Conclusions: Our data demonstrates that PTs with STEMI and a CTO have a higher in-hospital, 30 day, and one year mortalities than STEMI PTs without a CTO. PTs with NSTEACS and a CTO have a higher in-hospital and 30 day mortality than NSTEACS PTs without a CTO, and there is a non-significant trend towards increased one year mortality for PTs with a CTO. Strategies to reduce this increased mortality are needed.

TCT-371
Impact of Chronic Total Occlusions on Mortality in Patients Presenting With Cardiac Arrest
Lucas Labine1, David A. Hildebrandt1, Stephanie Ruten-Ramos1, Meghan Lardy1, Michael Claussen1, M Nicholas Burke1
1Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis, MN

Background: Cardiac arrest (CA) is often the result of both acute and chronic coronary artery disease (CAD) particularly when it is caused by ventricular tachycardia or fibrillation (VT/VF). Therapeutic hypothermia has been shown to decrease mortality and after resuscitated CA (rCA). It has been demonstrated that a chronic total occlusion (CTO) is the non-infarct artery in patients (Pts) with ST segment elevation myocardial infarction (STEMI) is associated with increased mortality. The incidence and effect of CTOs in Pts with rCA has not been well described.

Methods: The Minneapolis Heart Institute has developed formalized protocols for both STEMI (Level One, L1) and cardiac arrest and sequential therapeutic hypothermia (Cool-Li). From 2006-May 2012, 164 sequential Pts who had been enrolled in the Cool-Li program who presented with VT/VF and underwent angiography were evaluated for the presence of at least one CTO in a major coronary vessel. From 2006-May 2012, 121 Pts who had been enrolled in the Cool-Li program and underwent angiography but also suffered from STEMI were also evaluated for CTOs. In-hospital, 30 day, and 1 year mortality were compared between Pts who did and did not have CTO. STEMI Pts who presented with rCA were compared to STEMI Pts without rCA for the presence of a CTO.

Results: See table below:

<table>
<thead>
<tr>
<th>Death</th>
<th>w/CTO N=297</th>
<th>w/o CTO N=1765</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Hospital Death, N (%)</td>
<td>39 (13.1)</td>
<td>63 (3.6)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Death in 30 days, N (%)</td>
<td>45 (15.2)</td>
<td>75 (4.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Death in 1 year, N (%)</td>
<td>65 (21.9)</td>
<td>133 (7.8)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Death</th>
<th>w/CTO N=203</th>
<th>w/o CTO N=204</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Hospital Death, N (%)</td>
<td>11 (5.4)</td>
<td>10 (4.8)</td>
<td>0.0027</td>
</tr>
<tr>
<td>Death in 30 days, N (%)</td>
<td>14 (6.9)</td>
<td>13 (6.4)</td>
<td>0.0006</td>
</tr>
<tr>
<td>Death in 1 year, N (%)</td>
<td>11 (5.5)</td>
<td>25 (12.4)</td>
<td>0.2647</td>
</tr>
</tbody>
</table>

n=504 for 1 year (excluding 2012)

Conclusions: Our data demonstrates that rCA Pts with STEMI and a CTO have a higher in-hospital, 30 day, and one year mortalities than STEMI Pts without a CTO. PTs with NSTEACS and a CTO have a higher in-hospital and 30 day mortality than NSTEACS PTs without a CTO, and there is a non-significant trend towards increased one year mortality for PTs with a CTO. Strategies to reduce this increased mortality are needed.

TCT-372
“Full metal jacket” (stented length ≥ or = 50 mm) using drug-eluting stents for chronic total occlusive lesions.
Shinsuke Morii1, Toshiya Muramatu2, Reiko Takahara1, Yoshiaki Ito1, Hiroshi Ishimori1, Reisuke Hirano1, Masatugu Nakano1, Motoharu Araki1, Tamon Kato1, Norihiro Kobayashi1, Hideyuki Takizawa1, Yasunari Sakamoto1, Masayasu Tsutsumi1, Takuro Takama1, Hiroaki Takajro1, Takahiro Yokuda1
1Saiseikai Yokohama-City Eastern Hospital, Yokohama, Japan

Background: Limited data exists on patients who have undergone drug eluting stent (DES) implantation of long chronic total occlusive (CTO) lesion in native coronary arteries.

