Homological properties of abstract and profinite modules and groups

Dessislava H. Kochloukova

State University of Campinas (UNICAMP), Cx. P. 6065, 13083-859 Campinas, SP, Brazil

Article history:
Received 11 December 2007
Received in revised form 6 June 2008
Available online 24 August 2008
Communicated by E.M. Friedlander

MSC:
20J05
20E18

Abstract

© 2008 Published by Elsevier B.V.

0. Introduction

In this paper we generalize the main results from [8,12,13] about cohomological dimensions and the homological type FP_m of a normal subgroup of a group G with some finiteness properties (in both discrete and profinite cases) and treat the module versions of the same results. The proofs of the main results of [12,13] use methods from Bieri–Renz–Strebel Σ-theory and L^2-methods for Hilbert modules to resolve a conjecture due to E. Rapaport Strasser about knot-like groups G: if the commutator G' is finitely generated then it is free. In [11], Hillman proved that the Rapaport Strasser Conjecture holds under the assumption that the commutator G' is of type FP_2. Later on, using techniques from Σ-theory, it was shown in [12] that if the Novikov ring $\hat{\mathbb{Z}}_G\chi$ associated to a discrete character $\chi : G \to \mathbb{Z}$ is von Neumann finite (i.e. left inverse is right inverse and vice versa) then the commutator G' is of type FP_2. The proof of the Rapaport Strasser Conjecture was completed in [13] by showing that the Novikov ring $\hat{\mathbb{Z}}_G\chi$ for a discrete character χ of an arbitrary finitely generated group G is always von Neumann finite. This was recently extended by R. Bieri to the case of non-discrete characters χ of G [2].

The results in [12,13] apply to groups G with finite $K(G,1)$ and of Euler characteristic 0. In Theorem 1, Section 2 we show that the above assumptions can be weakened. Furthermore we show a homological version of Theorem 1 that treats more general $\mathbb{Z}G$-modules A not only the trivial $\mathbb{Z}G$-module \mathbb{Z}, see Theorem 2. In the specific case $m = 1$ and A the trivial $\mathbb{Z}G$-module \mathbb{Z}, Theorem 2 was first proved in [2] and rediscovered (with different proof) in [8].

A pro-p version of the Rapaport Strasser Conjecture was suggested and resolved in [12] and a profinite version of the same conjecture was proved in [8]. The proof in the profinite case given in [8] is based on the proof of [12, Proposition 2]. In Section 3 we follow the same approach and generalize the results from [8,12] to arbitrary finite projective dimensions and general modules not necessarily trivial ones, see Theorem 3.

Finally we show in Section 4 that the Brown criterion for abstract groups of homological type FP_m [6] holds for profinite groups. Various auxiliary results about profinite groups of type FP_m that were used earlier in Section 3 are collected and proved in Section 4.

E-mail address: desi@ime.unicamp.br.

0022-4049/$ – see front matter © 2008 Published by Elsevier B.V.
doi:10.1016/j.jpaa.2008.07.010
1. Preliminaries

1.1. Σ-invariants and Novikov rings

Let R be an abstract ring. We say that an abstract R-module A is of type FP_m if there is a projective resolution of A with all projectives in dimension at most m finitely generated. An abstract group G is of type FP_m if the trivial $\mathbb{Z}[G]$-module \mathbb{Z} is of type FP_m. It is easy to see that G is finitely generated if and only if G is of type FP_1.

For a finitely generated group G the character sphere $S(G)$ is the set of equivalence classes $[\chi]$ of characters $\chi \in \text{Hom}(G, \mathbb{R}) \setminus \{0\}$, where $[\chi] = \mathbb{R}_{\geq 0} \chi$. For a finitely generated (right) $\mathbb{Z}[G]$-module A and $G_x = \{ g \in G \mid \chi(g) \geq 0 \}$ the Bieri–Strebel–Renz invariant $\Sigma^m(G, A)$ is defined by

$$\Sigma^m(G, A) = \{ [\chi] \in S(G) \mid A \text{ is of type } \text{FP}_m \text{ as a } \mathbb{Z}[G_x]\text{-module}\}.$$

The invariant $\Sigma^m(G, A)$ is responsible for the homological finiteness type of A as a $\mathbb{Z}[G]$-module, where H is a subgroup of G that contains the commutator. More precisely suppose that A is of type FP_m as a $\mathbb{Z}[G]$-module, then A is of type FP_m over $\mathbb{Z}[H]$ if and only if $S(G, H) = \{ [\chi] \in S(G) \mid \chi(H) = 0 \} \subseteq \Sigma^m(G, A)$ [4, Thm. B].

There is a strong link between the Σ-invariants and the Novikov ring associated to a real character, this was first observed in [22]. For non-zero real character χ of G the Novikov ring $(\mathbb{Z}[G])_\chi$ contains the (possibly infinite) formal sums $\sum_{g \in G} z_g g$ such that for every natural number j the set $\{ g \in G \mid z_g \neq 0, \chi(g) \leq j \}$ is finite. By [3, Appendix B] or by [2, Appendix] $[\chi] \in \Sigma^m(G, A)$ if and only if $\text{Tor}^\mathbb{Z}[G](A, (\mathbb{Z}[G])_\chi) = 0$ for all $i \leq m$. Combining with [4, Thm. B] we get that for a subgroup H of G that contains the commutator and A a $\mathbb{Z}[G]$-module of type FP_m, A is of type FP_m as a $\mathbb{Z}[H]$-module if and only if $\text{Tor}^\mathbb{Z}[G](A, (\mathbb{Z}[G])_\chi) = 0$ for all $i \leq m$ and every non-zero character $\chi : G \to \mathbb{R}$ such that $\chi(H) = 0$.

1.2. L^2-Betti numbers

The L^2-Betti numbers of groups and spaces are powerful analytic invariants, see [18]. There is an algebraic way to define the L^2-Betti numbers for $i \leq m$ by

$$b^{(2)}_i(G) = \dim H_i(\mathcal{D}^{\text{det}} \otimes_{\mathbb{Z}[G]} \mathbb{Z}(G)) \in [0, \infty),$$

where $\mathcal{D} : \cdots \to P_i \to P_{i-1} \to \cdots \to P_0 \to \mathbb{Z} \to 0$ is a free resolution of the trivial right $\mathbb{Z}[G]$-module \mathbb{Z} with P_i of finite rank for $j \leq m$, $N(G)$ is the von Neumann algebra, in particular $b^{(2)}_i(G) \leq rk(P_i)$ for $i \leq m$ and \dim is the extended dimension function defined in [17].

