € G and Uy, U € Cx. Then

1. 0< Hy(g U |g7 1 A) = Hy (U | A) < HU).
2. IfUy = Us, then H, (U |A) > H, (Us| A).
3. H, (U vULA) < H (U A + H, (U A).

Using Lemma 3.3, one gets easily that if © € M(X, G) then F € F(G) — H,(UF) is a
m.n.i.s.a. function. So we may define the measure-theoretic u™ -entropy of U as

_ . 1
hM(G’u)_nEToo F,

| Pl

Hu (UF,,)

and h; (G, U) is independent of the choice of Fglner sequence {F;, },cn (see Lemma 2.4). At the
same time, we define the measure-theoretic j-entropy of U as

hy(G.U)= _inf  h,(G, a).

a€Pyx: ax=

We obtain directly the following easy facts.
Lemma 3.4. Let u € M(X, G) and U,V € Cx. Then

L. by (G, U) < hy (G, U and h7; (G.U) < hop(G,U).
2. hu(G.UNVY) < hu(G.U) +hyy (G, V) and by (G.U N V) < b (GU) + by (G, V).
3. IfU =V, then hy (G, U) > hy, (G, V) and by, (G, U) > hy; (G, V).

3.2.3. An alternative formula for (3.2)
Let u € M(X, G). Since Px C Cx, we have

h, (G, X) = sup h;(G,L{): sup h,(G,U). 3.7
UeCyx UeCx

In fact, the above extension of local measure-theoretic entropy from partitions to covers allows
us to give another alternative formula for (3.2).

Theorem 3.5. Let 1 € M (X, G). Then

h, (G, X)= sup h;(G,U): sup h,(G,U). (3.8)
UeCS UeCS
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Proof. By 3.7), h,,(G, X) > SUPy/ecy, h, (G,U). For the other direction, let o = {Ay, ..., Ay} €
Px and € > 0.

Claim. There exists U € C$ such that H,L(g’la|ﬁ) <eifgeGand B € Py satisfy B =g~ 'U.

Proof. By [42, Lemma 4.15], there exists §; = 8; (k, €) > O such that if 8; = {Bl, ..., Bi} € Px,
i = 1,2 satisfy Zl 1 (B; ABZ) < 61 then H, (B1]B2) < €. Since p is regular we can take
closed subsets B; C A; with u(A; \ B;) < k2,z =1,...,k.Let By —X\Ui:1 B;,U; = ByUB;,
i=1,...,k. Then ju(Bo) < 3t andu_{Ul,...,Uk}ec;;.

Letge G.If B e Py is ﬁner than g_lu, we can find B/ = {Cy, ..., Cx} € Py satisfying C; C
¢ 'Ui,i=1,...,kand B = p/,and so H,(g"'@|B) < H,(g '|p). Foreachi =1,...,k, as
g Wi2Ci2X\Ujy g 'Ur=¢ "B and g 7' A; 2 ¢! B;, one has

_ _ _ _ 3 &1 _ 4
w(Cing™ Ai) <pu(e™ Ai \ g Bi) + (g™ Bo) = 1(Ai \ B)) + i(Bo) < 5+ 55 < -

Thus Y%, u(CiAg™'A;) < 8. It follows that H, (g 'a|f’) < ¢ and hence H,(g™'a|
By<e. O

Let F € F(G). If B € Py is finer than Uy, then B 3= g~ U for each g € F, and so using the
above Claim one has

Hy(r) < Hy(B) + Hy(ap|B) < Hu(B) + Y Hyu(g™'@lB) < Hu(B) + | Fle.

geF

Moreover, H, (ar) < H,(UF) + | F|e. Now letting F range over {F, },eN one has

h, (G, a)— hm

H,UFE,) +¢€
|F| n—-+00 n| a

=h, (G,U)+e< sup h, (G, V)+e.
VeC§

Since o and € are arbitrary, &, (G, X) < SUPpecy hlj (G, V) and so

hu(G,X) < sup h;, (G, V) < sup hy,(G,V) (by Lemma 3.4(1)). ]
VeCs VeCs

3.2.4. U.s.c. of measure-theoretic entropy of open covers
A real-valued function f defined on a compact metric space Z is called upper semi-continuous
(u.s.c.) if one of the following equivalent conditions holds:

(A1) limsup,_, . f(z') < f(z) foreach z € Z;
(A2) foreachr e R, theset {z € Z: f(z) > r} is closed.
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Using (A2), the infimum of any family of u.s.c. functions is again a u.s.c. one; both the sum and
the supremum of finitely many u.s.c. functions are u.s.c. ones.

In this sub-section, we aim to prove that those two kinds entropy of open covers over
M(X, G) are both u.s.c. First, we need

Lemma 3.6. Let U = (Ui, ..., Uy} € C§ and F € F(G). Then the function ¥ : M(X) — Ry
with ¥ () = infyepy: o=ts Hy(ar) is u.s.c.

Proof. Fix u € M(X) and € > 0. It is sufficient to prove that

limsup ¥ (u) <¥(u) +e. 3.9)
wW—u: W eM(X)

We choose a € Py such that o >= U and Hy, (ap) < ¢ (u) + % With no loss of generality we
assume o = {A.l""’AM} wiyh A; CU;, 1 <i < M. Then there exists § = §(M, F,e) >0
such that if ' = {B..... B}} € Px, i = 1,2 satisfy Y /2,3 ., gu(B'AB?) < § then

H,(BLIBZ) < deFHgM(ﬂHﬂz) < § [42, Lemma 4.15]. Set U\ , = {B € Px: B =U
M(UBE,SF dB) =0}.

Claim. There exists B ={B1,..., By} € U* F such that H, (Brlor) <

Proof. Let §; € (0, %). By the regularity of u, there exists compact C; C A; such that

31 .
Zgu(Aj\cj)<M, j=1,...,M. (3.10)
geF

For jefl,...,M},set O; =U; N (X \ Ui;éj C;), then O; is an open subset of X satisfying
A;CO;CU; and
Do gu(Oj\NAD Y Y gu(A\C) <b1 as0;\A;cJAnG. @D

geF i#j geF i#j
Note that if x € X then there exist at most countably many y > O such that {y € X: d(x, y) =y}

halswpositive gp-measure for some g € F. Moreover, as O1, ..., Oy are open subsets of X and
1 O; =X, it is not hard to obtain Borel subsets CY,...,Cysuchthat C; € 0;, 1 <i <M,

Ui:] Cz* = X and Zi:] deF g“‘(ac ) =
Set By =Cf, Bj=Ci\ (U{Z) C}).2<j < M.Then p={By..... By} € Px and f = U
As g~1(dD) =9(g~' D) foreach g € F and D C X, by the construction of Cf, ..., Cj, it’s easy

to check that “(UBG;SF dB)=0and so eZ/{* .Notethatif 1 <j#i<M then B;NC; C
O; N C; =¥, which implies C; € B; C O; fora111<z<M By (3.10) and (3.11),

M M M
YD en(AAB) <Y Y (2r(Ai\ C) +gu(0; \ A)) < D281 < 8.
i=1

i=1geF i=1geF

Thus H, (Brlar) < 5 (by the selection of §). This finishes the proof of the claim. O
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Now, note that § € Py satisfies § = U and M(UBEﬁF dB) =0, one has

limsup Y (1)< limsup  Hy(Br) = Hu(BrF)
W= e M(X) W=, W e M(X)

S Hp(ap) + Hu(Brlar) < ¥ () +€  (by Claim).
This establishes (3.9) and so completes the proof of the lemma. O

Lemma 3.7. Let 1 € M(X,G), M € N and € > 0. Then there exists § > 0 such that if U =
{Uy,..., Uy} eCx, V={Vi,..., Vit € Cx satisfy u(UAV) = Z,IZI:IM(U,,,AV,,,) < 8 then
|hu (G, U) — hy (G, V)| < €.

Proof. We follow the arguments in the proof of [21, Lemma 5]. Fix M € N and € > 0. Then
there exists 8’ = §'(M, ¢) > 0 such that for M-sets partitions «, 8 of X, if u(@AB) < §’ then
H, (Bla) < € (see for example [42, Lemma 4.15]). LetU = {Uy, ..., Uy} and V ={V1, ..., Vi}
be any two M -sets covers of X with u(U/AV) < ‘SM/ =34.

Claim. For every finite partition o = U there exists a finite partition =V with H, (B|a) < €.

Proof. Since « = U, there exists a partition &’ = {A1, ..., Ay} with A; CU;,i=1,..., M and
a =o', where A; may be empty. Let

B =vi\|JAn ),

k>1
Bi=\/,-\<U(AkﬂVk)UUBj>, ief2,...,M).
k>i j<i

Then 8 ={By, ..., By} € Px which satisfies B;, C V,,, and A,, "\ V,, C B, form € {1,..., M}.
It is clear that A,, \ B,y C Uy, \ Vi and

Bm\Am=(X\UBk>\Am

k#£m

=J 4\ B

JjF#Em k#m
< J@\Bo < [Jwi\vo.

k#m k#m

Hence foreverym € {1,..., M}, A,,AB,, C U,i‘/[:l(UkAVk) and u(o’AB) <M - u(UAV) < §'.
This implies that H,, (B|a’) < €. Moreover, H, (Blo) < H,(Bla') <€. O

Fix n € N. For any o € Px with « = Uf,, we have ga = U for g € F,,. By the above Claim,
there exists B, € Px such that 8, =V and H, (B¢lga) <€, ie., Hu(g’lﬁg|a) <e€. Let B=
Veer, g7 !B, Then B € Px with B 3= Vi, . Now
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H/t(VF,,) < H/A(ﬂ) < H,u(,B Va)= Hu(“) + Hu.(,B|a)

<Hu(@) + Y Hu(g ™" Bela) < Hu(@) +ne.
gEF,

Since this is true for any o € Py with o = U, , we get ﬁHM(VF”) < ﬁHu(UF,,) + €.
Exchanging the roles of I/ and V we get

1
H,(UF,) < 77— H,(VF,) + €.

[Fnl | Fl

This shows ﬁ|Hu(UE,) — H,(VE,)| < €. Letting n — +o0, one has |h,(G,U) — h,(G,
V)|<e. O

Now we can prove the u.s.c. property of those two kinds of measure-theoretic entropy of open
covers over M(X, G).

Proposition 3.8. Let U € C5,.. Then h(y(G,U) : M(X, G) — Ry is u.s.c. on M(X, G).

Proof. Note that

ho(G.U)= inf hy(G.a)= _inf i f(@p) (by Lemma 3.1(4))
aePx: a=U acPy: a=U BEF(G) |B]|
H
— inf w@B)

mn
BeF(G)acPyx: ai=Ud |B]|

Since p > infyepy: o=1s Hyu(@p) is us.c. (see Lemma 3.6) and the infimum of any family of
u.s.c. functions is again u.s.c., one has h¢)(G,U) : M(X, G) - Ry isus.c.on M(X,G). O

Proposition 3.9. Let U € C5,.. Then h{f}(G, U): M(X, G) - Ry is u.s.c. on M(X, G).

Proof. With no loss of generality we assume eg € F| € F, € --- by Lemma 2.4. Let u €
M(X,G) and € € (0, i). Then there exists N € N with

H,U
HuUr,) <h(G.U) + <. (3.12)
axN | Fal 2
By Lemma 2.6, there exist integers ny, ..., ng with N <nj < --- < ny such that
H,U
hy(G.U) = lim A.Ur,)
n—+o0o | Fy,|
H,Ur,) H,U)
< max
IKi<k | Fy,l 2log(NU) + 1)
Hv(ani) €

< max + — foreachv e M(X, G). (3.13)
I<i<k | Fy, 2
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Then we have

. — € . HM/ (an,- )

lim sup hu,(G,Z/l) < 3 + lim sup _

m_ax
W, 1 eM(X,G) W eMX.G)1Sisk | Fyl
Hy Ur,)

(using (3.13))

= =+ max lim sup
2 ik sp wemx.y 1l

H/t(ani)
max —————
ISi<k |y
€ HM(Z/{F,,)
2 n>N | Fyl

< % + (Lemma 3.6)

Sh, (G.U)+e€ (using (3.12)). (3.14)

Thus, we claim the conclusion from the arbitrariness of © € M(X,G) and € € (0, %) in
(3.14). O

3.2.5. Affinity of measure-theoretic entropy of covers

Let u =av+ (1 —a)n, where v, n € M(X, G) and 0 < a < 1. Using the concavity of ¢ () =
—tlogt on [0, 1] with ¢(0) = O (fix it in the remainder of the paper), one has if 8 € Px and
F e F(G)then0< Hy(Br) —aH,(Br) — (1 —a)H,(Br) < ¢(a) + ¢(1 —a) (see for example
the proof of [42, Theorem 8.1]) and so

hu (G, B) =ahy(G, B) + (1 —a)hy (G, B), (3.15)

i.e. the function (., (G, B) : M(X, G) — R is affine. In the following, we shall show the affinity
of h)(G,U) and h{_,}(G,Z/l) on M(X, G) foreachf € Cx.

