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We point out a subtlety in choosing the radiation gauge (Az = 0 combined with the Lorenz gauge) for 
gauge fields in AdS/QCD for black hole backgrounds. We then demonstrate the effect of this on the 
momentum-dependence of the spectral functions of the J/ψ vector meson, showing a spreading with 
momentum and a breaking of isotropy, in contrast to previous results in the literature. We also discuss 
the dependence on a background magnetic field, following our earlier proposed model.
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1. Introduction

In this note, we would like to discuss in detail the choice of 
the radiation gauge as it is frequently applied in holographic ap-
proaches to QCD. Our specific interest arose from the soft wall 
model, but the arguments given in the next section do apply to 
any gauge field in an AdS or AdS black hole background.

In the soft wall model, one studies excitations of a gauge field 
in AdS with action

S = − 1

4g2
5

∫
d5x

√−ge−�tr
[

F L,MN F L,MN + F R,MN F R,MN

]
, (1)

for left and right gauge fields AL and AR . We will denote 
5-dimensional indices as M, N, O , P and 4-dimensional (bound-
ary) indices with μ, ν . The corresponding equations of motion of 
either gauge field are given by:

∂M

(
e−�

√−GGMOGNP(∂O A P − ∂P A O )
)

= 0, (2)

where the background geometry is either AdS:

ds2 = L2

z2

(
−dt2 + dx2 + dz2

)
, e−� = e−cz2

, (3)

or the AdS black hole:
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ds2 = L2

z2

(
− f (z)dt2 + dx2 + dz2

f (z)

)
, e−� = e−cz2

, (4)

with f (z) = 1 − z4/z4
h and z = zh the horizon location. The back-

ground includes a dilaton field � whose backreaction on the ge-
ometry is assumed to be minor. This model gained popularity to 
holographically capture important QCD physics, e.g. because of its 
correct scaling behavior of the meson spectrum and the reader 
is referred to elsewhere for more motivation and details of this 
model [1–3].

As a particular example where the soft model was used to 
study strongly coupled QCD physics, let us refer to [4,5] where 
heavy quarkonia were studied. The authors of [4,5] suggested 
choosing a flavor-dependent soft-wall parameter c, where the light 
quarks (u, d, s) are combined into a SU(3)L × SU(3)R soft wall 
model and the heavy quark of interest (charm in our case) is 
treated on its own in a U (1)L × U (1)R Abelian model:

S = −
∫

d5x
√−g tr e−cρ z2Llight + e−c J/ψ z2Lcharm. (5)

Our goal in this work is to compute the momentum-depen-
dence of the c̄c spectral function in this model and to demonstrate 
that one of the conclusions of [4,5], namely that isotropy (rota-
tional invariance) is present in the spectral function, is actually a 
consequence of a forbidden choice of gauge.

2. Survey of the radiation gauge in AdS/CFT

The field Aμ has of course a large gauge redundancy and we 
will investigate here whether the radiation gauge can always be 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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imposed to begin with. The authors of [1,2,4,5] impose the gauge 
choice

Az = 0, ∂μ Aμ = 0, (6)

where μ = 0, 1, 2, 3, the transverse indices. We first note that, for a 
diagonal metric that is only warped in the z-direction, one readily 
finds that

∇μ Aμ = 1√−G
∂μ

(√−G Aμ
)

= ∂μ Aμ = ∂μ Aμ, (7)

and hence there is no difference between covariant derivatives and 
ordinary partial derivatives when computing the divergence of Aμ .

The main discussion we want to start here is: can this gauge be 
chosen in the first place?

Without loss of generality, we may consider a two-step process 
to get there.

2.1. Step 1

First let ÃM = AM + ∂Mχ1. We choose χ1 such that

χ1 = −
∫

dz Az, (8)

which eliminates Ãz . In general this χ1 depends on all 5 coordi-
nates.