In [7] it was conjectured that a compact aspherical manifold that is fibered over the circle has trivial L^2-Betti numbers and later on this was proved in [16], [18, Thm. 1.39]. Actually the same proof gives that if G is a group of type FP_m with a normal subgroup N of type FP_m such that $G/N \simeq \mathbb{Z}$ then the L^2-Betti numbers $b^{(2)}_i(G) = 0$ for $i \leq m$. This was already observed in dimension $m = 1$ in [11, Lemma, p.273]. Indeed $\mathbb{Q} = G/N$ is a group with a tower of subgroups of finite indices $Q_1 \supseteq Q_2 \supseteq \cdots \supseteq Q_s \supseteq \cdots$ such that all $Q_i \simeq \mathbb{Z}$ and let G_i be the preimage of Q_i in G. If N has a free resolution with free modules of rank r_i in dimension i, $r_0 = 1$ and r_i finite for $i \leq m$ then G_i has a free resolution with free modules of rank $r_i + r_{i-1}$ in dimension i, where $r_0 = 0$ for $s < 0$. In particular $0 \leq b^{(2)}_i(G) = b^{(2)}_i(G)/|G : G_i| \leq (r_i + r_{i-1})/|G : G_i|$ is arbitrarily small for $i \leq m$. The same works for $Q \simeq \mathbb{Z}^n$ since G has a free resolution with free modules of rank $r_i + \left(\begin{array}{c} n \\ i \end{array}\right) r_{i-1} + \cdots + \left(\begin{array}{c} n \\ 0 \end{array}\right) r_{-n}$ in dimension i.

1.3. Profinite modules

Let S be a profinite ring and A be a (right) profinite S-module. We say that A is of type FP_m if A has a profinite projective resolution as a profinite S-module with all projectives finitely generated in dimension less than or equal to m. A profinite group G is said to be of type FP_m over a profinite ring R if the trivial profinite $R[[G]]$-module R is of type FP_m. Note that by [15, Lemma 1.1] a profinite group G is of type FP_m over R if and only if R as an abstract module over the ring $R[[G]]$ is of type FP_m, this is an easy corollary of [25, Lemma 7.2.2].

2. Applications of L^2-Betti numbers and Novikov rings

Theorem 1. Let m be a natural number and G be a finitely presented abstract group with a normal subgroup N such that:

1. $Q = G/N$ is infinite, abelian and N has type FP_m;
2. there is a $K(G, 1)$-complex Y such that its $(m + 1)$-skeleton has α_i cells in dimension i for $0 \leq i \leq m + 1$ and

$$\sum_{0 \leq i \leq m + 1} (-1)^{m+1-i} \alpha_i \leq 0.$$

Then

(a) G has geometric dimension at most $m + 1$ i.e. there is a $K(G, 1)$ complex of dimension at most $m + 1$;
(b) the Euler characteristic $\chi(G) = 0$;
(c) N has type FP_{m+1}, and consequently has type FP_∞;
(d) $\text{cd}(G) = \text{cd}(N) + \text{vcd}(G/N)$.

Proof. Let X be the $(m + 1)$-skeleton of Y. Then

$$(1)^{m+1} \chi (X) = \sum_{0 \leq i \leq m+1} (1)^{m+1-i} \alpha_i \leq 0.$$

By going down to a subgroup of finite index we can assume that $Q \simeq \mathbb{Z}^m$. Then as observed in Section 1.2, $b_i^{(2)} (G) = 0$ for $i \leq m$, hence

$$(-1)^{m+1} \chi (X) = (-1)^{m+1} \left(\sum_{0 \leq i \leq m} (-1)^i b_i^{(2)} (G) \right) + b_{m+1}^{(2)} (X) = b_{m+1}^{(2)} (X) \geq 0.$$

Thus $\chi (X) = 0$ and by [11, Thm. 1] X is aspherical, consequently there is a finite $K(G, 1)$-complex of dimension $m + 1$ and Euler characteristic 0. This implies immediately (a) and (b). Parts (c) and (d) follow immediately from (a), (b) and [13, Thm. 3].

Theorem 1 has a homological version that treats non-trivial $\mathbb{Z}G$-modules and uses substantially Σ-theory and Novikov rings. We write $pd_{\mathbb{Z}G} (A)$ for the projective dimension and $\chi_{\mathbb{Z}G} (A)$ for the Euler characteristic of the $\mathbb{Z}G$-module A.

Theorem 2. Let G be a finitely generated abstract group with a normal subgroup N, m a natural number and A a (right) $\mathbb{Z}G$-module such that:

1. $Q = G/N$ is abelian and infinite;
2. the $\mathbb{Z}G$-module A has a free resolution

$$\mathcal{P} : \cdots \rightarrow P_i \xrightarrow{d_i} P_{i-1} \rightarrow \cdots \rightarrow P_0 \rightarrow A \rightarrow 0$$

with P_i free of rank α_i, for $i \leq m$, and $\sum_{0 \leq i \leq m+1} (-1)^{m+1-i} \alpha_i \leq 0$;
3. the $\mathbb{Z}N$-module A has type FP_m.

Then

(a) A has finite projective dimension $pd_{\mathbb{Z}G} (A) \leq m + 1$;
(b) A is of type FP_∞ over $\mathbb{Z}G$ and over $\mathbb{Z}N$;
(c) $\sum_{0 \leq i \leq m+1} (1)^{m+1-i} \alpha_i = 0$ and $\chi_{\mathbb{Z}G} (A) = 0$.

If in addition A is infinite and N acts trivially on A then

(d) N has type FP_∞ and is of finite cohomological dimension $cd (N) = s \leq m + 1$.

If furthermore $pd_{\mathbb{Z}G} (A) < \infty$ then

(e) $pd_{\mathbb{Z}G} (A) \leq cd (N) + pd_{\mathbb{Z}Q} (A)$ and the equality holds if $Ext^{k}_{\mathbb{Z}Q} (A, ZQ) \otimes H^i (N, ZN) \neq 0$, where $k = pd_{\mathbb{Z}Q} (A)$. In particular the equality holds if A is self dual as a $\mathbb{Z}Q$-module or N is a Poincaré duality group.