Let 4 € M(X,G) and By be the completion of By under . Then (X,BY,u,G) is
a Lebesgue system. If {o;}ic; is a countable family in Py, the partition o = \/ielai =
{ﬂie] A;j: Aj €, i €1} is called a measurable partition. Note that the sets A € B%, which
are unions of atoms of «, form a sub-o-algebra of B~ which is denoted by @ or « if there is
no ambiguity. In fact, every sub-o-algebra of B; coincides with a o -algebra constructed in this
way in the sense of mod p [37]. We consider the sub-c-algebra I, = {A € Bé‘(: W(gAAA) =0
for each g € G}. Clearly, I, is G-invariant since G is countable. Let o be the measurable parti-
tion of X with @ = I, (mod ). With no loss of generality we may require that « is G-invariant,
ie. go =« for any g € G. Let u = fX wx dp(x) be the disintegration of u over I, where
Uy € M(X,G) and pu,(a(x)) =1 for pu-a.e. x € X, here a(x) denotes the atom of o contain-
ing x. This disintegration is known as the ergodic decomposition of pu (see for example [17,
Theorem 3.22]).

The disintegration is characterized by properties (3.16) and (3.17) below:

for every f € LY (X, Bx,n), feL'(X,By, uy) for p-ae. x € X,

andthemapr/f(y)dux(y) isin L'(X, 1., p); (3.16)
X

for every f € Ll(X, Bx, 1), Eu(fl1)(x) =/fdux for u-a.e. x € X. (3.17)
X
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Then for f € L' (X, Bx, n),

/(/fdm) du(x)=/fdu. (3.18)
X

X X

Note that the disintegration exists uniquely in the sense that if u = f y Mxdu(x) and p =
f « My du(x) are both the disintegrations of u over I, then ., = u/, for u-a.e. x € X. Moreover,
there exists a G-invariant subset Xg C X such that ©(Xg) = 1 and if for x € Xy we define
I'n ={y € Xo: x = py} then I'y = a(x) N X¢ and Iy is G-invariant.

Lemma 3.10. Let © € M (X, G) with u = fx Uy di(x) the ergodic decomposition of u and
V €Cyx. Then H,(V|1,) = [y Hu, (V) dp(x).

Proof. Let V = {Vy,..., V,}. For any s = (s(1),...,s(n)) € {0, 1}", set Vs =)', Vi(s(i)),
where V;(0) = V; and V;(1) = X \ V;. Let @ = {V;: s € {0, 1}""}. Then « is the Borel partition
generated by V and put P (V) = {B € Px: « = f = V}, which is a finite family of partitions. It is
well known that, for each 6 € M (X) one has

Hyp(V)= min Hy(B), (3.19)
BeP(V)

see for example the proof of [39, Proposition 6]. Now denote P (V) = {1, ..., B} and put

A = ’x e X: Hy (B) :ﬁ;npig})Hm(ﬂ)}, ie(l,... I

Let By = Aj, Bo=Ay\ B, ..., By =A;\ U!Z| Bi and By = X \ U'_, A4;. By (3.19),
u(Bo) =0.

Set B* ={BoN B1}U{B;NB;i:i=1,...,1} € Px (mod w). Then g* 3= V. Clearly, for i €
{1,....1}and u-a.e. x € B;, H, (B*) = H,, . (B;) = mingepy) Hy, (B) = Hy,, (V) where the last
equality follows from (3.19). Combining this fact with p(Bg) = 0 one gets H, (8*) = H,, (V)
for p-a.e. x € X. This implies

H,V|1,) QHM(,B*UM):/H X(,B*)d,u(x) (using (3.17))
X

= / Hy V) dp) < inf / Hy, () dp(x)
X X

= inf H I
BePx: BV n(Bll)

=H,V|I,).

Thus H,(V|I,) = fX H, (V)du(x). This finishes the proof. O
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Then we have

Proposition 3.11. Let U € Cx and u € M(X, G). Ifeg € F| C F» C --- then

_ . 1
hﬂ (G,Z/{) = nllr-r}-loo WHM(UF" |II'L)

Proof. It is easy to check that F' € F(G) — H,(UF|l,) is a m.n.i.s.a. function, and so the
sequence {“;jHM(anllﬂ)}neN converges, say it converges to fi; (see Lemma 2.4). Clearly
o (G.U) > fu.

Now we aim to prove h; (G, U) < fy. Let € € (0, i) and N e N. By Proposition 2.3 there
exist integers ny, ..., ng with N <ny < --- < ny such that if n is large enough then F;,, ..., Fy,
e-quasi-tile the set F,, with tiling centers CY, ..., C} and so

k

> max{(l —)|Fyl, (1 — e)Z|c;’| . |Fn,.|}. (3.20)

i=1

k
F,2| JF. €} and
i=1

k
U Fuc?
i=1

Thus if @ € Px and n is large enough then

k
< n
HyUr,lar,) < HuUp (g g, erler,) + ) HuWr, crler,)

i=1

k k
<|F N\ Fu €| log NU) + ) Hu U, crlar, ¢n). (3.21)
i=1 i=1
This implies
, 1
limsup — H,,(UF, |oF,)
n——+o0o |Fn|
k
<elogN@U) +limsup — > > H, (U, ¢lar, o) (using (3.20) and (3.21))
n——+00 [ Fyl i=1 geC” ' '
D 2y A e
<elogNU) + limsup == L ! X H,UF, |ak,.)
g n%+o£) |Fn| lgl‘glenJ . ! !

<elogNU) + H, U, lar,) (using (3.20)).

max
1 — € 1<igk | Fy, |

Thus

. 1
h;(G,L{) < limsup | (H,L(Z/lpn lar,) + Hﬂ(apn))

n—+00 Fn|

<hu(G,a)+elogNU) + H,Ur, |oF, ). (3.22)

max
1 — e 1<i<k | Fy,
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Note that if o € Py satisfies a C I, then 1, (G, o) = 0. In particular, in (3.22) we replace a by
a sequence {¢;}ijen in Py with «; 7 [, then

1
sup —— H,UF, 11,,).

h, (G,U) <elogNWU) +
g s T—€ man | Fnl

Since the above inequality is true for any € € (0, %) and N e N,onehas h (G, U) < fy. O

Lemma 3.12. Let U € Cx and u € M (X, G) with u = fX Uy di(x) the ergodic decomposition
of . Then

h;(G,U):/h;X(G,U)d/L(x) and hM(G,U)thux(G,M)du(x).
X X

Proof. With no loss of generality we assume eg € F; € F, C --- (by Lemma 2.4). Then we have

_ . 1
b (G.U) _n—lirfoo |F,

n

| H, (UF,|1,) (by Proposition 3.11)

. 1
= lim —

n——+oo | Fy,| /Hﬂx(an)dM(x) (by Lemma 3.10)
X

1

/ lim —H, (Uf,)du(x) (by Dominant Convergence Theorem).
n—+o00 | Fy|

X

Thatis, b, (G,U) = Iy h, (G,U)dpu(x). In particular, if « € Py then

hM(G,a)thﬂx(G,a)du(x). (3.23)
X

Next we follow the idea of the proof of [23, Lemma 4.8] to prove h,(G,U) =
thMX(G,U)du(x). Let Y = {Uy,..., Uy} and put U* = {a = {Ay,..., Ay} € Px: A, C
Un, m=1,...,M}. As (X, By) is a standard Borel space, there exists a countable algebra
A C By such that By is the o -algebra generated by A. It is well known that if v € M(X) then

Bx ={A € Bx: Ve >0, 3B € Asuch that v(AAB) < €}. (3.24)

Take C to be the countable algebra generated by A and {Uy,..., Uy}, then F = {P € U*:
P C C}is a countable set and for each @ € U*, € > 0 and v € M (X) there exists B € F such that
v(@AB) < € by (3.24), i.e. Fis L'(X, By, v)-dense in &{*. In particular, say F = {ay: k € N}
(denote o = {AX, ..., AI/‘W} for each k € N), if v € M (X, G) then

hy(G,U)= inf h,(G,a) = inf h,(G, ay). (3.25)
ael* keN
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First, for one inequality one has

ha(G.U) = fnf 1y (G = . [ by (G dute) (by 3:23)
X

> f inf hy, (G en) dia(x) = / hy (G U)dp(x)  (by (325)).
€
X X

For the other inequality, let € > 0. For each n € N define B, = {x € X: h, (G, a,) <
hu, (G, U) + €}. Then B is G-invariant and p(|J, oy By) = 1 by (3.25), and so there exists
a measurable partition {X,: n € N} of X with X, € I, and u(X,) > 0, and a sequence {oy, }nen
such that for each n € N and p-a.e. x € X, one has h; (G, ay,) < h,, (G,U) + €. For every
n € N we define i, (-) = ﬁ [y #x (- N X)) dp(x) € M(X, G). We deduce

1
iy (Gt = s X/ hu (G, ap,)du(x)  (by (3.23))

1
<
w(Xy)

/hux (G, U)dp(x) +e.
Xn

Note that, by definition, for every n € N, u,(X,) =1 and w,(Xy) =0 if k % n. For m €
{1,..., M} define A, =, cn(Xn N AR, then @ = {Ay, ..., Ay} € U*. We get,

hy(G,U) < hy (G, a) = Z w(Xn)hy, (G, a) (by (3.23))
neN

= 3 X, (Go) < [ (G2 diat)
neN X

Letting € — 0+ we conclude h,(G,U) < fx hy,, (G, U)du(x) and the desired equality
holds. O

Denote by C(X; R) the Banach space of the set of all continuous real-valued functions on
X equipped with the maximal norm || - ||. Note that the Banach space C(X; R) is separable, let
{fu: ne N} C C(X;R)\ {0} be a countable dense subset, where 0 is the constant 0 function
on X, then a compatible metric on M (X) is given by

| Sodp — Sndv|
,o(u,v):Z fx 2”||fnf||X , foreach u,v e M(X).
neN

Let u € M(X, G) with u = f x Mx dp(x) the ergodic decomposition of u. Then there exists
a G-invariant subset Xo C X with ©(Xo) = 1 such that the map @ : Xg — M(X, G) with
@ (x) = wu, is well defined. We extend @ to the whole space X such that @ (x) € M¢(X, G)
for each x € X. For any g; € C(X;R), u; € M(X,G) and ¢; > 0, i = 1,...,k, note that
for any f € C(X;R), the function x € Xg — fodpLx is an element of Ll(X,I , L), we
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have (P_l(ﬂff:l{v € M(X,G): | [ygidv — [ygduil <e€}) € l,. Since all the sets hav-
ing the form of ﬂle{v € M(X,G): | [y gidv — [y gidui| < €} form a topological base of
M(X, G), the map & : (X, I,) - (M(X, G), Brmx.c)) is measurable, i.e. @~ (A) € I, for
any A € Bamx,c)- Now we define m € M(M(X, G)) as following: m(A) = w(®@~1(A)) for any
A € Bpmx,c)- Then if g is a bounded Borel function on M(X, G) then go @ € LY(X, I, 1)
and

/go@b(x)du(x): / g(0)dm(0). (3.26)
X M(X,G)

Now if f e C(X;R),let Ly :0 € M(X,G) fx fdO, then L is a continuous function, and
SO

/(/fdux> du(x):/Lfodi(x)du(x): / Ly(0)dm(9) (using (3.26)),
X

X X M(X,G)

moreover,

/f(x)du(x) = / (/f(x)d@(x)) dm(9) forany f € C(X;R) (using (3.18)).
X MX,G) X
(3.27)

Note that m(M*(X, G)) > u(Xo) = 1, m can be viewed as a Borel probability measure on
Me(X, G). So (3.27) can also be written as

/f(x)d,u(x) = / </f(x)d9(x)> dm(9) forany f € C(X;R), (3.28)
X

Me(X,G) X

which is denoted by u = [ Me(X.G) 0 dm(0) (also called the ergodic decomposition of ). Finally,
it is not hard to check that if m’ is another Borel probability measure on M (X, G) satisfying
m'(M¢(X, G)) =1 and (3.28) then m’ = m. That is, for any given u € M (X, G) there exists
uniquely a Borel probability measure m’ on M (X, G) with m'(M?(X, G)) = 1 satisfying (3.28).

Theorem 3.13. Let U € Cx. Then the function n € M(X, G) = h,(G,U) and the function n €
M(X, G) —~ h;(G, U) are both bounded affine Borel functions on M(X, G). Moreover, if we

let w e M(X, G) with u = fM"(X,G) 0 dm(0) the ergodic decomposition of |, then

h, (G, U) = / he(G,U)dm () and
Me(X,G)

h (G U) = / hy (G, U) dm(6). (3.29)
Me(X,G)
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Proof. First we aim to establish (3.29). Similar to the proof of Lemma 3.12, there exists
{ar}ken € Px such that oy = U for each k € N and H,(U) = infyen Hy(ax), hy(G,U) =
infren 1y (G, ar) for each n € M(X,G). Note that, for any A € By, the function n €
M(X, G) — n(A) is Borel measurable and hence if « € Px then the function n € M (X, G) —
Hy(a) and the function n € M(X, G) — h,(G, «a) are both bounded Borel functions. More-
over, the function n € M(X, G) — H,(U) is a bounded Borel function. Thus, the function
n € M(X, G) = hy(G,U) and the function n € M(X, G) — h; (G,U) are both bounded Borel
functions. In particular, (3.29) follows directly from Lemma 3.12 and (3.26).