2.2. Step 2

Next we perform a second gauge transformation ˜̃AM = ÃM +
∂Mχ2. Since we want to maintain ˜̃Az = 0, we should have ∂zχ2 =
0. Additionally, we want to impose the Lorenz (Landau) gauge in 
the transverse (4d) dimensions. This can be done by solving the 
following wave equation for χ2:

∂μ Ãμ = −∂μ∂μχ2. (9)

In terms of ordinary coordinate partial derivatives we have

Gμν∂ν Ãμ = −Gμν∂ν∂μχ2. (10)

The tricky part is that this metric still depends on z. But we just 
established that χ2 does not! In general this equation is hence 
unsolvable.

Before delving into a more detailed exposition, let us look at an 
analogous problem in (3 +1)d classical electrodynamics: we are in-
clined to choose the temporal and Coulomb gauge simultaneously 
(thereby defining the radiation gauge): A0 = 0 and ∂i Ai = 0. The 
latter leads to the equation for χ2:

∂i Ai = −∂2
i χ2, (11)

for time-independent χ2. This equation is nevertheless solvable: in 
spite of the time dependence of Ai itself, it holds that

∂t∂i Ai = ∂i Ei = 0, (12)

by virtue of Gauss’ law. The above gauge is hence possible by im-
posing the (sourceless) Maxwell equations. Though, in the presence 
of sources, the radiation gauge is inadmissible.

In our case, we are interested in the analogous problem of a 
source-free Maxwell field, but this time in a curved background. 
Maxwell’s equations take the form

∂M

(
e−�

√−GGMOGNP(∂O A P − ∂P A O )
)

= 0. (13)
In the gauge Az = 0, we consider the N = z component of this 
equation. For a diagonal metric whose components are indepen-
dent of 0, 1, 2, 3, we obtain

Gμν∂z∂μ Ãν = 0. (14)

Taking then the z-derivative of (10), we obtain

(∂zGμν)∂ν Ãμ = −(∂zGμν)∂ν∂μχ2. (15)

In the particular case of a metric for which all components have 
the same z-dependence, we can factor out all z-dependence, and 
rewrite the above as

Ĝμν∂ν Ãμ = −Ĝμν∂ν∂μχ2, (16)

where Ĝ is independent of z. Even though Ã depends on z, the 
constraint (14) implies the left hand side is z-independent, just 
as the right hand side. No problems occur and a solution of the 
above equation in terms of χ2 is possible. This is the case for AdS 
spacetimes (3).

For the AdS black hole (4), the metric has a different z-depen-
dence for the G00 component compared to the other components. 
For such a space, we can write equation (10) as

G00∂0 Ã0 + Gii∂i Ãi = −G00∂0∂0χ2 − Gii∂i∂iχ2. (17)

Dividing by G00 and differentiating w.r.t. z we obtain

∂z∂0 Ã0 + ∂z

(
Gii

G00

)
∂i Ãi + Gii

G00
∂z∂i Ãi = −∂z

(
Gii

G00

)
∂i∂iχ2.

(18)

The constraint (14) for this case reduces to

G00∂z∂0 Ã0 + Gii∂z∂i Ãi = 0, (19)

which simplifies equation (18) and yields

∂i Ãi = −∂i∂iχ2, (20)

which is impossible to satisfy since ∂i Ãi is z-dependent in general, 
unlike the right hand side.

We are thus forced to conclude that the radiation gauge choice 
is impossible to implement for the AdS black hole. For a non-
exhaustive list of instances where such has been done, we refer 
to [4–10].

3. Example wherein the inadmissible radiation gauge affects the 
physical prediction

The gauge choice issue that we highlighted in the previous 
section, is relevant for the momentum dependence of the spec-
tral functions. From the latter quantity, we can infer information 
on the melting behavior of the quarkonium in the plasma. Meson 
melting in a holographic context was also considered in e.g. [4,5,
11–13], and holographic quarkonia in [4–6,9,14–16]. In [5] it was 
argued that, even though a spatial momentum breaks isotropy, the 
spectral functions still are, quite miraculously, isotropic.1 We will 
demonstrate that this actually arises due to the faulty choice of 
gauge: if one does not make the additional gauge choice ∂μ Aμ = 0, 
then isotropy is broken as it would be expected when momentum 
is inserted.