Proof. By [3, Appendix B] $\sum_{0 \leq i \leq m+1} (1)^{m+1-i} \alpha_i \geq 0$. By the assumptions of the theorem $\sum_{0 \leq i \leq m+1} (1)^{m+1-i} \alpha_i \leq 0$, so we deduce

$$\sum_{0 \leq i \leq m+1} (1)^{m+1-i} \alpha_i = 0.$$

Let $\chi : G \to \mathbb{R}$ be a non-zero character such that $\chi (N) = 0$ and consider the Novikov ring $(\mathbb{ZG})_\chi$. As pointed in Section 1.1 since A is of type FP_m over $\mathbb{Z}N$ by [2, Appendix] and [4, Thm. B] we have $Tor^1_{\mathbb{Z}G} (A, (\mathbb{ZG})_\chi) = 0$ for all $i \leq m$ and every non-zero character $\chi : G \to \mathbb{R}$ such that $\chi (N) = 0$. Thus $H_i ((p^{\text{del}} \otimes \mathbb{ZG})_\chi) = 0$ for $i \leq m$ i.e.

$$(\mathcal{P}^{\text{del}})^{(m+1)} \otimes_{\mathbb{ZG}} (\mathbb{ZG})_\chi : 0 \rightarrow (\mathbb{ZG})_{\chi}^{d_{m+1}} \rightarrow (\mathbb{ZG})_{\chi}^{d_m} \rightarrow \cdots \rightarrow (\mathbb{ZG})_{\chi}^{d_1} \rightarrow 0$$

is exact in dimension $\leq m$. Then the short exact sequence $0 \rightarrow \text{Ker}(\partial_i) \rightarrow (\mathbb{ZG})_{\chi}^{d_i} \rightarrow \text{Im}(\partial_i) \rightarrow 0$ splits for $0 \leq i \leq m+1$ and consequently

$$\oplus_{m+1-i \text{ even, } i \leq m+1} (\mathbb{ZG})_{\chi}^{d_i} \simeq (\oplus_{1 \leq j \leq m+1} \text{Im}(\partial_j)) \oplus \text{Ker}(\partial_{m+1})$$

and

$$\oplus_{m-i \text{ even, } i \leq m} (\mathbb{ZG})_{\chi}^{d_i} \simeq \oplus_{1 \leq j \leq m+1} \text{Im}(\partial_j).$$

By (2) and (3) $\text{Ker}(\partial_{m+1})$ is the kernel of a surjective endomorphism of $(\mathbb{ZG})_{\chi}^{\beta}$, where $\beta = \sum_{m+1-i \text{ even, } i \leq m+1} \alpha_i = \sum_{m-i \text{ even, } i \leq m} \alpha_i$. Since $(\mathbb{ZG})_{\chi}$ is von Neumann finite [13] for any natural number k any epimorphism $(\mathbb{ZG})_{\chi}^{k} \rightarrow (\mathbb{ZG})_{\chi}^{k}$ is an isomorphism, hence $0 = \text{Ker}(\partial_{m+1}) = H_{m+1} ((p^{\text{del}})^{(m+1)} \otimes \mathbb{ZG})_{\chi})$. Using again [2, Appendix] and [4, Thm. B] it follows that A is of homological type FP_{m+1} over $\mathbb{Z}N$.

Since ∂_{m+1} is injective, the differential $P_{m+1} \xrightarrow{d_{m+1}} P_m$ of the complex \mathcal{P} is injective. Then the $(m + 1)$-skeleton $\mathcal{P}^{(m+1)}$ of \mathcal{P} is a free resolution of the trivial $\mathbb{Z}G$-module A of length $m + 1$ and Euler characteristic 0. This implies (a), (c) and the part
of item (b) that A is FP_∞ over $\mathbb{Z}G$. Furthermore since $pd_{2N}(A) \leq pd_{2C}(A) \leq m + 1$ and A is of type FP_{m+1} over $\mathbb{Z}N$ we get that A is of type FP_∞ over $\mathbb{Z}N$, thus (b) holds.

Now suppose that N acts trivially on A. Since A is finitely generated as a $\mathbb{Z}N$-module, A is finitely generated as an abelian group i.e. is a finite direct sum of cyclic groups. Since A is infinite at least one of these cyclic groups is \mathbb{Z}. Consequently the projective dimension as a $\mathbb{Z}N$-module of the direct summand \mathbb{Z} (of A) is finite and at most $pd_{2N}(A) \leq m + 1$ i.e. $cd(N) \leq m + 1$ and the homological type of the direct summand \mathbb{Z} (of A) as a $\mathbb{Z}N$-module is FP_∞ i.e. N is FP_∞. This completes the proof of (d).

Finally we prove item (e). By an obvious module version of [2, Prop. 5.1(a)] for $t = pd_{2N}(A) \leq m + 1$ there is a free $\mathbb{Z}G$-module F such that $\Ext^t_{\mathbb{Z}G}(A, F) = 0$. Since A is FP_∞ over $\mathbb{Z}G$ the functor $\Ext^t_{\mathbb{Z}G}(A, -)$ commutes with direct sums and consequently $\Ext^t_{\mathbb{Z}G}(A, \mathbb{Z}G) = 0$. Similarly $\Ext^t_{\mathbb{Z}N}(\mathbb{Z}, \mathbb{Z}N) = 0$ for $s = cd(N)$. Consider the Grothendieck spectral sequence [21, Thm. 11.38]

$$E^{2,q}_2 = \Ext^{p,q}_{\mathbb{Z}Q}(A, \mathbb{E}^p_{\mathbb{Z}G}(\mathbb{Z}, \mathbb{Z}G)) \Rightarrow \mathbb{E}^{p,q}_{\mathbb{Z}G}(A, \mathbb{Z}G).$$

By [2, Prop. 5.4 & Lemma 5.6] we have $\Ext^t_{\mathbb{Z}N}(\mathbb{Z}, \mathbb{Z}G) \simeq \Ext^t_{\mathbb{Z}N}(\mathbb{Z}, \mathbb{Z}N) \otimes_\mathbb{Z} \mathbb{Q}$ as a \mathbb{Q}-module and consequently $E^{p,q}_{2} \simeq \Ext^t_{\mathbb{Z}N}(\mathbb{Z}, \mathbb{Z}N) \otimes_\mathbb{Z} \Ext^t_{\mathbb{Z}Q}(A, \mathbb{Q})$. In particular for $p \geq k + 1 = pd_{2Q}(A) + 1$ or $q \geq s + 1 = cd(N) + 1$ we have $E^{p,q}_{2} = 0$.