Now let 1, o € M(X,G) and A € (0,1). Fori = 1,2, let u; = fMe(x,T)edmi(e) be the
ergodic decomposition of p;, where m; is a Borel probability measure on M¢(X, G). Consider
w=Aur+ (I —A)ur and m = Amy + (1 — A)my. Then m is a Borel probability measure on
Me(X,G) and u = fM"(X,G) 0 dm(0) is the ergodic decomposition of . By (3.29), we have

hy (G, U) = / ho(G,U)dm(6)
Me(X,G)

=1 / ho(G, Uy dm (6) + (1 — 1) f ho(G.U) dmy(6)
Me(X,G) Me(X,G)
= My (G, UY + (1= Wy (G, U).

This shows the affinity of /2{.}(G, /). We can obtain similarly the affinity of h, (G, uy. o
4. The equivalence of measure-theoretic entropy of covers

In the section, following arguments of Danilenko in [7], we will develop an orbital approach
to local entropy theory for actions of an amenable group. Then combining it with the equivalence
of measure-theoretic entropy of covers in the case of G = Z, we will establish the equivalence of
those two kinds of measure-theoretic entropy of covers for a general G.

4.1. Backgrounds of orbital theory

Let (X, Bx, ) be a Lebesgue space. Denote by Aut(X, u) the group of all u-measure pre-
serving invertible transformations of (X, By, (), which is endowed with the weak topology, i.e.
the weakest topology which makes continuous the following unitary representation: Aut(X, ) >
y—U, € ULA(X, p)) with Uyf=fo y~!, where the unitary group ULA(X, p)) is the
set of all unitary operators on L*(X, ) endowed with the strong operator topology. Let a
Borel subset R € X x X be an equivalence relation on X. For each x € X, we denote
Rx)={y € X: (x,y) € R}. Following [14], R is called measure preserving if it is generated
by some countable sub-group G < Aut(X, ), in general, this generating sub-group is highly
non-unique; R is ergodic if A belongs to the trivial sub-o-algebra of By when A € By is R-
invariant (i.e. A =J,c4 R(x)); R is discrete if #R(x) < #Z for p-a.e. x € X; R is of type I if
#R(x) < 400 for n-a.e. x € X, equivalently, there is a subset B € By with #(B NR(x)) = 1 for
p-a.e. x € X, such a B is called an R-fundamental domain; ‘R is countable if #R (x) = +oo for
u-a.e. x € X, observe that if R is measure preserving then it is countable iff it is conservative, i.e.
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RN(Bx B)\ Ay(X) # @ for each B € By satisfying u(B) > 0, where Az (X) = {(x, x): x € X};
‘R is hyperfinite if there exists a sequence R; € R, C - - of type I sub-relations of R such that
UneN R, =R, the sequence {R,},en is called a filtration of R. Note that a measure preserving
discrete equivalence relation is hyperfinite iff it is generated by a single invertible transforma-
tion [12], the orbit equivalence relation of a measure preserving action of a countable discrete
amenable group is hyperfinite [6,46], any two ergodic hyperfinite measure preserving count-
able equivalence relations are isomorphic in the natural sense (i.e. there exists an isomorphism
between the Lebesgue spaces which intertwines the corresponding equivalent classes) [12]. Ev-
erywhere below R is a measure preserving discrete equivalence relation on a Lebesgue space
(X, Bx, ).
The full group [R] of R and its normalizer N[R] are defined, respectively, by

[R]={y € Aut(X, u): (x,yx) € R for p-ae.x € X},

N[R]= {0 € Aut(X, n): OR(x) = R(0x) for p-a.e. x € X}.

Let A be a Polish group. A Borel map ¢ : R — A is called a cocycle if

¢(x.2) =p(x,y)p(y,z) forall (x,y).(y.z) eR.

Letting 6 € N[R], we define a cocycle ¢ 06 by setting p 06 (x, y) = ¢ (0x,0y) forall (x,y) e R.
Let (Y, By, v) be another Lebesgue space and A be embedded continuously into Aut(Y, v).
For each cocycle ¢ : R — A, we associate a measure preserving discrete equivalence rela-
tion R(¢) on (X x Y, Bx x By, x v) by setting (x,y) ~g() (x',y") if (x,x’) € R and
¥y =¢(x’,x)y. Then a one-to-one group homomorphism [R] 3 y > yg € [Ry] is well defined
via the formula

Vo(X,y) = (yx, qb(yx,x)y) for each (x,y) € X x Y.

The transformation y, is called the ¢-skew product extension of y, and the equivalence relation
R(¢) is called the ¢-skew product extension of R.

4.2. Local entropy for a cocycle of a discrete measure preserving equivalence relation

Denote by I (R) the set of all type I sub-relations of R. Lete > 0and 7,S € I (R). We write
T C. S if there is A € By such that £(A) > 1 — € and

#{yeS): T(y) €S} > (1 —e)#S(x) foreachx € A.

Replacing, if necessary, A by [, ., S(x) we may (and so shall) assume that A is S-invariant.
Let Ag={x € A: 7 (x) CS(x)}. The following two lemmas are proved in [7].

Lemma 4.1. Ag is T -invariant, 1(Ag) > 1 — 2¢€ and #(S(x) N Ag) > (1 — €)#S5(x) for each
x € Ap.
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Lemma 4.2. Let € > 0 and R be hyperfinite with {R, },eN a filtration of R.

1. If I’ € [R] is a countable subset satisfying #(I'x) < 400 for pu-a.e. x € X then for each
sufficiently large n there is an R, -invariant subset A, such that u(A,) > 1 — € and

#{y €ER,(x): 'y C Rn(x)} > (1 —e)#R,(x) foreachx € A,.
2. If SelI(R) then S C¢ Ry, if n is large enough.

Let (Y, By, v) be a Lebesgue space and ¢ : R — Aut(Y,v) a cocycle. For U € Cxxy, we
consider U as a measurable field {{/, }xex € Cy, where {x} x U, =U N ({x} x Y).

Definition 4.3. For U/ € Cx«y, we define

1
hv(8,¢,U)=/%Hv< \/ ¢(x,y)2/{y>du(x) and
X yeS(x)
(S, U= inf 5S¢0

oce’PXxy: o=

Then we define the v~ -entropy h; (¢, U) and the v-entropy h, (¢, U) of (¢,U), respectively, by

ho(p,U)= inf h (S,op,U d hy(d,U)= inf h,(S, ¢, U).
L (@, U) sé?(n)“( ¢,U) an (¢, U) 551(73) (S,o.U)

It is clear that if B € Pxxy and U € Cxxy then hy(S, ¢, B) = h; (S, ¢, B), hy(p,B) =
h, (¢, B) and h,(¢p,U) = infyepy,y: axts By, (@, ). Moreover, if U,V € Cxxy satisfy U =V
then 1, (S, ¢, U) > hy(S,¢,V) and h (S, ¢, U) = h, (S, ¢, V). It’s not hard to obtain

Proposition 4.4. Let (Z, Bz, «) be a Lebesgue space, S € I(R), B :S — Aut(Z, k) a cocycle
ando : Z x X — X x Z,(z,x) — (x, z) the flip.

1. Let o' : 6 'S(B)o — Aut(Y,v) and o : S — Aut(Y,v) be cocycles satisfying o ((z, x),
(@, x") = a(x, x") when ((z,x), (z',x")) € ' S(B)o. Then h; (6~ 'S(B)o, &', Z x U) =
h, (S, a,U) forany U € Cxxy.

2. Let o" : S(B) — Aut(Y,v) and a : S — Aut(Y,v) be cocycles satisfying a”((x,z),
x",7") = a(x,x") when ((x,z), (x",2")) € S(B). Then if U" € Cxxzxy and U € Cxxy
satisfies U/ ) = U, for each (x,z) € X x Z then h;; (S(B), ", U") =h, (S, o, U).

(x,z

Proof. As the proof is similar, we only present the proof for 1. Let i/ € Cxxy. Then
hy (07'S(Bo, o', Z x U)

1 , ror
-/ W*’( V a<<w>’<z’“)(ZX“)@“X’))”’K

ZxX (7, x")eo 1S (B)o (z.x)

x w(z,x)
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1
B / #S()C) Hv( \/ a(xv-x/)ux’) di x u(z, x)

ZxX (', 2HeS(B)(x.2)
1 f—
:/%HU( \/ Oé(x,x/)ux,)du(x):hv (S’a’u). O
X x'eS(x)

Proposition 4.5. Let € > 0and 7,5 € I(R). If T C S then

h (S, o, U)<h,(T,p,U)+3elogNU) and hy(S,d,U) < h,(T,p,U)+3elog NU).
In particular, if T C S then h; (S, ¢, U) < h,; (T,¢,U) and h, (S, ¢, U) < h,(T, ¢, U).

Proof. The proof follows the arguments of the proof of [7, Proposition 2.6]. Let Ag = {x €
A: T(x) CS(x)}. Then u(Ap) > 1 —2¢ by Lemma 4.1. We define the maps f, g: Ao — R by

1
f(x)zml‘]v( \/ ¢(x,y)uy> and

yeS(x)NAg
g(x) = #7( ) ( \/ ¢<x,y>uy>.
yeT (x)
Since Ag is 7 -invariant, for each x € Ag there are xi,...,x; € X such that S(x) N Ay =

Uf-‘zl 7 (x;), here the sign |_| denotes the union of disjoint subsets. It follows that

1
S AL U
Fe #(S(x)ﬂAo)Z (d)(xx)yg—/(md)(x Y )

k
1
= 7SN AD g#ﬂxi) - g(xi)

1
T #(S() N Ag) 4 Z 2 80

=1yeT (x;)
1
= RSN A0 =E(gISN(Ag x A ,
#(S(x)on)zes§ong(Z) (818N (Ao x Ag)) (x)

where E(g|S N (Ag x Ap)) denotes the conditional expectation of g w.r.t. Sy, the o-algebra of
all measurable S N (Ag x Agp)-invariant subsets. Hence

_ 1
h; (S,d),Ll):/%Hv( \/ ¢>(x,y)uy)du<x>
X yeS(x)

1 1
g/#5() ( V e, Y)Uy>du(x)+ / ey 3 H,Uydp)
Ao yesw) X\Aq yeS(x)
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1
< / (f(x)+%Hu< \/ ¢<x,y>uy>>du<x>+ / log N U) dpu(x)
Ao yeS()\Ap X\Ag
#(S(x) \ Ao)

<f<1E(g|Sm(Ao x )0+ T

Ao

log N(L{)) du(x) +2elogNU)

< /E(g|8 N (Ag x Ag))(x)dpu(x) + 3elog NU)
Ao

:/g(x)d,u,(x) +3elogNU) < h, (T, ¢, U) +3elog NU).
Ao

By the same reason, one has 4, (S, ¢, ®) < h, (7, ¢, @) + 3elog N(«) for any o € Pxxy. Thus

hy(S, ¢, U) =inf{h,(S,¢,a): @ € Pxxy witha =U, N(a) < NU)}
<inf{h, (T, ¢, a) + 3elogN(a): a € Pxxy witha =U, N(a) < NU)}
<inf{hy(T, ¢, a) +3elog NU): o € Pxxy witha =U, N(o) < NU)}
=hy,(T,¢p,U)+3elog NU).

Now if 7 C S then 7 C. S for each € > 0, so letting € — 04 we have h, (S, ¢,U) <
hy (T,¢,U) and h,(S, ¢, U) < hy(T, ¢,U). This finishes the proof. O

As a direct application of Lemma 4.2(2) and Proposition 4.5 we have

Corollary 4.6. Let R be hyperfinite with {R}nenN a filtration of R. Then
lim h,(Rp, ¢, U)=hy(p,U) and  lim h,; (R, ¢, U)=h,(¢,U).
n—4o00 n—+o00

4.3. Two kinds virtual entropy of covers

Everywhere below, R is generated by a free G-measure preserving system (X, Bx, i, G).
Then R is hyperfinite and conservative. Let S € I(R) with B € X an S-fundamental do-
main. Then there is a measurable map B 3 x — G, € F(G) with G,x = S(x) and hence
X = | |;cp Gxx. Noting that F(G) is a countable set, we obtain that X = | |; | |,c¢, gBi for
a countable family {G;}; € F(G) and a decomposition B =| |; B; with G;x = S(x) for each

Xx € B;. We shall write it as S ~ (B;, G;). Then

s o0=2 % [ stV oo )anw

i gEGigB,- yES(x)

=> > f %H( V ¢(gx,g’x)ug/x> dpu(x)

i g<Gip, g'eG;
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X [V ol et ) auco)

1

i geG; g'eG;
= Zf HU< V ¢(x,gx>ugx> dp(x). (@.1)
i B; geG;

Definition 4.7. Let (Y, By, v, G) be a G-measure preserving system, U € Cy, I1, € Aut(Y, v) the
action of g € G on (Y, By, v) and ¢ : R — Aut(Y, v) a cocycle given by ¢g(gx, x) = I1, for
any x € X, g € G. The v~ -virtual entropy and v-virtual entropy of U are defined respectively by

" (G.U =h, (b6, X xU) and  hy(G,U) =hy (b6, X xU).
Clearly, if o« € Py then hy(G,a) = hy (G,a). Thus, for U € Cy, hy(G,U) =
infyep,: o201y (G, ). Note that there may exist plenty of free G-actions generating R, ¢ is
not determined uniquely by I71,. Hence, we need to show that ﬁ;f(G, U) and l/z;(G, U) are well

defined.