Methods: We defined long continuous stent implantation (stent length > or = 50 mm) as “full metal jacket” (FMJ). From April 2007 to March 2013, 344 consecutive patients (361 lesions) who underwent FMJ using any DESs for de novo lesion were enrolled. Subjects were classified into two groups: the patients with CTO lesion (CTO group, 113 patients, 114 lesions) and without CTO lesion (non-CTO group, 239 patients, 247 lesions). The two groups were compared for mean 24±19 months clinical endpoints. Outcomes were freedom from target lesion revascularization (TLR) and major adverse cardiovascular events (MACE) defined as composite of TLR, myocardial infarction and all cause death at 5 years after percutaneous coronary intervention procedure. This was a single center non-randomized retrospective study.

Results: CTO group was younger than non-CTO group (60.0±10.9 vs. 70.0±10.6, p<0.05). The percentage of male gender and hyperlipidemia were higher in CTO group than non-CTO group (84.2% vs. 69.6%, p=0.05 and 58.8% vs. 47.0%, p=0.05, respectively). There were no significant differences between both study arms in percentages of diabetes mellitus (43.0% vs. 48.6%, p=0.32), hypertension (71.9% vs. 75.2%, p=0.51), hemodialysis (2.6% vs. 5.3%, p=0.26) and current smoker (19.3% vs. 17.1%). Target vessel was more often the right coronary artery in CTO group than non-CTO group (71.1% vs. 33.2%, p<0.05). The mean total length of implanted stents was longer in CTO group (72.8±1.4 mm vs. 60.9±0.9 mm, p<0.05). Intravascular ultrasound was used in 70.0% and follow up rate of angiography was 75.9%. Regarding the long-term clinical outcomes, there were no significant differences in the rate of freedom from TLR (60.5±10.5% vs. 76.0±4.7%, Log rank p=0.03 and 58.8% vs. 67.2±4.8%, Log rank p=0.58) at 5 years estimated using the Kaplan-Meier methods compared to non-CTO group.

Conclusions: The strategy of FMJ using DES was acceptable for CTO lesions.

Recanalisation of Long Chronic Total Occlusive Lesions With Drug Eluting Stent: A Multicenter Long-Term Follow-up Study
Christian Heeger1, Martin W. Bergmann1, Karl-Heinz Kuck1
1St. Georg Department of Cardiology, Hamburg, Germany

Methods: A retrospective study was conducted to evaluate the real world experience of long CTOs in a European registry of PCI. All centers were invited to participate. The registry included the most recent 30 patients with longest occlusion (group-E) and the last 30 patients with shortest occlusion (group-R) from each center. The strategy of Full Metal Jacket (FMJ) was defined as the ECG just before the catheter intervention. Pre-ECG was defined as the ECG just before the procedure of drainage for Group-E/D(+) and the ECG immediately after catheter intervention for other groups.

Results: A comparison of pre-ECG and post-ECG, the leads in which R-wave amplitude significantly decreased were I, aVL, V1, V4, V5, and V6 in group-R; I, II, aVL, V1, V4, V5, and V6 in group-E/D(+); but only aVL in group-E/D(-). Heart rate (HR) significantly increased in group-E/D(+)(64±12 to 83±18, p=0.0034) between the 2 ECGs, but not in group-R and group-E/D(-). Comparing group-R and group-E/D(+), the rate of R-wave amplitude between the 2 ECGs ([R-wave amplitude in post-ECG]/[R-wave amplitude in pre-ECG]) was similar in all leads. But the rate of R-wave amplitude between the 2 ECGs of group-R was significantly lower in leads I(0.66±0.25 vs 0.99±0.58, p=0.0074), II(0.88±0.33 vs 1.20±0.41, p=0.014), V1(0.72±0.29 vs 1.11±0.55, p=0.0019), and V5(0.67±0.31 vs 0.95±0.30, p=0.0042).

Conclusions: During the pre-ECG, there is no significant difference in R wave amplitude between CTO lesions in the retrograde approach and the recent 30 patients (group-E, age 60±10) who underwent treatment for percutaneous recanalisation during catheter intervention. Group-E was divided into 2 groups according to whether significant drainage of effusion ([group-E/D(+)-n=15] or not [group-E/D(-)-n=14]). Pre-ECG was defined as the ECG just before the catheter intervention. Post-ECG was defined as the ECG just before the procedure of drainage for Group-E/D(+) and the ECG immediately after catheter intervention for other groups.

POSTERS