Consequently $\Ext^t_{\mathbb{Z}G}(A, \mathbb{Z}G) = 0$ for $m \geq k + s + 1$ and

$$pd_{2Q}(A) \leq k + s = pd_{2\mathbb{Z}}(A) + cd(N).$$

Comparing the degrees of the differentials in the spectral sequence we get that $E^{k,k}_{\infty} = E^{k,k}_{2}$ and consequently

$$\Ext^{k+k}_{\infty}(A, \mathbb{Z}G) \simeq \Ext^{k+k}_{\infty}(\mathbb{Z}, \mathbb{Z}G) \otimes_\mathbb{Z} \Ext^{k+k}_{\mathbb{Z}Q}(A, \mathbb{Z}Q).$$

Thus if $\Ext^t_{\mathbb{Z}N}(\mathbb{Z}, \mathbb{Z}N) \otimes_\mathbb{Z} \Ext^t_{\mathbb{Z}Q}(A, \mathbb{Z}Q) \neq 0$ we have $pd_{2\mathbb{Z}}(A) \geq k + s$, hence

$$pd_{2\mathbb{Z}}(A) = k + s.$$

Finally if N is a Poincare duality group $\Ext^t_{\mathbb{Z}Q}(\mathbb{Z}, \mathbb{Z}N) \simeq \mathbb{Z}$ we get $\Ext^t_{\mathbb{Z}Q}(A, \mathbb{Z}Q) \otimes_\mathbb{Z} \Ext^t_{\mathbb{Z}Q}(\mathbb{Z}, \mathbb{Z}N) \simeq \Ext^t_{\mathbb{Z}Q}(A, \mathbb{Z}Q) \neq 0$. If A is self-dual then $\Ext^t_{\mathbb{Z}Q}(A, \mathbb{Z}Q) \simeq A$ has a summand isomorphic to \mathbb{Z}, so $\Ext^t_{\mathbb{Z}Q}(A, \mathbb{Z}Q) \otimes_\mathbb{Z} \Ext^t_{\mathbb{Z}Q}(\mathbb{Z}, \mathbb{Z}N) = A \otimes_\mathbb{Z} \Ext^t_{\mathbb{Z}Q}(\mathbb{Z}, \mathbb{Z}N)$ has a summand isomorphic to $\mathbb{Z} \otimes_\mathbb{Z} \Ext^t_{\mathbb{Z}Q}(\mathbb{Z}, \mathbb{Z}N) \simeq \Ext^t_{\mathbb{Z}Q}(\mathbb{Z}, \mathbb{Z}N) \neq 0$. \square

3. Modules over profinite groups with p-adic analytic quotients

In this section we treat a profinite version of Theorem 2. For a profinite group G and a profinite $\mathbb{Z}_p[[G]]$-module A we write $pd_{\mathbb{Z}_p[[G]]}(A)$ for the projective dimension of A and $vpd_{\mathbb{Z}_p[[G]]}(A)$ for the virtual projective dimension of A. If A is of finite projective dimension and type FP_∞ there is a profinite projective resolution \mathcal{P} of finite length and finitely generated projectives and the Euler characteristic of A as a profinite $\mathbb{Z}_p[[G]]$-module is defined by

$$\chi_{\mathbb{Z}_p[[G]]}(A) = \sum_i (-1)^i \dim_{\mathbb{F}_p} \text{Tor}^{\mathbb{Z}_p[[G]]}_i(A, \mathbb{F}_p) = \sum_i (-1)^i \dim_{\mathbb{F}_p} \Ext^i_{\mathbb{Z}_p[[G]]}(A, \mathbb{F}_p).$$

By definition $\chi_p(G) = \chi_{\mathbb{Z}_p[[G]]}(\mathbb{Z}_p)$, where \mathbb{Z}_p is the trivial $\mathbb{Z}_p[[G]]$-module.

Theorem 3. Let G be a profinite group with a normal closed subgroup N and A be a profinite (right) $\mathbb{Z}_p[[G]]$-module such that:

1. G/N is an infinite p-adic analytic profinite group;
2. the trivial (right) $\mathbb{Z}_p[[G]]$-module A has a free (profinite) resolution \mathcal{P}, $P_i \rightarrow P_{i-1} \rightarrow \cdots \rightarrow P_0 \rightarrow A \rightarrow 0$ with P_i free of rank α_i such that α_i is finite for $0 \leq i \leq m + 1$ and $\sum_{0 \leq i \leq m+1} (-1)^{m+1-i} \alpha_i
leq 0$;
3. A as a profinite $\mathbb{Z}_p[[N]]$-module has type FP_m.

Then the following hold:

(a) $pd_{\mathbb{Z}_p[[N]]}(A) \leq m$ and $pd_{\mathbb{Z}_p[[G]]}(A) \leq m + 1$;
(b) $\chi_{\mathbb{Z}_p[[G]]}(A) = \sum_{0 \leq i \leq m+1} (-1)^{m+1-i} \alpha_i = 0$;
(c) A has type FP_∞ as a profinite $\mathbb{Z}_p[[N]]$-module and as a profinite $\mathbb{Z}_p[[G]]$-module.

Furthermore if N acts trivially on A and if $H^t(N, \mathbb{F}_p)$ is finite and non-zero for $k = \min \{cd_p(N), pd_{\mathbb{Z}_p[[G]]}(A)\}$ then

(d) N is of type FP_∞ over \mathbb{Z}_p, $cd_p(N)$ and $vpd_{\mathbb{Z}_p[[G]]}(A)$ are finite and $pd_{\mathbb{Z}_p[[G]]}(A) = vpd_{\mathbb{Z}_p[[G/N]]}(A) - cd_p(N)$;
(e) if furthermore $pd_{\mathbb{Z}_p[[G/N]]}(A)$ is finite then

$$0 = \chi_{\mathbb{Z}_p[[G]]}(A) = \chi_{\mathbb{Z}_p[[G/N]]}(A) \chi_p(N),$$

in particular if $\chi_p(N) \neq 0$ we have $\chi_{\mathbb{Z}_p[[G/N]]}(A) = 0$.

Proof. By going down to a subgroup of finite index in G that contains N we can suppose that G/N is a powerful pro-p group.