Proposition 4.8. Let {U, }gcc and {Ué}gec; be two free G-actions on (X, Bx, () such that
{Ugx: g€ Gy ={Uzx: g € G} =R(x)
for p-a.e. x € X. Define cocycles ¢, ¢’ : R — Aut(Y, v) by
¢(Ugx,x) =¢' (Upx, x) =11, foranyg € G, x € X.
Then for anyU € Cy, h, (¢, X xU) =h; (¢, X x U) and h, (¢, X xU) =h,(¢', X x U).

Proof. Denote by S the equivalence relation on X x X generated by the diagonal G-action
{Ug x U{:,}ge(;. Clearly, S is measure preserving and hyperfinite. Let ¢y, gy : R — Aut(X, 1)
and ¢g : S — Aut(Y, v) be cocycles defined by

ou(Ugx,x) =Us,  @ui(Ugx,x) =U, and ¢ ((Ugx, Ugx'), (x,x)) = I,

forany g € G, x,x’ € X. Then S = R(py/) =0 "R(py)o, where 0 : X x X — X x X is the
flip map, that is, o (x, x") = (x/, x). Hence if {R, },en is a filtration of R then {R,, (¢y') }nen and
{07 'R, (¢1)o Inen are both filtrations of S.

For each n € N, one has ¢g((x,2), (", 7)) = ¢ (x, x") if ((x,2), (x”,7")) € Ry(py’) and
06 ((z,x), (z,x") = ¢'(x, x) if ((z,x), (z',x")) € 0" "R,(¢y)o. Then by Proposition 4.4, for
any U € Cy one has

by (Ruou), 6. X x X xU) =h, (R, ¢, X x U),
hy (07 "Ru(ou)o, g, X x X xU) =hy (Ra, ¢’ X x U).
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Letting n — 400 we obtain i (¢pg, X x X xU) =h (¢, X xU) and h (¢G, X x X xU) =
hiy (¢', X x U) for any U € Cy (see Corollary 4.6). This implies that i}, (¢, X x U) = h} (¢,
X x U) for any U € Cy. Moreover, for U € Cy we have

hoid X xUy= _ inf  hy@pa)= _inf hy($ X
Ve xU) OtGPXX;floc#XxU V(¢ %) ﬁe'PiI:l =U V((p xP)

_ : — / — /
_ﬁeplﬂfﬁwhv (¢'. X xB)=hy(¢'. X xU).

This finishes the proof of the proposition. 0O

Before proceeding, we need the following result. Let K € F(G) and € > 0. F € F(G) is
called [K, €]-invariant if [{g € F | Kg C F}| > (1 — €)|F|.

Lemma 4.9. Let (Y, By, v, G) be a G-measure preserving system, U € Cy and € > 0. Then there
exist K € F(G) and 0 < €' < e such thatif F € F(G) is [K, €']-invariant then

LHV(UF) —hy (G, U)

<e.
|F|

Proof. Choose ¢eg € K| C Kp C --- with UieN K; = G.Foreachi € Nset§; = m Now

if the lemma is not true then there exists € > 0 such that for each i € N there exists F; € F(G)
such that it is [K f] K;, §;]-invariant and

1

‘WHV(UFI.)—hU(G,L{)‘ >e. “4.2)
i

Let K € F(G) witheg e K and § > 0. If F € F(G) is [K 'K, §]-invariant then

B(F.K)={geG: KgNF+#Wand KgN (G \ F) # 0}
=K 'F\{geF: KgC F)=(K 'F\F)U(F\{geF: KgC F})
CK'(F\{geF: K "¢ F})U(F\{geF: KgC F))
CK'(F\{geF: K'Kg< F}))U(F\{geF: K~'Kg< F}),
hence |B(F, K)| < (K| + 1) |F\ {g € F: K~'Kg C F} <8(IK|+ DI|F]| (as F € F(G) is

[K 'K, §]-invariant), i.e. F is a (K, (/K| + 1)8)-invariant set. Particularly, we have that F; is

(Ki, %)-invariant for each i € N. Moreover, since eg € K| € K C --- and UieN K, =G, we

have that {F;};cn is a Fglner sequence of G. Hence lim;_, ;00 ﬁHv UF,) =h, (G,U), a con-
tradiction with (4.2). O

Theorem 4.10. Let (Y, By, v, G) be a G-measure preserving system and U € Cy. Then

hy (G, U)=h, (G,U) and hy(G,U) =h,(G,U).
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Proof. By Lemma 4.9 for each € > 0 there exist K € F(G) and 0 < €’ < € such thatif F € F(G)
is [K, €']-invariant then |ﬁHV(UF) — hy(G,U)| < €. Let {R,}nen be a filtration of R with

Ry ~ (Bi(”), GE”)) for each n € N. Thus by Lemma 4.2(1), for each sufficiently large n there is a
measurable R, -invariant subset A,, € X such that u(A,) > 1 — €’ and

#{x' € Ry(x): Kx' SRu(x)} > (1 —€)#R,(x) foreachx € A,. 4.3)
Since A, is Ry-invariant, A, =] |;, GE")C[(") for some subset / C N and a family of mea-
surable subsets C\"” € B with u(C”) > 0,i € J. By (4.3),ifi € J,x e C!" and ¢’ € G\"
then

(1 — e')#Rn (g/x) < #{x/ € R (g'x): Kx'CR, (g’x)} = #{x/ eR,(x): Kx' C ’Rn(x)}.

That is, (1 — 6’)|G§”)| <|{ge GE"): KgC GE")}|, ie. Gf") is [K, €']-invariant. Set

fo =z

Ri(x)H”< \/ ¢G(x’y)u)<10gN(U) for each x € X.

YER, (x)

Then by similar reasoning of (4.1), one has

/ fdpe) =) / ( \ I'Ig_ll/l)d,u(x).
An

JEJCw) 2eGY
Hence

|hy (Rus 96, X x U) — n(An)hy (G, U)|

<‘ / (f(0) — by (G.Uh) dp(x) +‘ / FE) )
Ay,

+ (1= i(Ap) log NU)

() _
Z/|Gj <|G(”)| < \/ n; lu)—hv (G,Ll))du(x)
g€

(n)

< <Z|G;") |/¢(C§-n))>e + (l — /,L(An)) log N(U) (by the selection of K and e/).
jelJ

Noting that A, =] |;; GE")Ci(") and u(A,) > 1 — €' where 0 < €’ < ¢, first let n — +00 and

then let ¢ — 0+, thus we have ﬁ\f(G,L{) =h, (¢c, X xU) =h, (G,U) (see Corollary 4.6).
Moreover,

(G, U= inf h, (Ga)= inf h,(G,a)=h,(G,U).

ae€Pyx: ax=U a€Pyx: ar=

This finishes the proof. O
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Let (Z, Bz, k) be a Lebesgue space with 7 an invertible measure-preserving transformation,
W e Cz and D C Bz a T-invariant sub-o-algebra, i.e. T'D="D. Set ngl = \/7;01 T-iW
for each n € N. It is clear that the sequence { H, (Wg -1 |D)}nen 1s non-negative and sub-additive.
So we may define

he(T,W|D) = inf}wh;(T,yﬂ)),

v€Pz: yiF

_ T 1 n—1 _: 1 n—1
h (T, W|D) = HETOO ;H,( (WO |D) = ;Iellg ;H,( (WO |D).
Clearly h, (T, W|D) = h,(T, W|D) when W € Pz. We shall write simply

he (T, W) =h (T, WIH0,Z}) and  he(T, W) =h(T, WI{9, Z}).

Theorem 4.11. Let y be an invertible measure-preserving transformation on (X, Bx, 1) gener-
ating R, ¢ : R — Aut(Y, v) a cocycle and yy stand for the ¢-skew product extension of y. Then
for eachU € Cx xy, one has

hy (. U) =hy,(ve. UIBx @{0.Y}) and  hy(¢.U) = hyus(vs. UIBx @ {0, Y}).

Proof. Let X = ]_[fzof{O, 1} be the product space of the discrete space {0, 1}. If x = (x1, x2,...),
y=1,y2,...) € X then the sum x ® y = (z1, 22, .. .) is defined as follows. If x; + y; < 2 then
71 =x1+ y1, if x1 + y; > 2 then z; = x1 + y; — 2 and we carry 1 to the next position. The
other terms 27, ... are successively determined in the same fashion. Let § : ¥ — X,z z @ 1
with 1 = (1,0,0,...). It is known that (X, §) is minimal, which is called an adding machine.
Let A be the Haar measure on (X, ®). Denote by S the § x y-orbit equivalence relation on
Y xX.Leto:X x X — X x X be the flip map. We have S = o0~ R(¢)o for the cocycle
@R — Aut(X, 1) given by (y"x,x) — 8", n € Z (as R is conservative, y is aperiodic and so
¢ is well defined).

Now we define a cocycle 1 ® ¢ : S — Aut(Y, v) by setting ((z, x), (z/, x)) — ¢ (x,x’). Let
{Ru}nen be a filtration of R. Then {0 'R, (¢)o }nen is a filtration of S and so for each U e
Cxxy

h,1®¢, X xU) =nETwh;(071Rn(<p)o, 1d¢, X x Z/I) (by Corollary 4.6)
= lim A, (R,, ¢.U) (by Proposition 4.4(1))
n——+00

=h, (¢,U) (by Corollary 4.6). (4.4)

On the other hand, for each n e N we let A, ={z € X: z; =0for1 <i <n}. Then A} D
Ay D --- is a sequence of measurable subsets of X' such that ¥ = |_]l.2:61 8'A,andso X x X =
LIZ5" 8 x ¥)/ (A, x X) for each n € N. Let S, € I(S) with S, ~ (A, x X, {(8 x y)': i =
0,1,...,2" — 1}). By (4.1) we obtain that
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h, (Sp, 1@ ¢, X xU)

HV<\/¢>x )/x )d)»xu(z,x)

1 2] 1
2_ ( \ ol vix)u )du(x) (as A(Ap) = 27)

(G o (o)

o
! 1
:2_/ (\/y;’ll)du(x) /lXV(\/ V(;lU|Bx®{VJ Y})
X

i=0 i=0
Note that S €S> € --- and |,y Sn = S, then

hy(1®¢, X xU) ZnETooh;(Sn’ 1®¢, Y xU) (by Corollary 4.6)

2" —1

| —i

it Vs .0
i=0

=h ., (ve.UIBx @ {0, Y})

and so hy (¢, U) =h ., (v, UIBx @ {#, Y}) for each U € Cxxy by (4.4). Finally,

hy(p,U) = inf h,(¢p,a) = inf h, ,o|B @a,Y
o= il @)= nf v (76 @|Bx ® {0, Y})
= huxv(ytf)’ U|Bx ® {9, Y})

for each U € Cx «y. This finishes the proof of the theorem. O
4.4. The proof of the equivalence of measure-theoretic entropy of covers

The following result was proved by the same authors [24, Theorem 6.4] (see also [19,21]).
Lemma 4.12. Let (X, T) be a TDS withid € Cx and u € M(X, T). Then h, (T, U) =h, (T, U).
Lemma 4.13. Let (Z,B7,«k) be a Lebesgue space with T an invertible measure-preserving
transformation, W € Cz and D C Bz a T-invariant sub-o-algebra. Then h, (T, W|D) =
h (T, W|D).
Proof. First we claim the conclusion for the case D = {{J, Z}. By the ergodic decomposition

of h (T, W) and h, (T, W) (see (3.29) in the case of G = Z), it suffices to prove it when « is
ergodic. By the Jewett—Krieger Theorem (see for example [8]), (Z, k, T') is measure theoretical
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isomorphic to a uniquely ergodic zero-dimensional topological dynamical system (2 K, ?). Let
7 :(Z,k,T)— (Z,k, T) be such an isomorphism. Then using Lemma 4.12 we have

he (TW) =hz (T, n 7' W) = he (T, n ' W) = he (T, W).

In general case, let {8;}jeny € Pz with 8; /D (mod ). For simplicity, we write P(V) =
{x € Pz: a =V} for V € Cx. Then

1 1
h (T, W|D) = inf —H,(W" D) = inf - inf  H.(a|D
< (T.WID) = inf ~ H (WD) i‘ﬁln(aepi‘ivgl) «(@ID))

o] . . 1
=gﬁ;(aepl(%gl)gleK(aKﬁj)g )) (asB; /D (mod )

= inf infl< inf HK(al(ﬁﬂS*l))

JZInz2ln X gepoVy)

1
= inf inf —H, (W' (B:)E). 45
inf inf > OVS1BHE ) 4.5)

Let j € N. Since for any n,m € N and V € Cx one has
H (VB ) < H V1B ™) + He(T" Vg 6™ )
<H(V B ) + He (T Vg T (85 )
H Vg 1Bpe ) + He (Vg pet,

hence

o1 —1 —1 ] ~1 ~1

inf - H(VGTBE) = tim (V185 )- (4.6)
Combining (4.6) for V = W with (4.5), one has

h-(T,W|D) = inf lim lH wveBHeh
e M j>ln>toon K\VT0 7’0

—inf lim - inf He (B
jZln=>+00 n gepoyi—h

o : 1 . n—1 n—1
= ot tim S( it Bl 5~ H(5)

. . 1 n— n— n—
> inf lim o (HOVG TV B — He(85 7))

(he (T WV Bj) — b (T, B)))

inf
j=1

= 1r>1f1 (he(T, WV Bj) — hie(T, Bj))  (by the first part)
iz
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=inf( inf W (T.ov B;) — hy(T, )
21\ acPo) (T, ﬁ]) «( ,3])

. . . 1 -1 -1
= inf inf lim - (He(@VB)5) — He((B)y )

1
> inf inf inf —H, (e '1(B)*") (by (4.6) for V =
121 aePOV) A2 1 elag 108X ) (by 46) forV =a)

1
inf inf inf — H, (" 1(8,)" !
aePOV =1 j>1n el 185 )

inf inf lzarK(ag*‘n)) (as B; /' D (mod 1))
aePW)nzln

=h (T, W|D).