1 In [5], this was then compared to the finding of [17] that a strongly coupled 
plasma described by N = 4 SYM cannot support jets.
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Our main interest here is on the charmonium bound state 
where we focus on the vector modes (AL = AR ). To start, one 
makes the Ansatz Aμ ∼ eik·x−iωt for the dependence on the bound-
ary coordinates. We will choose k along the 3-axis.

If one includes spatial momentum into the spectral functions, 
the transverse polarization differential equation for A1 becomes

∂2
z A1 + ∂z

(
ln

(√−Ge−cz2
GzzG11

))
∂z A1

− 1

Gzz

(
Gttω2 + k2G33

)
A1 = 0, (21)

where the metric of the black hole (4) is to be used. This ODE can 
be readily solved numerically using the same methods as in [4,5,
18]. We will present the results further on.

The A3 polarization on the other hand becomes much more 
intricate: it couples directly to A0 and one hence needs to solve a 
coupled system of differential equations. These are given by

∂2
z A0 + ∂z ln

∣∣∣e−φ
√−GGzzG00

∣∣∣ ∂z A0 − G33

Gzz

(
k2 A0 + kωA3

)
= 0,

(22)

and

∂2
z A3 + ∂z ln

∣∣∣e−φ
√−GGzzG33

∣∣∣ ∂z A3 − G00

Gzz

(
ω2 A3 + kωA0

)
= 0.

(23)

One readily finds that the combined equation to be solved equals

∂z

(
Gzz

G33
∂2

z A0

)
+ ∂z

(
Gzz

G33
∂z ln

∣∣∣e−cz2√−GGzzG00
∣∣∣ ∂z A0

)

− k2∂z A0 − ω2 G00

G33
∂z A0 = 0. (24)

This is a second order differential equation for V = ∂z A0. A Frobe-
nius analysis yields the following asymptotic behavior of V . For 
z ≈ 0, one finds for the two independent solutions �1 and �2:

�1(ε) = ε, �′
1(ε) = 1, (25)

�2(ε) = ε ln(ε), �′
2(ε) = 1 + ln(ε). (26)

For z ≈ zh , one finds

φ± ∼
(

1 − ξ

ξh

)±iωξh/4

. (27)

With these boundary values, one can solve the differential equa-
tion for V from the boundary z = 0 to the horizon z = zh .

Following the real-time dictionary [19,20], see also [21–24], 
a linear combination of �1 and �2 has to be taken to satisfy in-
going boundary conditions at the horizon. We parameterize this V
as

V (z) = C(�1 + B�2), (28)

in terms of two complex numbers C and B . With this solution for 
V , the spectral function can be distilled as follows. Evaluating (22)
near the boundary, one finds

∂z V (ε) − 1

z
V (ε) + k2 A0(ε) + kωA3(ε) = 0, (29)

or with the above form of V :

C(1 + B(1 + ln(ε))) − 1

ε
C(ε + Bε ln(ε))

+ k2 A0(ε) + kωA3(ε) = 0, (30)
yielding

C = k2 A0(ε) + kωA3(ε)

B
. (31)

The coupled differential equation leads to three correlators: 〈 J0 J0〉, 
〈 J0 J3〉 and 〈 J3 J3〉 where the currents are the charm vector cur-
rents. For instance, in evaluating the spectral function for A0, one 
needs to evaluate the combination [19,20]

D R(ω,k) ∼ lim
z→0

A0∂z A0

z
(32)

to obtain the retarded Green function, from which follows the 
spectral function as

ρ(ω,k) = − 1

π
�D R(ω,k). (33)

We therefore look at

− lim
z→0

A0∂z A0

z
(34)

and functionally differentiate it w.r.t. the boundary value of A0
twice. This equals

− A0(ε)
k2 A0(ε)

B (ε + Bε ln(ε))

ε

= −A0(ε)A0(ε)
k2

B
(1 + B ln(ε))

= −A0(ε)A0(ε)

(
k2

B
+ k2 ln(ε)

)
. (35)

The second term can be renormalized by introduction of a local 
counterterm (cf. holographic renormalization).