Consider the complex $\mathcal{R} = \varphi_{p\alpha}^* \otimes_{\mathbb{Z}_p[[N]]} \mathbb{Z}_p[[G]]$ with differentials $\{\partial_i\}_{i \geq 0}$. Since A is FP_m over $\mathbb{Z}_p[[N]]$ the homology groups $Tor_{i}[\mathbb{Z}_p[[N]]](A, \mathbb{Z}_p)$ are finitely generated as profinite \mathbb{Z}_p-modules for $i \leq m$ and consequently $H_i(\mathcal{R}) = Tor_{i}[\mathbb{Z}_p[[N]]](A, \mathbb{Z}_p)$ is finitely generated over \mathbb{Z}_p for $i \leq m$. Since $\mathbb{Z}_p[[G/N]]$ is right and left Noetherian and has no zero divisors [9, Cor. 7.25], [19] we can consider the skew ring of fractions S of $\mathbb{Z}_p[[G/N]]$ [10, Chapter 9]. Note that since $H_i(\mathcal{R})$ is finitely generated over \mathbb{Z}_p for $i \leq m$ and $\mathbb{Z}_p[[G/N]]$ is not finitely generated as a \mathbb{Z}_p-module (topologically or abstractly is the same) for every element $r \in H_i(\mathcal{R})$, there is a non-zero element $\lambda_i \in \mathbb{Z}_p[[G/N]]$ such that $r \lambda_i = 0$. Then applying the abstract tensor product $\otimes_{\mathbb{Z}_p[[N]]}$ we get $H_i(\mathcal{R}) \otimes_{\mathbb{Z}_p[[G/N]]} S = 0$ for $i \leq m$ and for the complex

$$\mathcal{R} \otimes_{\mathbb{Z}_p[[G/N]]} S : \cdots \to S^{\alpha_{m+1}} \otimes_{\mathbb{Z}_p[[G/N]]} \mathbb{Z}_p \otimes \mathbb{Z}_p \to \cdots \to S^{\alpha_0} \to 0$$

we have $H_i(\mathcal{R}) \otimes_{\mathbb{Z}_p[[G/N]]} S = 0$ for $i \leq m$. Since S is a skew field, counting dimensions over S, we get that $\sum_{0 \leq i \leq m+1} (-1)^{m+1-i} \alpha_i \leq 0$, hence

$$\sum_{0 \leq i \leq m+1} (-1)^{m+1-i} \alpha_i = 0.$$

Then $\partial_{m+1} \otimes id_S$ is injective and consequently ∂_{m+1} is injective. In particular $\text{Tor}_{m+1}[\mathbb{Z}_p[[N]]](A, \mathbb{Z}_p) = H_{m+1}(\mathcal{R}) = \text{Ker}(\partial_{m+1})/\text{Im}(\partial_{m+2}) = 0$. A similar argument substituting S with the skew ring of fractions of $\mathbb{F}_p[[G/N]]$ shows that $\text{Tor}_{m+1}[\mathbb{Z}_p[[N]]](A, \mathbb{F}_p) = 0$.

By Lemma 3 (from the next section) to show that $pd_{\mathbb{Z}_p[[N]]}(A) \leq m$ it is sufficient to show that $\text{Tor}_{m+1}[\mathbb{Z}_p[[U]]](A, \mathbb{F}_p) = 0$ for every open subgroup U of N. Note that $U = N \cap U_i$ for an open subgroup U_i of G, hence we can substitute G with U_i and N with U and repeat the argument from the previous paragraph to obtain $\text{Tor}_{m+1}[\mathbb{Z}_p[[U]]](A, \mathbb{F}_p) = 0$.

To prove item (a) it remains to show that $pd_{\mathbb{Z}_p[[G]]}(A) \leq m + 1$. Let $d_{m+1} : \mathbb{Z}_{m+1} \to \mathbb{Z}_m$ be the differential of the projective resolution P of A. Note that for any open subgroup U of N the map $d_{m+1} \otimes id_{\mathbb{Z}_p[[U]]} : d_{m+1} \otimes id_{\mathbb{Z}_p[[U]]} : \mathbb{Z}_p \to \mathbb{Z}_p \otimes \mathbb{Z}_p[[U]] \otimes \mathbb{Z}_p$ is injective (i.e. for $U = N$ the map d_{m+1} is injective). Since $d_{m+1} \otimes id_{\mathbb{Z}_p[[U]]}$ we have $\text{Ker}(d_{m+1}) \subseteq (\mathbb{Z}_p[[G]] \otimes \mathbb{Z}_p[[U]]) \otimes_{\mathbb{Z}_p[[U]]} \mathbb{Z}_p$ for every open subgroup U of N, so d_{m+1} is injective. Thus $pd_{\mathbb{Z}_p[[G]]}(A) \leq m + 1$.

Note that item (a) implies item (c). Indeed by a profinite version of [5, Ch. 8, Prop. 6.1] since the profinite $\mathbb{Z}_p[[N]]$-module (resp. $\mathbb{Z}_p[[G]]$-module) A has type FP_m (resp. FP_{m+1}) and has profinite projective dimension at most m (resp. $m + 1$) there is a profinite projective resolution of A as a profinite $\mathbb{Z}_p[[N]]$-module (resp. $\mathbb{Z}_p[[G]]$-module) of length at most m (resp. $m + 1$) and all projectives finitely generated.

From now on suppose that N acts trivially on A. Since A is finitely generated as a profinite $\mathbb{Z}_p[[N]]$-module, A is finitely generated as a \mathbb{Z}_p-module, so direct sum of (additive) cyclic abelian pro-p groups. Then either \mathbb{Z}_p or $\mathbb{Z}/p^k \mathbb{Z}$, for some $k > 0$, is a profinite $\mathbb{Z}_p[[N]]$-module of type FP_∞ and projective dimension at most $pd_{\mathbb{Z}_p[[N]]}(A) \leq m$. Then by Lemma 4 (from next section) N is of type FP_∞ over $\mathbb{Z}_p[[N]]$ and of finite cohomological p-dimension $cd_p(N) \leq m$. Then (d) follows from [14, Thm. 1].

Finally suppose that $pd_{\mathbb{Z}_p[[G]]}(A) < \infty$. Note that A is finitely generated as a profinite $\mathbb{Z}_p[[G]]$-module, hence is finitely generated as a profinite $\mathbb{Z}_p[[G/N]]$-module. Since $\mathbb{Z}_p[[G/N]]$ is left and right Noetherian it follows that A is FP_∞ as a profinite $\mathbb{Z}_p[[G/N]]$-module and $\text{Ext}_{\mathbb{Z}_p[[N]]}^i(A, \mathbb{F}_p)$ is well-defined. By going down to a subgroup of finite index in G that contains N we can suppose that G/N acts trivially on the finite groups $\text{Ext}_{\mathbb{Z}_p[[G/N]]}^i(Z_p, \mathbb{F}_p)$ for all $i \leq \text{cd}_p(N)$, where Ext is the derived functor of the continuous Hom i.e. continuous cohomology of N with coefficients in \mathbb{F}_p. Consider the Grothendieck spectral sequence [14, Cor. 4]

$$E_2^{i,q} = \text{Ext}_{\mathbb{Z}_p[[G/N]]}^i(A, \text{Ext}_{\mathbb{Z}_p[[N]]}^q(Z_p, \mathbb{F}_p)) \Rightarrow \text{Ext}_{\mathbb{Z}_p[[G]]}^{i+q}(A, \mathbb{F}_p).$$