As the inequality of i (T, W|D) < h, (T, W)|D) is straightforward, this finishes the proof. O
The following result is our main result in the section.

Theorem 4.14. Let (Y, By, v, G) be a G-measure preserving system with (Y, By, v) a Lebesgue
space and U € Cy. Then h,(G,U) =h,; (G, U).

Proof. Let (X, Bx, u, G) be a free G-measure preserving system with R C X x X the G-orbit
equivalence relation and y an invertible measure-preserving transformation on (X, By, ) gen-
erating R. The cocycle ¢ : R — Aut(Y,v) is given by ¢ (gx, x) = I1,, where I1, € Aut(Y, v)
is the action of g € G on (Y, By, v). By Definition 4.7 of virtual entropy and Theorem 4.10, we
have

h, (G,U)=h, (¢, X xU) and h,(G,U)=h,(pc, X xU). 4.7)

Let T = yy; be the ¢-skew production extension of y. Using Theorem 4.11 one has

hy (b, X xU)=h,,(T.UIBx x {#,Y}) and

XV

ho(dG, X x U) = hyuxo (T, UIBx x {9, Y}). (4.8)

As Bx x {#,Y} is T-invariant, h, (T, U|Bx x {4,Y}) = hxo(T,U|Bx x {#,Y}) by

XV
Lemma 4.13. Combining this fact with (4.7) and (4.8), we get h (G, U) = h,(G,U). This fin-
ishes the proof. O
4.5. A local version of Katok’s result
At the end of this section, we shall give a local version of a well-known result of Katok [26,

Theorem LI] for a G-action. Let (X, G) be a G-system, u € M(X, G) andU € Cx.Leta € (0, 1)
and F € F(G). Set

b(F,a,U) = min{#(C): C Uy and M(UC> > a}.

The following simple fact is inspired by [44, Lemma 5.11].
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Lemma 4.15. H, (Ur) <logb(F,a,U) + (1 —a)|F|log NU) + log2.

Proof. LetC ={Cy,...,C¢} CUF suchthat u(| JC) > aand £ =b(F,a,U). Leta; ={Cy, Ca\
Ci,...,Ce\ Uﬁ;ll Cj}. Then o is a partition of Ule C; and #oy = b(F, a,U). Similarly, we

take o) € Py satisfying #a), = N (Ur). Thenlet ap = {AN (X \ Ule Ci): A €aj}. Then #ap <
NUF). Seta = a1 Uay. Then a € Px and o = Up. Note that if xq, ..., x,, > 0 then

D o) < (Zx,-)logmm(in), 4.9)
i=1 i=1 i=1

thus one has

HM(Z/{F) < H/L(C‘f)

@(Q]c,.)(log#al _bgu@c,.))
+ (1 - M(L:J1 C,-)) (log#az - 10g<1 - M(L:Jl Q))) (by (4.9))

14 t
<logb(F,a,U) + (1 - a)log NUr) — u(U ci> IOgM(U a-)
i=l1

<logh(F,a,U)+ (1 —a)|F|log N(U) + log?2. O
As a direct application of Lemma 4.15 by letting @ — 1— we have

Proposition 4.16. Let {F, },en be a Folner sequence of G. Then

1
h7(G.U) < lim liminf

e—>0+n—>+oo | F,

logh(F,,1 —¢€,U).

The following result is [30, Theorem 1.3].

[Ful _
logn —

Lemma 4.17. Let o € Py and {F,},eN be a Fglner sequence of G such that lim,,_, 4

400 and for some constant C > 0 one has |U',:;} Fk_lF,,| < C|Fy| for each n e N. If  is
ergodic then for w-a.e. x € X and in the sense of L' (X, Bx, j)-norm one has

log (@, (x))

n——+00 |Fn| ZhM(G’O{).
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Proposition 4.18. Let {F, },cN be a Folner sequence of G. If u € M°®(X, G) then

1
hu(G,U) > lim limsup | logb(F,,1 —¢€,U).

€=>0+ p—too |Fn

Proof. First for any P € Px we claim the conclusion by proving

h, (G, o) = limsup
n——+00o |Fn|

logh(F,,1 —€,a) foreache € (0,1). (4.10)
Proof of the claim. Fix € € (0, 1). In {F,},cn We can select a sub-sequence {E, },en satisfying

1
|Enl

lim sup
n——+o0o |Fn|

10gb(E1’1_6’a):nETOO logb(Ens 1 _61a)7

limy,—s 400 llifrll = +o00 and for some constant C > 0 one has |UZ;} E,:lEn| < C|E,| for each
n € N. Now applying Lemma 4.17 to {E, },eN, for each § > 0 there exists N € N such that for

eachn > N, u(A,) > 1 — € where

I
A, = {xeX: _M <hM(G,a)+8}
| Enl
1
> {xeX: —%Er(x» <hM(G,a)+8ifm>n}.
m

Note that A,, must be a union of some atoms in «f,, where each atom has measure at least
e 1Enl(h(G.)+8) \which implies b(E,, 1 — €, a) < (1 — €)elEnl(hu(G.0+8) when n > N. So

1 1
lim sup logb(F,,1 —€,a) = lim

n—+oo [I'n n—+oo |Ey|

logb(Ey, 1 — €, a) <hu(G,a)+38.

Since § > 0 is arbitrary, one claims (4.10). O

Now for general case, by the above discussions we have

h, (G, U) = inf h, (G,
M( ) aE’P;(r:la#M M( Ol)
1
> inf lim limsup logh(Fy, 1 —€,0) (by (4.10))

a€Pyx: a=U €0+ p—stoo | Fyl

> lim limsup
€=>0+ n—stoo [Fn

logh(Fy,, 1 —€,U). O

Now combining Theorem 4.14 with Propositions 4.16 and 4.18 we obtain (when G = Z, it
can be viewed as a local version of Katok’s result [26, Theorem L.I]):
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Theorem 4.19. Let {F,,},,cN be a Folner sequence of G. If u € M¢(X, G) then

h,(G,U)= lim limsup

€0+ n—sto0 | Fnl

logb(F,,1 —€,U)

= lim liminf
e—~>0+n—+oo | Fy|

logh(Fy,, 1 —€,U).

5. A local variational principle of topological entropy
The main result of this section is
Theorem 5.1 (Local variational principle of topological entropy). Let U € C$. Then

hiop (G, U) = h, (G, U) = h, (G, U).
top ( ) ueﬂ%,c) u( ) MeAr/rllea&G) ul )

We remark that Theorem 5.1 generalizes the results in [33,41]:

Theorem 5.2 (Variational principle of topological entropy). (See [33,41].)

hiop(G, X)= sup  hu(G,X) = sup h, (G, X).
neM(X,G) neMe(X,G)

Proof. It is a direct corollary of Lemma 3.4(3), Theorems 3.5 and 5.1. O
Before proving Theorem 5.1, we need a key lemma.

Lemma 5.3. Let U € C§, and oy € Px with oy = U, 1 <1 < K. Then for each F € F(G) there
exists a finite subset B C X such that each atom of (q;)F contains at most one point of BF,
I=1,...,K and #Bp > Y4r),

Proof. We follow the arguments in the proof of [24, Lemma 3.5]. Let F € F(G). For each
I=1,...,Kand x € X, let A;(x) be the atom of (o) r containing x, then for x, x> € X, x; and
xo are contained in the same atom of («y) g iff A;(x1) = A;(x3).

To construct the subset Br we first take any x; € X. If U,K=1 Aj(x1) = X, then we take Bp =
{x1}. Otherwise, we take X| = X \ U1K=1 A;(x1) # @ and take any x; € X . If Ulel Aj(x2) D X1,
then we take Br = {x1, x2}. Otherwise, we take X» = X7 \ Ulel Aj(xp) #@. Since {A;(x): 1<
I < K, x € X} is a finite cover of X, we can continue the above procedure inductively to obtain
a finite subset By = {x1, ...x,} and non-empty subsets X ;, j =1, ..., m — 1 such that

() X1 =X \UL Aix),
@ Xj =X \UEL Axjen for j=1,...,m—1,
3) UL UL Alx) = X.

From the construction of B, clearly each atom of (o;)r,/ =1,..., K, contains at most one
point of Bp. Since for any 1 <i <m and 1 <! < K, A;(x;) is an atom of («;)F, and thus is
contained in some element of Ur, so mK > N(UF) (using (3)), that is, #Br =m > % O
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Proposition 5.4. Let U € C§,. If X is zero-dimensional then there exists i € M(X, G) satisfying
hu(G,U) = hiop(G, U). (5.1

Proof. Let U ={Uy,..., Uy} and U* = {a = {Ay,..., A4} € Px: A, CU,, m=1,...,d}.
Since X is zero-dimensional, the family of partitions in U/* consisting of clopen (closed and
open) subsets, which are finer than I/, is countable. We let {o;: [ > 1} denote an enumeration of
this family. Then &, (G, U) = infjen b, (G, o) for each v € M (X, G) by Lemma 3.7.

Let {F,},en be a Fglner sequence of G satisfying | F;,| > n for each n € N (obviously, such
a sequence exists since |G| = +00). By Lemma 5.3, for each n € N there exists a finite subset
B,, € X such that

NU
#B, > M, (5.2)
n
and each atom of (¢;) r, contains at most one point of B,, foreach/=1,...,n. Let
1 1
Vv, = ZSX and ,unz—ngn.
#By | Fyl
n geF,

We can choose a sub-sequence {n}jen € N such that u,; — p in the weak*-topology of M (X)
as j — 4o0. It is not hard to check the invariance of i, i.e. u € M(X, G). Now we aim to show
that u satisfies (5.1). It suffices to show that hyp (G, U) < h, (G, o) for each [ € N.

Fix an / € N and each n > [. Using (5.2) we know from the construction of B,, that

log N(Up,) —logn < log(#By,) = Z —vu({x}) log vy ({x}) = Hy, (@) F,)- (5.3)

X€EB,

On the other hand, for each B € F(G), using Lemma 3.1(3) one has

1 IF\{g€G: B~'gC F)l
—H,, ((@)F,) < —H,, (()Bg) + -log #ay
iy P (@0R) < T ZF e (@0)55) 1ol ®
8€In
1 |Fa\{g€G: B~'g C F,}|
= — Hyy, ((cp)B) + -logd
Bl 1R 2 Hew(@)s) |Fol s

g€k,

|Fa\{geG: B¢ S Fa}l
| Fl

1
< EH ((eDB) + logd. (5.4)

Now by dividing (5.3) on both sides by | F},|, then combining it with (5.4) we obtain

1 logn |F,\{geG: B lgCF,}|
mHﬂn((az)B)Jr |1§| + — TA "= logd. (5.5)
n n

log N(Us,) <

| Fal

Noting that lim;_ 1 o0 H, " ((r)B) = Hy, (() B), by substituting n with n; in (5.5) one has

1
—HM((ocl)B) (using (3.6)).

hiop (G, U) <
top( ) |B|
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Now, taking the infimum over B € F(G), we get hp(G,U) < hy (G, ap). This ends the
proof. O

A continuous map 7 : (X, G) — (¥, G) is called a homomorphism or a factor map if it is onto
and 7 o g = g o foreach g € G. In this case, (X, G) is called an extension of (Y, G) and (Y, G)
is called a factor of (X, G). If & is also injective then it is called an isomorphism.

Proof of Theorem 5.1. First, by Lemma 3.4(1) and Theorem 4.14, it suffices to prove
ho(G,U) = hiop(G,U) for some 0 € M¢(X, G). It is well known that there exists a surjective
continuous map ¢ : C — X, where C is a cantor set. Let CY be the product space equipped
with the G-shift G x C¢ — CY, (¢, (z¢)4eG) > (24)geG Where 2, =z4¢, ¢', ¢ € G. Define

Z ={Z=(2¢)gec € CY: ¢1(zg,0,) = 81¢1(2g,) for each g1, g2 € G},

and ¢ : Z — X, (2g)geG H> @1(2eg)- I's not hard to check that Z C CGY is a closed invari-
ant subset under the G-shift. Moreover, ¢ : (Z, G) — (X, G) becomes a factor map between
G-systems. Applying Proposition 5.4 to the G-system (Z, G), there exists v € M(Z, G) with
ho(G, 0~ U)) = hiop(G, 9~ (U)) = hiop(G, U). Let n = pv € M(X, G). Then

hy(G,Uy= _inf  h,(G,a)

a€Pyx: ar=

= inf  hy(G o (@) = h(G, o7 U)) = hep(G, U).
aePx: ax=U

Let u = f Me(X.T) 0 dm () be the ergodic decomposition of . Then by Theorem 3.13 one has

he(G,U)dm(9) = h,(G,U).
Me(X,T)

Hence, ho (G, U) = hiop(G,U) for some 6 € M*(X, G). This ends the proof. O
At last, we ask an open question.