One can also look at the A3 A0 correlator, though we will have 
no interest in this mixed correlator in this work.

Finally, we can also look at the A3 A3 correlator. The correlator 
can in this case be distilled as (using ωG00∂z A0 = kG33∂z A3)

A3(ε)∂z A3

ε
= −A3(ε)

ω∂z A0(ε)

kε

= − A3(ε)A3(ε)ωkω

kBε
(ε + Bε ln(ε))

= −A3(ε)A3(ε)

(
ω2

B
+ ω2 ln(ε)

)
, (36)

so for the spectral function, it turns out we should look at −�ω2

B . 
It is this correlator that we will be interested in the remainder of 
this work.

3.1. Results

Below are the resulting figures of the spectral functions as k is 
varied for the two different polarizations. We denote everything in 
dimensionless quantities (by rescaling z) where in particular

ξ = √
cz, ω̃ = ω√

c
, k̃ = k√

c
. (37)

Figs. 1 and 2 show the melting of the spectral peaks as the tem-
perature is increased. This effect remains the same regardless of 
the value of k. Comparing Figs. 1 and 3, it is clear that the spectral 
functions are not isotropic: if the polarization is tangential to the 
momentum, the peaks hardly decline; whereas if the polarization 
is perpendicular to the momentum, the peaks decrease quickly as 



D. Dudal, T.G. Mertens / Physics Letters B 751 (2015) 352–357 355
Fig. 1. Spectral function of A3 for different values of k̃ at t = 0.07. Blue: k̃ = 0.0, pur-
ple: k̃ = 0.5, yellow: k̃ = 1.0, green: k̃ = 1.5. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Spectral function of A3 for different values of k̃ at t = 0.13. Blue: k̃ = 0.0, 
purple: k̃ = 0.5, yellow: k̃ = 1.0, green: k̃ = 1.5. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

Fig. 3. Spectral function of A1 for different values of k̃ at t = 0.07. Blue: k̃ = 0.0, 
purple: k̃ = 0.5, yellow: k̃ = 1.0, green: k̃ = 1.5. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

the momentum is increased. Note that for k = 0, the spectral func-
tions indeed are the same: this is of course expected as in this 
case k = 0 and hence full isotropy should be restored indeed.

Fig. 1 has the peculiar property that the spectral peaks do not 
damp as k increases. If one increases k even further, one finds the 
result of Fig. 4.
Fig. 4. Spectral function of A3 for different values of k̃ at t = 0.07. Blue: k̃ = 2.0, 
purple: k̃ = 2.5, yellow: k̃ = 3.0, green: k̃ = 3.5. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

4. Influence of magnetic field on the spectral functions

In this section, we will demonstrate how the spectral functions 
are modified if a background magnetic field B is turned on. In or-
der to analyze the influence of the magnetic field, we will follow 
our earlier model [18] where we proposed a DBI-modification of 
the soft-wall model to allow the magnetic field to couple to the 
charged constituents of the mesons. If one compares the differen-
tial equations to those described in the previous section, only a 
few things change. The background B-field, which we orient along 
the 3-axis, corresponds to

F̄12 = − F̄21 = ∂1 A2 = −iqB
2

3
, (38)

since the charm quark charge is +2/3q. We obtain for Gμν ≡ gμν +
2πα′i Fμν :