Then

$$E_2^{i,q} \simeq \text{Ext}_{\mathbb{Z}_p[[G]]}^i(A, \mathbb{F}_p) \otimes_{\mathbb{Z}_p} \text{Ext}_{\mathbb{Z}_p[[N]]}^q(Z_p, \mathbb{F}_p),$$

$$E_2^{i,q} = 0 \text{ for } r \geq pd_{\mathbb{Z}_p[[G]]}(A) + 1 \text{ or } q \geq \text{cd}_p(N) + 1 \text{ and}$$

$$\chi_{\text{ext}_{\mathbb{Z}_p[[G]]}^i}(A) = \sum_i (-1)^i \dim_{\mathbb{Z}_p} \text{Ext}_{\mathbb{Z}_p[[G]]}^i(A, \mathbb{F}_p) = \sum_{r, q} (-1)^{i-r} \dim_{\mathbb{Z}_p} E_2^{r,q}$$

$$= \sum_{r, q} (-1)^{i+q} \dim_{\mathbb{Z}_p} E_2^{r,q} \left(\text{Ext}_{\mathbb{Z}_p[[G/N]]}^{i+r}(A, \mathbb{F}_p) \right).$$

$$\left(\sum_{q} (-1)^{i-q} \dim_{\mathbb{Z}_p} \text{Ext}_{\mathbb{Z}_p[[G/N]]}^q(Z_p, \mathbb{F}_p) \right) = \chi_{\text{ext}_{\mathbb{Z}_p[[G/N]]}^i}(A) \cdot \chi_p(N). \quad \Box$$
4. Extension properties of profinite groups of type FP_m: A profinite version of Brown criterion and some auxiliary results on profinite groups

In [6] it was shown that if an abstract group H acts on a CW complex Y with cell stabilizers that fix the cells pointwise, the stabilizer in H of any cell of dimension $i \leq m$ has homological type FP_{m-i}, Y is $(m-1)$-acyclic and H acts cocompactly on the m-skeleton of Y then H has homological type FP_m. A homotopical version of this result can be found in [23] and here we give a homological version for profinite modules over completed group algebras of profinite groups.

Lemma 1. Let S be a profinite ring and

$$\mathcal{P} : \cdots \rightarrow P_i \xrightarrow{\partial_i} P_{i-1} \rightarrow \cdots \xrightarrow{\partial_1} P_0 \xrightarrow{\partial_0} A \rightarrow 0$$

be an exact profinite complex of profinite S-modules, where every P_i is a profinite S-module of type FP_{m-i} for $i \leq m$. Then A is of type FP_m as a profinite S-module.

Proof. By [25, Lemma 7.2.2] for every two finitely generated profinite S-modules M_1 and M_2 any homomorphism $\varphi : M_1 \rightarrow M_2$ of abstract S-modules is continuous. This implies that A is of type FP_m as a profinite S-module if and only if A is of type FP_m as an abstract S-module. In particular we can apply dimension shifting for abstract modules [1, Prop. 1.4] i.e. if $0 \rightarrow V_1 \rightarrow V \rightarrow V_2 \rightarrow 0$ is a short exact sequence of profinite S-modules with V of type FP_m (as profinite or abstract S-module is the same as seen above) for some $m \geq 1$ then V_2 is of type FP_m if and only if V_1 is of type FP_{m-1}. Applying this for the short exact sequence $0 \rightarrow \text{Im}(\partial_{i+1}) = \text{Ker}(\partial_i) \rightarrow P_i \rightarrow \text{Im}(\partial_i) \rightarrow 0$ for $i \leq m-1$ we get that $\text{Im}(\partial_i)$ is of type FP_{m-i} if and only if $\text{Im}(\partial_{i+1})$ is of type FP_{m-i-1}. Since $\text{Im}(\partial_m)$ is of type FP_0 we get that $A = \text{Im}(\partial_0)$ is of type FP_m as required. □

Proposition 1. Let G be a profinite group and R be a profinite ring. Suppose that there exists an exact profinite complex of profinite $R[[G]]$-modules

$$\mathcal{P} : \cdots \rightarrow P_i \xrightarrow{\partial_i} P_{i-1} \rightarrow \cdots \xrightarrow{\partial_1} P_0 \xrightarrow{\partial_0} A \rightarrow 0$$

with $P_i \cong \bigoplus_{j \in J_i} \hat{\otimes}_{R[[H_i]]} R[[G]]$, $H_i j$ are closed subgroups of G of type FP_{m-i} over R for $j \in J_i$ and J_i finite for all $i \leq m$. Then A has type FP_m as a profinite $R[[G]]$-module.

Proof. Let H be a closed subgroup of G of type FP_{m-i} over R. Since R is of type FP_{m-i} as profinite $R[[H]]$-module and $\hat{\otimes}_{R[[H]]} R[[G]]$ is an exact functor we get that $\hat{\otimes}_{R[[H]]} R[[G]]$ is of type FP_{m-i} as a $R[[G]]$-module. Applying this for $H = H_{i,j}$ we get that P_i is of type FP_{m-i} for every $i \leq m$. The proof is completed by Lemma 1. □

Corollary 1. Let R be a profinite ring, G a profinite group, N a closed normal subgroup of G and A a profinite $R[[G]]$-module on which N acts trivially. If A is of type FP_m as a profinite $R[[G/N]]$-module and N is of type FP_m over R then A is of type FP_m over $R[[G]]$.

Proof. Let $\mathcal{P} : \cdots \rightarrow P_i \rightarrow P_{i-1} \rightarrow \cdots \xrightarrow{\partial_1} P_0 \rightarrow A \rightarrow 0$ be a profinite free resolution of $R[[G/N]]$-modules with all P_i finitely generated for $i \leq m$. Since P_i is a finite direct sum of copies of $\hat{\otimes}_{R[[H]]} R[[G]]$ we can apply Proposition 1. □

Corollary 2. Let G be a profinite group with a closed normal subgroup N such that both G/N and N are of type FP_m over a profinite ring R. Then G is of type FP_m over R.

Proof. Apply the previous corollary for the trivial $R[[G]]$-module $A = R$. □

Lemma 2. Let G be a profinite group with a normal closed subgroup N and a closed subgroup H such that $G \simeq N \times H$ is of type FP_m over R. Then H is of type FP_m over R.