Question 5.5. In the proof of [19, Proposition 7.10] (or its relative version [24, Theorem A.3]),
a universal version of the well-known Rohlin Lemma [19, Proposition 7.9] plays a key role.
Thus, a natural open question arises: for actions of a countable discrete amenable group, are
there a universal version of Rohlin Lemma and a similar result to [19, Proposition 7.10] or [24,
Theorem A.3]? Whereas, up to now they still stand as open questions.

6. Entropy tuples

In this section we will firstly introduce entropy tuples in both topological and measure-
theoretic settings. Then we characterize the set of entropy tuples for an invariant measure as
the support of some specific relative product measure. Finally by the lift property of entropy
tuples, we will establish the variational relation of entropy tuples. At the same time, we also
discuss entropy tuples of a finite product. We need to mention that the proof of those results in
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this section is similar to the proof of corresponding results in [23,25] for the case G = Z, but for
completion we provide the detailed proof.

6.1. Topological entropy tuples

First we are going to define the topological entropy tuples.

Letn > 2. Set X = X x -+ x X (n-times); A,(X) ={(x;)] € X | x| =--- = x,}, the
n-th diagonal of X. Let (x;) € X®\ A, (X). We say U € Cx admissible w.r.t. (x;)!, if for any
Uel,UD{x1,...,xn}

Definition 6.1. Let n > 2. (x;)] € X™ \ A,(X) is called a topological entropy n-tuple if
hiop(G,U) > 0 when U € Cy is admissible w.r.t. (xi)’f.

Remark 6.2. We may replace all admissible finite covers by admissible finite open or closed
covers in the definition. Moreover, we can choose all covers to be of the forms U/ = {U1, ..., U},
where Uf is a neighborhood of x;, 1 <i < n such that if x; # x;,1 <i < j < n then Uf N
U; = (). Thus, our definition of topological entropy n-tuples is the same as the one defined by

Kerr and Li in [27].

Foreach n > 2, denote by E, (X, G) the set of all topological entropy n-tuples. Then following
the ideas of [2] we obtain directly

Proposition 6.3. Let n > 2.

L IfU ={Ui,..., Uy} € C§ satisfies hyop(G,U) > 0, then E,(X,G) N N Uf #40.

2. If hiop(G,X) > 0, then ¥ # E;(X,G) C X® is G-invariant. Moreover; E,(X,G) \
An(X) = En(Xa G)-

3. Letw : (Z,G) — (X, G) be a factor map between G-systems. Then

Ey(X,G) S (w x -+ xm)En(Z,G) € Ep(X, G) U A, (X).
4. Let (W, G) be a sub-G-system of (X, G). Then E,(W, G) C E, (X, G).
The notion of disjointness of two TDSs was introduced in [15]. Blanchard proved that any

u.p.e. TDS was disjoint from all minimal TDSs with zero topological entropy (see [2, Proposi-
tion 6]). This is also true for actions of a countable discrete amenable group. First we introduce

Definition 6.4. Let n > 2. We say that

(1) (X, G) has u.p.e. of order n, if any cover of X by n non-dense open sets has positive topo-
logical entropy. When n = 2, we say simply that (X, G) has u.p.e.;

(2) (X, G) has u.p.e. of all orders or topological K if any cover of X by finite non-dense open

sets has positive topological entropy, equivalently, it has u.p.e. of order m for any m > 2.

Thus, for each n > 2, (X, G) has u.p.e. of order n iff E,,(X, G) = xX® \ Ay (X).
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We say (X, G) is minimal if it contains properly no other sub-G-systems. Let (X, G) and
(Y, G) be two G-systems and wy : X X ¥ — X, ny : X X Y — Y the natural projections. J C
X x Y is called a joining of (X, G) and (Y, G) if J is a G-invariant closed subset satisfying
wx(J) =X and wy(J) =Y. Clearly, X x Y is always a joining of (X, G) and (¥, G). We say
that (X, G) and (Y, G) are disjoint if X x Y is the unique joining of (X, G) and (Y, G). The
proof of the following theorem is similar to that of [2, Proposition 6] or [25, Theorem 2.5].

Theorem 6.5. Let (X, G) be a G-system having u.p.e. and (Y, G) a minimal G-system with zero
topological entropy. Then (X, G) and (Y, G) are disjoint.

6.2. Measure-theoretic entropy tuples

Now we aim to define the measure-theoretic entropy tuples for an invariant Borel probability
measure.

Let w € M(X,G). A C X is called a pu-set if A € Bﬁ. fa={A..., A} C B; satisfies
Ule Ai=Xand A;NA; =0 when 1 <i < j <k then we say « is a finite j.-measurable
partition of X. Denote by 775 the set of all finite p-measurable partitions of X. Similarly, we can
introduce C; and define a > ap for oy, an € C; and so on.

Definition 6.6. Let n > 2. (x;)] € X () \ A, (X) is called a measure-theoretic entropy n-tuple for
wif by, (G, a) > 0 for any admissible o € Px w.r.t. (x;)].

Remark 6.7. We may replace all admissible o € Px by all admissible « € P; in the definition.

For each n > 2, denote by E} (X, G) the set of all measure-theoretic entropy n-tuples for
e M(X, G). In the following, we shall investigate the structure of EM(X, G). To this purpose,
let P,, be the Pinsker o-algebra of (X, By, u, G), i.e. P, ={A € By: h, (G, {A, A°}) =0}. We
define a measure A, () on (X™, (B5%)™, G) by letting

M(u)(]’[&-) =f]"[E(1Ai|Pu>du,
i=1 i

X i=1
where (BY)™ =B x -+ x By (n times) and A; € By, i =1,..., n. First we need

Lemma 6.8. Let U{ = {Uy,...,U,} € Cx. Then )L,,(y,)(]_[;-’:] Uf) > 0 iff for any finite (or n-set)
wu-measurable partition o, finer than U as a cover, one has h, (G, o) > 0.

Proof. First we assume that for any finite (or n-set) pu-measurable partition «, finer than U
as a cover, one has s, (G,a) > 0 and )»n(u)(]_[?zl Ul.c) =0.Fori=1,....,n,let C; ={x €
X: E(lUl_r|PM)(x) >0} € Py, and put D; = C; U (Uf \ C;), Di(0) = D; and D;(1) = Dy, as

0= f E(lLye| P () dp = u(UF 0 (X\ €)= n(UF\ G,
X\C;
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then DZ.C C U; and Di(Q),Di(l) € P,. For any s = (s(1),...,s(n)) € {0,1}", let Dy =
M/, Di(s(i)) and set D = ("}, D;) N (U; \U,Jc;i Uy) for j =1, ..., n. We consider

a={Ds: s€{0,1)" ands # (0,...,00}U{D},..., D}}.

On one hand, for any s € {O,_ 1}* with s # (0, ..., 0), one has s(i) = 1 for some 1 < i < n, then
D C Df C U;. Note that D(j) CUj,j=1,...,n,thusa > and so 7, (G, o) > 0. On the other
hand, obviously n(('_, Di) = (i~ Ci) and

ozxn(u)(l"[u;')z / [TEGu P duto),

1 m?=] Ci l

then u(();_; Ci) =0, and so Dé,..., Dy e Py. As Dy,...,D, € P, Ds € P, for each s €
{0, 1}", thus o € P, one gets h, (G, o) = 0, a contradiction.
Now we assume A, (uw)([7_, U £) > 0. For any finite (or n-set) u-measurable partition o

which is finer than ¢/, with no loss of generality we assume o« = {Aq,..., A,} with A; C U;,
i=1,...,n. As
n n n
[ TEaPo@ e > [ 120 1P @ e = Anw)(]'[Uf) -0
X i=1 X i=1 i=1

therefore A ¢ P, for every 1 < j <n, and so 1, (G, «) > 0. This finishes the proof. O
Then we have (we remark that the case of G = Z is proved in [16] and [23]):
Theorem 6.9. Let n > 2 and u € M(X, G). Then E} (X, G) = supp(r, (1)) \ An(X).

Proof. Let (x;)] € EX(X, G). To show (x)] € supp(X, (1)) \ Ap(X), it remains to prove that for
any Borel neighborhood [/_; U; of (x;)} in X™, A, (w)([ T/, Ui) > 0. SetU = {U{, ..., US}.
With no loss of generality we assume U € Cx (if necessary we replace U; by a smaller Borel
neighborhood of x;, 1 <i < n).Itis clear that if ¢ € P is finer than I/ then « is admissible
w.r.t. (x;)], and so h, (G, @) > 0. Using Lemma 6.8 one has () (172, Ui) > 0.

Now let (x)] € supp(An (1)) \ An(X). We shall show that 7, (G, a) > 0 for any admissi-

ble o = {Ay,..., Ax} € Px wrt. (x;)]. In fact, let & be such a partition. Then there exists a
neighborhood U; of x;, 1 <1l < n such that for each i € {1,...,k} we find j; € {1,...,n} with
Ai CUS ie o =U={Uf,...,Uy;}. As (xi)] € supp(hy (/,L)) \ Ap(X), Ay (;1,)(]_[1z 1U,) >0

and so 7, (G, o) > 0 (see Lemma 6. 8) This ends the proof. O
Before proceeding we also need

Theorem 6.10. (See [7, Theorem 0.1].) Let n € M(X, G), o € ’P; and € > 0. Then there exists
K € F(G) such that if F € F(G) satisfies (FF~'\ {eg}) N K =@ then

1
mH w(ap|Py) — Hy(a|Py)| <e.
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The following theorem is crucial for this section of our paper, and the methods of proving it
may be useful in other settings as well.

Theorem 6.11. Let n € M(X,G) and U = {Uy,...,U,} €Ck, n>2. If h (G, a) > 0 for any
finite (or n-set) p-measurable partition «, finer than U, then h;(G, U) > 0.

Proof. For any s = (s(1),...,s(n)) € {0, 1}", set A; = ﬂ?:l Ui(s(i)), where U;(0) = U; and
Ui(1) = Uf . Leta = {A,: s € {0, 1}"}. Note that A, () ([ T/, UH) = [ [Ti= E(lye|P)dp >0
(Lemma 6.8), hence there exists M € N such that (D) > 0, where

1
D= X: E(1y¢|P — .
{xe 121112" (yelPu)(x) = M}

Claim. If § € PY is finer than U then Hy (a|B V Py) < Hy,(@|Py) — M2 1og(-10),
Proof. With no loss of generality we assume 8 = {By, ..., By} with B; C U;,i =1, ...,n. Then

Hy(a|BV Py)=Hy(aV BIPy) — Hu(B|PL)

E P
/ > Y manips( o),

50,1} i=1

E(1 | P,
= Z/ > E(13i|Pﬂ)¢(§£(A{;—T’P')“)>du, 6.1
ARy

se€{0,1}" X 1<i<n, s(i)=0

where the last equality comes from the fact that, forany s € {0, 1} and 1 <i < n,if s(i) = 1 then

E( a;ng; | Pu)
Ag N B; = and so #M(x) =0 for pu-a.e. x € X. Put ¢ = Zlgkgn,s(k):o E(p,|Py).

As ¢ is a concave function,

E(lp 1Py E(a,ns |1 Pu)
6n< Y /cs ALy E(*‘I”T;)“)du
sef{0,1}" 1<l<n s(i)=0 Cs Biltu

E(1a|P,))
-y / ¢>< ! “)
se{0,1}"

1
_ (f«zs E(La,1P) dpt — fE(lA.JPmlogc—du)

sef0,1)" ¥

1
—H@iP) - Y [Baip) e du. 62)

se{0,1}" ¥

Note that if s(@) =1, 1 <i < n, then Y ;e sgy=0 E(1g | Pu) < E(1x\p,|Py); moreover,

(W)n > by---b, and Z,’=1 b = Zi:l Z]gjgn,j#E(lBﬂPu) = — I)Z,’=1 IE(IB,-|
P)=n—1,here by =E(1x\p;|Py),i =1, ...,n. Then we have
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Z / E(1y, P01 ( 1 ) d
Ag 1 £p) 108 22
i<k, st=0 ELB | Pu)

(%

i=ly “se{0,1}",s@)=1

=—Z/E(1Uc|Pﬂ)log du/—Z/log du

11X
1[1 _1 >1/1 n = D) " 6.3)
—_— 0 = — (6} = (0] . .
am ] T e M) Y e T T B
D D

Hence, Hy(a|f vV P,) < Hy(a|Py) — M2 log(-10) (using (6.2) and (6.3). O

1
E(IAS|PH)) log ;du
1

Sete = ”(D) log( "1) > 0. By Theorem 6.10, there exists K € F(G) such that

1
7 Hu (@l Pu) — Hy(@ By <§ 6.4)

when F € F(G) satisfies (FF~!'\ {eg}) N K =@. Let {F,,}nen be a Fglner sequence of G. For
each m e N, we can take E,, C F, such that (E,, E,, "\{eghNK =@ and |E,,| > Now

if B, € C; is finer than UF,, then gB,, = U for each g € F},;, and so

2\K|+1

H;L(,Bm) > H/t(.Bm VQag,, |P,u) - H,u(aEm |Bm V P/L)

> Hy (g, |Pu) — Y Hu(e|gBn V Py)
g€k

> Hy (g, |Py) — |Em|(Hy(a|Py) — €)  (by Claim)

> |Epn |§ (by the selection of E,, and applying (6.4) to E).