Gμν =

⎡
⎢⎢⎢⎢⎢⎢⎣

g00 0 0 0 0

0 g11 2πα′i F̄12 0 0

0 −2πα′i F̄12 g22 0 0

0 0 0 g33 0

0 0 0 0 gzz

⎤
⎥⎥⎥⎥⎥⎥⎦

, (39)

with its determinant

G = g00 g33 gzz

(
g11 g22 − (2πα′)2 F̄ 2

12

)
. (40)

We will denote by G only the symmetric part of the metric 
tensor G:

Gμν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
g00

0 0 0 0

0 g22
X 0 0 0

0 0 g11
X 0 0

0 0 0 1
g33

0

0 0 0 0 1
gzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

where X = g11 g22 − (2πα′)2 F̄ 2
12.

Then substituting these values of 
√
G and Gμν in the earlier 

differential equations (21), (22) and (23), one obtains the correct 
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Fig. 5. Set-up: the magnetic field is directed along the 3-axis, the momentum is 
chosen to be tangential to the magnetic field and the two polarizations that we will 
consider are along the 1- and the 3-axis.

Fig. 6. Spectral function of A3 with qB = 1.0 GeV2 for different values of k̃ at 
t = 0.07. Blue: k̃ = 0.0, purple: k̃ = 0.5, yellow: k̃ = 1.0, green: k̃ = 1.5. (For in-
terpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 7. Spectral function of A1 with qB = 1.0 GeV2 for different values of k̃ at 
t = 0.07. Blue: k̃ = 0.0, purple: k̃ = 0.5, yellow: k̃ = 1.0, green: k̃ = 1.5. (For in-
terpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

equations for the DBI-modification of the model.2 Moreover, the 
asymptotic behavior of the solutions both at the horizon and at 
the boundary is unaffected by including the magnetic field.

For the sake of brevity, we will only look at the special case 
where the spatial momentum k is tangential to the magnetic 
field B. The other case can be dealt with analogously but will not 
be discussed here. The set-up of the different vector quantities is 
demonstrated in Fig. 5.

2 The string length parameter α′ = �2
s was fixed in [18] in terms of the AdS 

length L. The latter only figures as an overall prefactor of the action and we ig-
nore it further on.
Turning on the magnetic field, one finds the results of Figs. 6
and 7. First of all, we note that the spectral functions are not 
the same, even for k = 0: this corresponds to the breaking of the 
isotropy already by the magnetic field alone.

Of course, we have only discussed the case where k and B are 
aligned. The other case where for instance k is directed along the 
1-axis can also be studied analogously, though we will not pursue 
this here.

Both the results of this and the previous section demonstrate 
that turning on momentum causes the peaks to shift to higher 
ω as expected, where the peak location is at fixed ω2 − k2. The 
reason for this location is that these peaks are identified with the 
delta-peaks in the thermal AdS case (where f = 1). In that case, 
the time direction and the spatial directions along the boundary 
are fully equivalent (no warping in the z-direction) and full Lorentz 
invariance should be manifestly present.

As a conclusion, all spectral functions widen as k is increased; 
this implies the excitations melt at a lower temperature in cor-
respondence with [4,5]: the meson melts under the hot wind of 
the quark–gluon plasma. We do want to remark that the height of 
the spectral peak on the other hand does not systematically de-
crease, but this depends on the polarization and the magnitude of 
the magnetic field.

5. Conclusion

We have scrutinized the quite common application of the ra-
diation gauge in holography and demonstrated that for the AdS 
black hole, one cannot impose this gauge. We then demonstrated 
that this issue is of physical relevance. This was achieved by 
showing that the previously observed emergent isotropy for the 
momentum-dependent (quarkonium) spectral function is actually 
the result of a faulty choice of gauge. As the momentum k in-
creases, the spectral peaks widen and melt at a lower temperature 
than before. We furthermore provided some results on the mo-
mentum dependence of the spectral functions when including a 
background magnetic field, following our earlier proposed model 
[18] of a DBI-extension of the soft wall model.
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