Proof. As already noted the profinite group G is of type FP_m over R if and only if R as an abstract $R[[G]]$-module is of type FP_m. By [1, Thm. 1.3] this is equivalent with $\text{Tor}_i^{R[[G]]}(R, \prod R[[G]]) = 0$ for $1 \leq i \leq m - 1$, where $\text{Tor}_i^{R[[G]]}$ is the derived functor of abstract tensor product $\otimes_{R[[G]]}$ and R is finitely presented as an abstract $R[[G]]$-module (this is equivalent with G topologically finitely generated). Note that since G is topologically finitely generated H is topologically finitely generated too.

Finally note that $\text{Tor}_i^{R[[G]]}(R, \prod R[[G]])$ is functorial on G. Then the canonical epimorphism $\pi : G \rightarrow G/N$ induces a homomorphism (of abelian groups) $\hat{\pi}_i : \text{Tor}_i^{R[[G]]}(R, \prod R[[G]]) \rightarrow \text{Tor}_i^{R[[G/N]]}(R, \prod R[[G/N]])$ that splits. In particular $\text{Tor}_i^{R[[G/N]]}(R, \prod R[[G/N]]) = 0$ for $1 \leq i \leq m - 1$ and consequently $H \simeq G/N$ is a profinite group of type FP_m over R. □

We continue with a simple lemma that is a module version of [24, Prop. 21’]. For a profinite ring S we write $\hat{\otimes}_S$ and $\hat{\text{Ext}}_S^i$ for the derived functors of \otimes_S and continuous Hom_S.
Lemma 3. Let G be a profinite group, p a prime number and A a profinite $\mathbb{Z}_p[[G]]$-module. Then the following conditions are equivalent:

1. $pd_{\mathbb{Z}_p[[G]]}(A) \leq n$;
2. $\text{Ext}_{\mathbb{Z}_p[[G]]}^{n+1}(A, \mathbb{F}_p) = 0$ for every closed subgroup H of G;
3. $\text{Ext}_{\mathbb{Z}_p[[G]]}^{n+1}(A, \mathbb{F}_p) = 0$ for every open subgroup U of G;
4. $\text{Tor}_{n+1}^{\mathbb{Z}_p[[G]]}(A, \mathbb{F}_p) = 0$ for every closed subgroup H of G;
5. $\text{Tor}_{n+1}^{\mathbb{Z}_p[[G]]}(A, \mathbb{F}_p) = 0$ for every open subgroup U of G.

Proof. Condition 1 implies immediately conditions 2, 3, 4 and 5. Condition 3 implies condition 2 since $\mathbb{Z}_p[[G]]$ commutes with inverse limits. Similarly condition 5 implies condition 4. To show that condition 2 implies condition 1 we recall that by [14, Thm. 2] $pd_{\mathbb{Z}_p[[G]]}(A) = pd_{\mathbb{Z}_p[[G]]}(A)$ where G_p is a Sylow p-subgroup of G. Furthermore for a pro-p group H and a profinite $\mathbb{Z}_p[[G]]$-module B we have that B has projective p-dimension $pd_{\mathbb{Z}_p[[G]]}(B) \leq n$ if and only if $\text{Ext}_{\mathbb{Z}_p[[G]]}^{n+1}(B, \mathbb{F}_p) = 0$ [20, Cor. 7.1.6], [24, Prop. 21]. Then condition 2 applied for a Sylow p-subgroup H of G gives that $pd_{\mathbb{Z}_p[[G]]}(A) = pd_{\mathbb{Z}_p[[G]]}(A) \leq n$.

It remains to show that condition 4 implies condition 1. It is sufficient to show that for a pro-p group H and a profinite $\mathbb{Z}_p[[H]]$-module B, $\text{Tor}_{n+1}^{\mathbb{Z}_p[[H]]}(B, \mathbb{F}_p) = 0$ implies $pd_{\mathbb{Z}_p[[H]]}(B) < \infty$ and then apply this for H a Sylow p-subgroup of G and $B = A$. Following the proof of [20, Prop. 7.1.4], in particular the last half of page 261, it is sufficient to show that if for some profinite $\mathbb{Z}_p[[H]]$-module M we have that the functor $\text{Tor}_{n+1}^{\mathbb{Z}_p[[H]]}(M, \cdot)$ is zero then M is projective. Let $\pi : F \rightarrow M$ be an epimorphism of profinite $\mathbb{Z}_p[[H]]$-modules with F free and of minimal rank. Then $\text{Ker}(\pi) \otimes_{\mathbb{Z}_p[[H]]} \mathbb{F}_p = 0$ and since $\mathbb{Z}_p[[H]]$ is a local ring $\text{Ker}(\pi) = 0$. □

Lemma 4. Let G be a profinite group and k be a positive integer. Then

(a) if the trivial $\mathbb{Z}_p[[G]]$-module $\mathbb{Z}_p/p^k\mathbb{Z}_p$ is of type F_{∞} then the trivial $\mathbb{Z}_p[[G]]$-module \mathbb{Z}_p is of type F_{∞};
(b) if the trivial $\mathbb{Z}_p[[G]]$-module $\mathbb{Z}_p/p^k\mathbb{Z}_p$ has finite projective dimension s then the trivial $\mathbb{Z}_p[[G]]$-module \mathbb{Z}_p has finite projective dimension at most s.

Proof. (a) We show first that the trivial $\mathbb{Z}_p/p^k\mathbb{Z}_p[[G]]$-module $\mathbb{Z}_p/p^k\mathbb{Z}_p$ is of type F_{∞}. By assumption the trivial $\mathbb{Z}_p[[G]]$-module $\mathbb{Z}_p/p^k\mathbb{Z}_p$ has a profinite projective resolution P^\bullet with P_i finitely generated profinite $\mathbb{Z}_p[[G]]$-module for every i. Then

$$H_i(P \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p)) = \text{Tor}_i^{\mathbb{Z}_p}(\mathbb{Z}_p/p^k\mathbb{Z}_p, \mathbb{Z}_p/p^k\mathbb{Z}_p) = 0 \text{ for } i \geq 2$$

(5)

and

$$H_1(P \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p)) \simeq \text{Tor}_1^{\mathbb{Z}_p}(\mathbb{Z}_p/p^k\mathbb{Z}_p, \mathbb{Z}_p/p^k\mathbb{Z}_p) \simeq \mathbb{Z}_p/p^k\mathbb{Z}_p.$$