Hence, H,(UF,) = |Em|% and so h;(G,L{) > This finishes the proof of the theo-

€
= 22K+
rem. O

An immediate consequence of Lemma 6.8 and Theorem 6.11 is

Corollary 6.12. Let u € M(X,G) and U = {Uy,...,U,} € C;. Then the following statements
are equivalent:

1 h; (G,U) > 0, equivalently, h, (G,U) > 0;
2. hy(G,a) >0 ifa e C; is finer than U,
3. dn ([T US) > 0.
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Now with the help of Theorem 3.13 and Corollary 6.12 we can obtain Theorem 6.13 which
discloses the relation of entropy tuples for an invariant measure and entropy tuples for ergodic
measures in its ergodic decomposition, generalizing [3, Theorem 4] and [23, Theorem 4.9].

Theorem 6.13. Let 1 € M(X, G) with u = f_Q e dm(w) the ergodic decomposition of . Then
1. for m-a.e. w € £2, Eff“(X, G) C E,/f(X, G) for eachn > 2,

2. if (x)] € EN X, G), then for every measurable neighborhood V of (x;)], m({w € £2: V.N
EN(X, G) # @}) > 0. Thus for an appropriate choice of $2, we can require

U{EL (X, G): w € 2}\ Au(X) = EN(X,G).

Proof. 1.1t suffices to prove the conclusion for each given n > 2. Let n > 2 be fixed.

Let U;,i =1,...,n be open subsets of X with (/_, U; =@ and ([]'_, U;) N Ef (X, G) = 0.
Then );n(,u)(]_[:?:1 U) =0 by Theorem 6.9, and so h,(G,U) =0 by Corollary 6.12, where
U=A{Uy,...,US}. As f_Q hu, (G, U)dm(w) = h, (G, U) =0 (see (3.29)), for m-a.e. w € £2,
hyu,(G,U) =0 and so A, (ue)([1'=; U:) = 0 by Corollary 6.12, hence ([T, U;) N ER“ (X,
G) = (using Theorem 6.9 and the assumption of ()/_, U; =9).

Since E} (X, G) U A,(X) € X™ is closed, its complement can be written as a union of
countable sets of the form []/_, U; with U;, i =1,...,n open subsets satisfying ()/_, U =4.
Then applying the above procedure to each such a subset [/, U; one has that for m-a.e. w € 2,
El*(X,G)N(EK(X,T))" =0, equivalently, E;“(X, G) C EL(X, T).

2. With no loss of generality we assume V = [[/_, A;, where A; is a closed neighborhood of

xi, 1 <i<nand (_; A; =0. As A, (w)([]i—; A;) > 0 by Theorem 6.9, one has

/hﬂm(T, (A, ASY) dm(@) = hy (T, [ AC. ... AS))
2

>0 (using (3.29) and Corollary 6.12),

there exists 2’ C 2 with m(£2’) > 0 such that if w € £2’ then

n
hu, (G {Af.....,A5}) >0, ie. ,\,,(Mw)<]_[Ai)>o (see Corollary 6.12),

i=1
and so ([T, A) N EF“(X,G) # 0 (see Theorem 6.9), i.e. m({w € 2: V N EN“(X,G) #
g >0. O

Lemma 6.14. Let w : (X, G) — (Y, G) be a factor map between G-systems, U € Cy and |1 €
M(X, G). Then by (G, n~'U) =hy (G, U).

Proof. Note that, for each F € F(G), P((n " 'U)r) =7~ ' P(UF), using (3.19) we have

H,,(Urp)= inf H. = inf H,(z7!
e UF) gt u(B) st w77 B)

= inf H,(B)=H,((=~'U) ). 6.5
ﬁ/EP((I;I_IU)F) ”’(’3) /"((T[ )F) ( )
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Then the lemma immediately follows when divide | F'| on both sides of (6.5) and then let F range
over a fixed Fglner sequence of G. O

Then we have

Theorem 6.15. Let 7w : (X, G) — (Y, G) be a factor map between G-systems, u € M(X, G).
Then

E™(Y,G) C (m x - x 1) EX(X, G) € ET™(Y, G)U A, (Y) foreachn >2.

Proof. The second inclusion follows directly from the definition. For the first inclusion, we as-
sume (y1,...,Yn) € EZM(Y, G). For m € N, take a closed neighborhood Vi’” ofyj,i=1,...,n
with diameter at most % such that ﬂ;;] V" = . Consider U, = {(V]")", ..., (V)} e Cy,
then h;(G, U, = h;M(G, U,) > 0 and so )L,,(,u)(]_[l’f:1 7! Vl.”‘) > 0 by Corollary 6.12 and
Lemma 6.14. Hence [ 7_, a! V" N (supp(hn (1)) \ A (X)) # 0. Moreover, there exists (x;")] €
[T/_, =~ 'V" N E}(X, G) by Theorem 6.9. We may assume (x",...,x") — (x1,...,x,) (if
necessary we take a sub-sequence). Clearly, x; € n_l(yi), i=1,...,n and (x1,...,x,) €
El (X, G) by Proposition 6.3(2). This finishes the proof of the theorem. [

6.3. A variational relation of entropy tuples

Now we are ready to show the variational relation of topological and measure-theoretic en-
tropy tuples.

Theorem 6.16. Let (X, G) be a G-system. Then

1. for each u € M(X, G) and eachn > 2, E,(X,G) 2 Ef (X, G) = supp(r, (1)) \ An(X);
2. there exists i € M(X, G) such that E, (X, G) = E! (X, G) for each n > 2.

Proof. 1.Let (x;);_, € ENX,G)and U € C% admissible w.r.t. (x;);_;. Then if o € Py is finer

than U then it is also admissible w.r.t. (x; ?:1’ and so h,(G,a) > 0 (as (x;)] € EN(X, G)),
thus h,, (G,U) > 0 by Theorem 6.11. Moreover, hwop(G,U) > h,, (G, U) > 0. That is, (x)f_, €
E, (X, G), as U is arbitrary.

2. Let n > 2. First we have

Claim. If (x;)} € E,(X, G) and [[!_, U; is a neighborhood of (x;)} in X™ then E}(X,G) N
[T/, Ui # 9 for some v e M(X, G).

Proof. With no loss of generality we assume that U; is a closed neighborhood of x;, 1 <i <n
suchthat Uy NU; =P ifx; #xjand U; =U; if x; =x;, 1 <i < j<n. LetU ={U7, ..., Us}.
Then hyp(G,U) > 0 (as (x;)] € E (X, G)). By Theorem 5.1, there exists v € M (X, G) such
that 1, (G,U) = hiop(G,U), then AW ([172, Ui) > 0 by Corollary 6.12, i.e. supp(r,(v)) N
T2, Ui #9. As [T/_, Ui N Ay(X) =@, one has E}(X,G) N[]i_, Ui # @ by Theorem 6.9.
This ends the proof. O
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By claim, for each n > 2, we can choose a dense sequence of points {(x1 e s XM men ©
E,(X,G) with (x{", ..., x)") € En" (X, G) for some v} € M(X, G). Let
m
= (X r)
n>=2 m>1

As if o € Py then

hyu(G,a) > ————hyn(G,a) (using (3.29))

om+n— 1

and so E;’T(X, G) CE;(X,G)foralln >2andm € N. Thus (x]", ..., x") € Ej; (X, G). Hence

EMX,G) 2 {(x]",....x"): m e N} \ Ay(X) = Ex(X, G),
moreover, Ei (X, G) = E,(X, G) (using 1) foreachn >2. O
6.4. Entropy tuples of a finite production

At the end of this section, we shall provide a result about topological entropy tuples of a finite
product.

We say that G-measure preserving system (X, B, i, G) is free, if g = eg when g € G satisfies
gx = x for p-a.e. x € X, equivalently, for p-a.e. x € X, the mapping G — Gx, g — gx is one-
to-one. The following is proved in [18, Theorem 4].

Lemma 6.17. Let (X, B, u, G) and (Y, D, v, G) both be a free ergodic G-measure preserving
system with a Lebesgue space as its base space, with P, and P, Pinsker o -algebras, respectively.
Then P, x P, is the Pinsker o -algebra of the product G-measure preserving system (X x Y, B x
D, uxv,G).

We say that (X, G) is free if g = eg when g € G satisfies gx = x foreach x € X. Letn > 2.

Denote by supp(X, G) the support of (X, G), i.e. supp(X, G) = UueM(X,G) supp(n). (X, G)
is called fully supported if there is an invariant measure u € M(X, G) with full support (i.e.
supp(u) = X), equivalently, supp(X, G) = X. Set A;E(X) = A, (X) N (supp(X, G))™. Then:

Theorem 6.18. Let (X;, G), i = 1,2 be two G-systems and n > 2. Then
E.(X1 X X2,G) = Ex(X1, G) x (Ex(X2,G) UAS(X2)) UAS (X)) X En(X2,G). (6.6)

Proof. Obviously, E,(X| x X2, G) C (supp(X1, G) x supp(X2, G))(”) by Theorem 6.16(2), and
so the inclusion of “C” follows directly from Proposition 6.3(3). Now let’s turn to the proof of
“377.

First we claim this direction if the actions are both free. Let

((x}.x7))] € En(X1,G) x (En(X2,G) U AS(X2)) UAS (X)) x En(X2,G)
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and let U; (resp. Us) be any open neighborhood of (xl.l)’l’ in XE") (resp. (xl.z)’l’ in Xé”)).
With no loss of generality we assume (xl.l)’l’ € E,(X1,G) and Uy N A,(X1) = @. Note that
supp(r, (1)) 2 (supp(,u))(”) N A, (X>2) for each u € M(X3, G), by Theorems 6.9 and 6.13 we
can choose u; € M°(X;, G) such that U; N (supp(u,-))(") #@,i=1,2. As the actions are both
free, we have

Claim. U; x Uy N E'P"2(X1 x Xo,G) # 9, and so Uy x Us N E, (X1 x X2, G) # @, which
implies ((xl.l,xiz))q’ € E (X1 x X2, G) from the arbitrariness of Uy and Uy (using Proposi-
tion 6.3(2)).

Proof. Let P,, be the Pinsker o-algebra of (X;, Bx;, ui, G), i =1,2. Then Py, x P,, forms
the Pinsker o-algebra of (X| x X»,Bx, X Bx,, 1 x p2, G) by Lemma 6.17. Say u; =
f x; Mix; du;(x) to be the disintegration of w; over Py, i =1,2. Then the disintegration of
1 X pp over Py, x Py, is

M1 X pup = / Hlxy X (ox, dpy X pa(xy, x2).
X]XXZ

Moreover, A, (i4;) = le_ ,ul("x)t dui(x;i), i = 1,2, which implies

hn (1  p12) = / B, X S, a1 x2) = A () X A (2)-
X1xXp

Then supp (A, (11 X p2)) = supp(r, (1)) X supp(A, (12)). So Uy x U Nsupp(rp (i X f12)) # 0
and Uy x Uy N ES' "2 (X1 x X3,G) # 0 (as Up N A,(X1) = ¥). This ends the proof of the
claim. O

Now let’s turn to the proof of general case. Let (Z, G) be any free G-system. Then G-systems
(X],G) = (X; x Z,G), i = 1,2 are both free. Applying the first part to (X}, G), i =1,2 we
obtain

Eqx(X| x X5, G) = Eo (X}, G) x (Eq(X}, G) UAS(X3))UAS (X)) x Ex(X5,G). (6.7

Then applying Proposition 6.3(3) to the projection factor maps (X| x X}, G) — (X1 x X2, G),
(X', G) — (X1,G) and (X, G) — (X2, G) respectively we claim the relation (6.6). O

7. An amenable group action with u.p.e. and c.p.e.

In this section, we discuss two special classes of an amenable group action with u.p.e. and
c.p.e. We will show that both u.p.e. and c.p.e. are preserved under a finite product; u.p.e. implies
c.p.e. and actions with c.p.e. are fully supported; u.p.e. implies mild mixing; minimal topological
K implies strong mixing if the group considered is commutative.

Let (X, G) be a G-system and « € Px. We say that « is topological non-trivial if A C X for
each A € «. It is easy to obtain
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Lemma 7.1. Let n > 2 and p € M(X, G). Then E; (X, G) = X\ A, (X) iff h,, (G, &) > O for
any topological non-trivial o = {Ay, ..., A} € Px.

Proof. First assume ES (X, G) = X®™ \Ap(X). If « ={Ay,..., A} € Px is topological non-

trivial, we choose x; € X \ A;,i =1, ...,n, then (x)] € X®™\ A,(X) and « is admissible w.r.t.
(xi)]. Thus h; (G, ) > 0.
Conversely, we assume &, (G, o) > 0 for any topological non-trivial @ = {A1, ..., A,} € Px.

Let (x;)] € XM\ A, (X). Ifa={A1, ..., A} € Py is admissible w.r.t. (xi), then it is topolog-
ical non-trivial and so %, (G, a) > 0. Thus (x;) € EN(X, G). This completes the proof. O

As a direct consequence of Theorem 6.16 and Lemma 7.1 one has

Theorem 7.2. Let n > 2. Then

1. (X, G) has u.p.e. of order n iff there exists u € M(X, G) such that h, (G, a) > 0 for any
topological non-trivial « = {A1, ..., A} € Px;

2. (X, G) has topological K iff there is u € M(X, G) such that h,, (G, o) > O for any topolog-
ical non-trivial o € Py.

Definition 7.3. We say that (X, G) has c.p.e. if any non-trivial topological factor of (X, G) has
positive topological entropy.

Blanchard proved that any c.p.e. TDS is fully supported [1, Corollary 7]. As an application of
Proposition 6.3(3) and Theorem 6.16 we have a similar result.

Proposition 7.4. (X, G) has c.p.e. iff X is the closed invariant equivalence relation generated
by E2(X, G). Moreover, each c.p.e. G-system is fully supported and each u.p.e. G-system has
c.p.e. (hence is also fully supported).

Proof. It is easy to complete the proof of the first part. Moreover, note that (supp(X, G))® U
A»(X) is a closed invariant equivalence relation containing E7(X, G) (Theorem 6.16). In par-
ticular, if (X, G) has c.p.e. then it is fully supported. Now assume that (X, G) has u.p.e., thus
Er(X,G)= XD\ Ay(X) and so X@ is the closed invariant equivalence relation generated by
E> (X, G), particularly, (X, G) has c.p.e. This finishes our proof. O

The following lemma is well known, in the case of Z see for example [36, Lemma 1].
Lemma 7.5. Let (X;, G) be a G-system and Ay(X;) C A; € X; x X; with (A;) the closed
invariant equivalence relation generated by A;, i = 1,2. Then (A1) X (A3) is the closed invariant
equivalence relation generated by A1 x Aj.

Thus we have

Corollary 7.6. Let (X1, G) and (X», G) be two G-systems and n > 2.

(1) If (X1, G) and (X2, G) both have u.p.e. of order n then so does (X1 X X3, G).
2) If (X1, G) and (X2, G) both have topological K then so does (X1 x X2, G).
3) If (X1, G) and (X2, G) both have c.p.e. then so does (X1 x X3, G).



W. Huang et al. / Journal of Functional Analysis 261 (2011) 1028-1082 1077

Proof. By Proposition 7.4, any G-system having u.p.e. is full supported, then (1) and (2) follow
from Theorem 6.18 directly. Using Theorem 6.18 and Lemma 7.5, we can obtain (3) simi-
larly. O

In the following several sub-sections, we shall discuss more properties of an amenable group
action with u.p.e.

7.1. U.p.e. implies weak mixing of all orders
Following the idea of the proof of [1, Proposition 2], it is easy to obtain the following result.

Lemma 7.7. Let {Uf, U5} € Cx. If

1
lim sup — logN(\/g UI,U2}> 0 (7.1)

n—+oo N i=1
for some sequence {g;: i € N} C G then there exist 1 < j1 < jo with U1 N 818, 'u, #0.

Proof. Assume the contrary that for each 1 < j; < jo, U1 N ghg/2 "0y = ¢ and so g; 1U1

j_21U2' That is, for each i € N one has.gl. Ul C ﬂ]>l j—le.
Letn € N. Now for each x € X consider the firsti € {1, ..., n} such that g;x € U, when there
exists such an i. We get that the Borel cover \/'}=1 gjfl {U7, U5} admits a sub-cover

i—1 n n
(e 'Ufn( e 'Us: i:l,...,n} U : mgs]Uf}.
s=1 t=i s=1

Moreover, N (\/" =18 7 LWwe,u 5} <n+ 1, acontradiction with the assumption. O

We say that (X, G) is transitive if for each non-empty open subsets U and V, the return time
set, N(U,V) ={g € G: UN g~ 'V # @}, is non-empty. It is not hard to see that if X has no
isolated point then the transitivity of (X, G) is equivalent to that N (U, V) is infinite for each
non-empty open subsets U and V. Let n > 2. We say that (X, G) is weakly mixing of order n if
the product G-system (X, G) is transitive; if n = 2 we call it simply weakly mixing. We say
that (X, G) is called weakly mixing of all orders if for each n > 2 it is weakly mixing of order n,
equivalently, the product G-system (X, G) is transitive. It’s well known that for Z-actions u.p.e.
implies weakly mixing of all orders [1]. In fact, this result holds for a general countable discrete
amenable group action by applying Corollary 7.6 and Lemma 7.7 to a u.p.e. G-system as many
times as required.

Theorem 7.8. Each u.p.e. G-system is weakly mixing of all orders.
7.2. U.p.e. implies mild mixing

We say that (X, G) is mildly mixing if the product G-system (X x Y, G) is transitive for
each transitive G-system (Y, G) containing no isolated points. We shall prove that each u.p.e.
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G-system is mildly mixing. Note that similarly to the proof of Lemma 7.7, it is easy to show that
each non-trivial u.p.e. G-system contains no any isolated point, thus the result in this sub-section
strengthens Theorem 7.8. Before proceeding first we need

Lemma 7.9. Let p € M(X,G), U ={Uy,..., Uy} €C%, a € Px and {g;}ien C G be a sequence
of pairwise distinct elements. Then

L. limsup,_, ;o 2log N(\/{_; g 'a) > hy(G, @);
2. if hiop(G,U) > O then limsup, _, o, 2 log N(\//_, g 't) > 0.

Proof. 1 follows directly from Lemma 3.1(4). Now let’s turn to the proof of 2.

By Theorem 5.1 there exists u € M¢(X, G) such that 1, (G,U) = hiop(G,U) > 0. Let P,
be the Pinsker o -algebra of (X, By, i, G). As A, (w)([T/=, U = [ [Ti=: E(lye|Pw)dp >0
(see Corollary 6.12), repeating the same procedure of the proof of Theorem 6.11 we can obtain
some M € N,D € P, and o € Px such that u(D) > 0 and if g € P; is finer than ¢/ then

H,(x|B Vv P,) < Hy(x|P,) — €, here € = “(D) log(-%5) > 0. Note that there exists K € F(G)
such that if F € F(G) satisfies (FF ! \{eg}) NK = @ then |\F|HM((XF|PM) H,(«|Py)| < 2
(see Theorem 6.10). Obviously, there exists a sub-sequence {s; < s3 < ---} € N such that S’— >

2|K‘+1 for eachi € N and gj g5, I'¢ K when i # j. Then for each n € N one has

1 b
‘;Hu<\/gsila|PM> — Hy(a|Py)
i=1

€

Now letn e N. If B, € P§ is finer than \/}_ 185, 124, then gs;Pn=U foreachi=1,...,n,and
SO

n n
Hy(Ba) > Hy| Bu v \/gs,.‘a|PM> - Hu<\/gs,.‘a|ﬂn v PM)
i=1

i=1

i=1

> Hl‘«(\/g;la|Pu> - ZHu(a|gs,-ﬂn vV Py)
i=1

\/gsl_lodPM) —n(Hy(a|Py) —€)
i=l1

> n(H,L(odPM) — %) —n(Hu(@|Py) —€) (by(7.2))
€
2

Hence, L H, (\/!_, g;'t{) > §. which implies
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1 n 1 Sm
limsup—logN<\/gi_1L{) >limsup—Hﬂ<\/gi_1L{)
i=1

n—>+oo 1 i1 m—>+00 Sm

>l m 1y \m/ Ul > ¢ 0
= limsup — - — ) z — >
b m 418‘” 22|K| + 1)

1=

m—>+00 Sm
This ends the proof of the lemma. O

Now we claim that u.p.e. implies mild mixing.
Theorem 7.10. Let (X, G) be a u.p.e. G-system. Then (X, G) is mildly mixing.

Proof. Let (Y, G) be any transitive G-system containing no isolated points and (Uy, Vy) any
pair of non-empty open subsets of Y. It remains to show that N (Ux x Uy, Vx x Vy) #* ) for
each pair of non-empty open subsets (Uy, Vx) of X. As (¥, G) is transitive, there is g € G with
Uy Ng~'Vy #£0. Set Wy = Uy N g~ Vy. Then

N(Ux x Uy, Vx x Vy) 2 gN(Ux x Wy, g~ Vx x Wy).

Now it suffices to show that N(Ux x Wy, g Vx x Wy) £0.

If Ux N g~!'Vx # @ then the proof is finished, so we assume Uy N g=!Vy = @. As
(Y, G) is a transitive G-system containing no isolated points, there exists g} € G \ {eg} with
g1 Wy N Wy ##. Now find g € G\ {eg, (gi)_l} with g5 (g Wy N Wy) N (g] Wy N Wy) # 0.
By induction, similarly there exists a sequence {g),},>1 € G such that for each j > 1 one has
g;. € G\{eg, (g;;])_l, (g}flggfz)_l, el (g;e]g}fz . ~g;)_1} and for each n € N it holds that

Wy () (gi8h_y W) #0. (7.3)
I<i<j<n

Set g, = g8, ;&) for each n € N. Then g; # g; if 1 <i # j. Note that Ux N g~ Vx =0

and (X, G) is u.p.e., then hyp(G, {Ux®, g~ 1Vx}) > 0 and so by Lemma 7.9 one has

n
limsupllogN(\/gi_l{U_Xc,g_lVXC}> > 0.

n—+oo N :
i=1

Then by Lemma 7.7, there exists 1 <i < j such that

— o — —1
h#UxNgig; e~y =0Ux N (g;-g;-,l egin) g vy,
which implies (using (7.3))
g}g}q -8l €N(Ux, g~ 'Vx) N N(Wy, Wy) = N(Ux x Wy, g~ 1Vx x Wy) #4.

This finishes the proof of the theorem. O
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7.3. Minimal topological K -actions of an amenable group

We say that (X, G) is strongly mixing if N(U, V) is cofinite (i.e. G \ N(U, V) is finite) for
each pair of non-empty open subsets (U, V) of X. It’s proved in [22] that any topological K min-
imal Z-system is strongly mixing. In fact, this result holds again in general case of considering
a commutative countable discrete amenable group. In the remaining part of this sub-section we
are ready to show it.

Denote by Fi,r(G) the family of all infinite subsets of G. Let d be the compatible met-
ricon (X, G), S ={g1, &2, ...} € Fir(G) and n > 2. RPH(X, G) € X" is defined by (x;)" €
RP’S’(X, G) iff for each neighborhood Uy, of x;, 1 <i < n and € > 0 there exist xi/ elUy, 1<
i <nand m € N with max gk 1<n d(g,;lx,’(, g,;lxl’) < €. Obviously, the definition of RP (X, G)
is independent of the selection of compatible metrics. As a direct corollary of Lemma 7.9 we
have

Lemma 7.11. Let n > 2 and S € Fiyp(G). If (X, G) is u.p.e. of order n then RP'{(X, G) = X,

Proof. Assume the contrary that there is S = {g1, g2, ...} € Fiyr(G) such that RP((X, G) C
X®™ _ Fix such an S and take (x)] € xm \ RP(X, G). Then we can find a closed neigh-
borhood U; of x;, 1 <i < n and € > 0 such that ifxleri, 1<i<nand meN then

maxi <k, i<n d(g,;lx,’(, gn_qlxl/) > ¢e.Now let {Cy, ..., Cr} (k > n) be a closed cover of X such that
the diameter of each C;, 1 <i <k, isatmost € andifi € {1,...,n} then x; € (C;)° C C; C U;.
Clearly (xl)” ¢ A, (X), we may assume that {CY, ..., CS} forms an admissible open cover of X

w.r.t. (x;)}, and so hyp(G, {CTY, ..., Cy;}) > 0. Moreover,

1
limsup — log N \/ g {cs.....C5} | >0 (by Lemma?7.9). (7.4)
m—>+o0 M i1
Whereas, it’s not hard to claim that for each i € {I,...,k} and m € N there exists j"

{1,...,n} such that g, C; N C m = (. Otherwise, for some ig € {1,...,k} and mg € N,
it holds that for each i € {1,...,n}, gmn,Ciy N C; # ¥, let y; € ngC,0 N C; € U;. Thus
max| <k, i<n d(g,;; Vi, gn_”} v1) is at most the diameter of C;,, which is at most €, a contradiction

with the selection of yq, ..., y,. Therefore, C; C ﬂmEN g;lc%n for each i € {1, ..., k}, which

implies N (\/l 18 {CC, ...,Ci) <kforeachmeN,a contrad1ct10n with (7.4). This finishes
the proof of the lemma. 0O

Then we have

Theorem 7.12. Let U and V be non-empty open subsets of X. If (X, G) is minimal and topolog-
ical K then there exists g1, ..., 81 € G (I € N) such that Ué:l giNU, V)gl._1 C G is cofinite. In
particular, if G is commutative then (X, G) is strongly mixing.

Proof. As (X, G) is a minimal G-system, there exist distinct elements g1, ..., gy € G such that
UlN:l giU = X.Let§ > 0 be a Lebesgue number of {g1U, ..., gnU} € C% and set

)
B:{geG: dx;egiV(1<i<N)st max d(g Xk, 8 xl) 2}.

1<k,
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As (X, G) is topological K, (gl-x)llV € RP’;(X, G) for each § € Fyr(G) and x € X by
Lemma 7.11. This implies B N S # @ for each S € Fj;s(G). Hence, G \ B is a finite sub-
set, i.e. B C G is cofinite. Now if g € B then for each i € {1,..., N} there exists x; € g;V
such that maxi g <N d(g 'xk, g7 ) < % Moreover, the diameter of {g!xy, ..., g 'xn} is
less than §. So by the selection of §, for some 1 <k < N, g_lxl, e, g_lxN € grU, in par-
ticular, grU N g~ gtV # @. That is, for each g € B there exists k € {1,..., N} such that
g 'ggk e N, V) ie. BS U &N, V)gr'. O
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