Let $\{d_i\}$ be the differentials of the complex $P \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p)$. Then there are exact sequences of $\mathbb{Z}_p/p^k\mathbb{Z}_p[[G]]$-modules

$$0 \rightarrow \text{Im}(d_2) \rightarrow \text{Ker}(d_1) \rightarrow H_1(P \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p)) \simeq \mathbb{Z}_p/p^k\mathbb{Z}_p \rightarrow 0$$

(6)

and

$$0 \rightarrow \text{Ker}(d_1) \rightarrow P_1 \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p) \xrightarrow{d_1} P_0 \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p) \xrightarrow{d_0} \mathbb{Z}_p/p^k\mathbb{Z}_p \rightarrow 0.$$

(7)

In this paragraph all modules are profinite $\mathbb{Z}_p/p^k\mathbb{Z}_p[[G]]$-modules. Note that by (5) $\text{Im}(d_2)$ is of type F_{∞}, then by dimension shifting argument for (6) $\text{Ker}(d_1)$ is of type F_{∞} if and only if $\mathbb{Z}_p/p^k\mathbb{Z}_p$ is of type F_{∞} and by dimension shifting argument for (7) $\text{Ker}(d_1)$ is of type F_{∞} if and only if $\mathbb{Z}_p/p^k\mathbb{Z}_p$ is of type F_{∞}. In particular if $\mathbb{Z}_p/p^k\mathbb{Z}_p$ is of type F_{∞} then it is of type F_{∞}. Consequently is of type F_{∞}.

Now assume that the trivial profinite $\mathbb{Z}_p[[G]]$-module \mathbb{Z}_p is of type F_{∞} (note this holds for $m = 0$) and we show that it is of type F_{m+1}. Let

$$\mathcal{R} : \cdots \rightarrow P_i \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p) \xrightarrow{\partial_i} P_{i-1} \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p) \rightarrow \cdots \rightarrow P_0 \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p) \rightarrow \mathbb{Z}_p/p^k\mathbb{Z}_p \rightarrow 0$$

be a profinite projective resolution of the trivial $\mathbb{Z}_p[[G]]$-module \mathbb{Z}_p with P_i finitely generated for $i \leq m$. Since $\text{Tor}_i^{\mathbb{Z}_p}(\mathbb{Z}_p/p^k\mathbb{Z}_p, \mathbb{Z}_p/p^k\mathbb{Z}_p) = 0$ for $i \geq 1$ the complex $\mathcal{R} \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p)$ is exact, hence is a profinite projective resolution of the trivial $\mathbb{Z}_p/p^k\mathbb{Z}_p[[G]]$-module $\mathbb{Z}_p/p^k\mathbb{Z}_p$. Since $\mathbb{Z}_p/p^k\mathbb{Z}_p$ is of type F_{∞} as a $(\mathbb{Z}_p/p^k\mathbb{Z}_p)[[G]]$-module we get that $\text{Ker}(\rho_m)$ is finitely generated as a $(\mathbb{Z}_p/p^k\mathbb{Z}_p)[[G]]$-module, where $\{\rho_i\}$ are the differentials of $\mathcal{R} \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p)$. It is easy to see that $\text{Tor}_i^{\mathbb{Z}_p}(\text{Im}(\partial_m), (\mathbb{Z}_p/p^k\mathbb{Z}_p)) = 0 = \text{Tor}_i^{\mathbb{Z}_p}(\text{Im}(\partial_{m-1}), (\mathbb{Z}_p/p^k\mathbb{Z}_p))$ and this implies

$$\text{Ker}(\rho_m) \simeq \text{Ker}(\rho_m) \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p/p^k\mathbb{Z}_p).$$
By (8) and the fact that $\text{Ker}(\rho_m)$ is finitely generated as a $(\mathbb{Z}_p/p^k\mathbb{Z}_p)[G]$-module there is a finitely generated $\mathbb{Z}_p[[G]]$-submodule V of $\text{Ker}(\partial_m)$ such that $\text{Ker}(\partial_m) = V + p^k\text{Ker}(\partial_m)$. Consequently for every positive integer s

$$\text{Ker}(\partial_m) = V + p^k\text{Ker}(\partial_m) \subseteq R_m.$$

Then the closure of V in R_m is $\text{Ker}(\partial_m)$ and since V is finitely generated submodule of R_m, V is closed. Thus $V = \text{Ker}(\partial_m)$ is finitely generated as a profinite $\mathbb{Z}_p[[G]]$-module, consequently \mathbb{Z}_p is of type F_{m+1} over $\mathbb{Z}_p[[G]]$.

(b) For H a closed subgroup of G and $s_t = pd_{\mathbb{Z}_p[[H]]}(\mathbb{Z}_p/p^k\mathbb{Z}_p) \leq s = pd_{\mathbb{Z}_p[[G]]}(\mathbb{Z}_p/p^k\mathbb{Z}_p) = 0$ for every p-primary finite discrete H-module M and $i \geq s + 1 \geq s_t + 1$. Then the long exact sequence in Ext implies that for $i \geq s + 1$ the inclusion of $p^k\mathbb{Z}_p$ in \mathbb{Z}_p induces an isomorphism

$$\varphi_{i,k} : \text{Ext}^i_{\mathbb{Z}_p[[G]]}(\mathbb{Z}_p, M) \rightarrow \text{Ext}^i_{\mathbb{Z}_p[[H]]}(p^k\mathbb{Z}_p, M).$$

If P is a profinite projective resolution of \mathbb{Z}_p as a $\mathbb{Z}_p[[H]]$-module then p^kP is a profinite projective resolution of $p^k\mathbb{Z}_p$ as a $\mathbb{Z}_p[[H]]$-module. Then the inclusion of p^kP in P induces the map $\psi_k : \text{Hom}_{\mathbb{Z}_p[[G]]}(P, M) \rightarrow \text{Hom}_{\mathbb{Z}_p[[H]]}(p^kP, M)$ that is trivial if $p^kM = 0$. Since $\varphi_{i,k}$ is induced by ψ_k we get $\text{Ext}^i_{\mathbb{Z}_p[[G]]}(\mathbb{Z}_p, M) = 0$ for $p^kM = 0$ and $i \geq s + 1$. In particular this holds for M the trivial $\mathbb{Z}_p[[H]]$-module \mathbb{F}_p. This combined with Lemma 3 implies that $pd_{\mathbb{Z}_p[[G]]}(\mathbb{Z}_p) \leq s$. □

Acknowledgement

This research was partially supported by “bolsa de produtividade de pesquisa” from CNPq, Brazil.

References

