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Summary
Background Obesity is a major health problem that is determined by interactions between lifestyle and environmental 
and genetic factors. Although associations between several genetic variants and body-mass index (BMI) have been 
identifi ed, little is known about epigenetic changes related to BMI. We undertook a genome-wide analysis of 
methylation at CpG sites in relation to BMI.

Methods 479 individuals of European origin recruited by the Cardiogenics Consortium formed our discovery cohort. 
We typed their whole-blood DNA with the Infi nium HumanMethylation450 array. After quality control, methylation 
levels were tested for association with BMI. Methylation sites showing an association with BMI at a false discovery 
rate q value of 0·05 or less were taken forward for replication in a cohort of 339 unrelated white patients of northern 
European origin from the MARTHA cohort. Sites that remained signifi cant in this primary replication cohort were 
tested in a second replication cohort of 1789 white patients of European origin from the KORA cohort. We examined 
whether methylation levels at identifi ed sites also showed an association with BMI in DNA from adipose tissue 
(n=635) and skin (n=395) obtained from white female individuals participating in the MuTHER study. Finally, we 
examined the association of methylation at BMI-associated sites with genetic variants and with gene expression.

Findings 20 individuals from the discovery cohort were excluded from analyses after quality-control checks, leaving 
459 participants. After adjustment for covariates, we identifi ed an association (q value ≤0·05) between methylation 
at fi ve probes across three diff erent genes and BMI. The associations with three of these probes—cg22891070, 
cg27146050, and cg16672562, all of which are in intron 1 of HIF3A—were confi rmed in both the primary and 
second replication cohorts. For every 0·1 increase in methylation β value at cg22891070, BMI was 3·6% 
(95% CI 2·4–4·9) higher in the discovery cohort, 2·7% (1·2–4·2) higher in the primary replication cohort, and 
0·8% (0·2–1·4) higher in the second replication cohort. For the MuTHER cohort, methylation at cg22891070 was 
associated with BMI in adipose tissue (p=1·72 × 10−⁵) but not in skin (p=0·882). We observed a signifi cant inverse 
correlation (p=0·005) between methylation at cg22891070 and expression of one HIF3A gene-expression probe in 
adipose tissue. Two single nucleotide polymorphisms—rs8102595 and rs3826795—had independent associations 
with methylation at cg22891070 in all cohorts. However, these single nucleotide polymorphisms were not 
signifi cantly associated with BMI.

Interpretation Increased BMI in adults of European origin is associated with increased methylation at the HIF3A 
locus in blood cells and in adipose tissue. Our fi ndings suggest that perturbation of hypoxia inducible transcription 
factor pathways could have an important role in the response to increased weight in people.

Funding The European Commission, National Institute for Health Research, British Heart Foundation, and 
Wellcome Trust.

Introduction
Obesity and its associated comorbidities constitute a 
major and growing health problem worldwide.1 
Therefore, understanding the mechanisms that aff ect 
body-mass index (BMI)—the most widely used measure 
of obesity—and any downstream eff ects is an important 
health priority. BMI is a complex phenotype determined 
by lifestyle (eg, physical activity), environmental factors 
(food availability and intake), and genetic factors.2 In 
the past few years, a major eff ort to identify genetic 
determinants of BMI through genome-wide association 
studies has shown that more than 30 single nucleotide 

polymorphisms (SNPs) are associated with BMI, which 
together explain about 1·5% of interindividual variation 
in BMI.3

DNA methylation is the reversible and heritable 
attachment of a methyl group to a nucleotide. The most 
common form of DNA methylation occurs at the 5´ 
carbon of cytosine in CpG dinucleotides, creating 
5-methylcytosine.4 CpG dinucleotides are often located in 
CpG islands (clusters of CpG sites) within the promoter 
region or fi rst exon of genes, or upstream from genes 
within CpG island shores (DNA regions within 2 Kb of 
CpG islands) or shelves (within 2 Kb of shores).4 DNA 
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methylation plays a part in transcriptional regulation of 
genes and miRNAs,5 control of alternative promoter 
usage,6,7 and alternative splicing.6

Both genetic and environmental factors can aff ect the 
extent of DNA methylation.8,9 In view of the range of 
potential downstream functional outcomes of this 
epigenetic change, an eff ect on DNA methylation could 
integrate the impact of both genetic and environmental 
factors on a phenotype.10 Alternatively, epigenetic changes 
caused by a phenotype can mediate its downstream 
eff ects by changing gene expression.10

Unlike genome-wide association studies of genetic 
variants, progress in systematic analysis of DNA 
methylation has hitherto been hampered by an absence 
of analogous platforms to study epigenetic phenomena. 
However, the newly developed Infi nium Human-
Methylation450 array (Illumina, San Diego, CA, USA) 
assays about 485 000 methylation sites spanning 99% of 
genes in the Reference Sequence database, with an 
average of 17 CpG sites per gene region. The array has 
been validated and consistently detects CpG methylation 
changes.11 We used this array for a large-scale analysis of 
methylation patterns in whole-blood DNA in relation to 
BMI.

Methods
Participants  
479 white individuals who had been recruited by the 
Cardiogenics Consortium12 formed our discovery cohort. 
They either had a history of myocardial infarction (n=241; 
recruited from four centres: Leicester, UK; Lübeck, 
Germany; Regensburg, Germany; and Paris, France) or 
were healthy blood donors (n=238; recruited in 
Cambridge, UK). Genome-wide SNP genotypes had been 
previously obtained for all participants with the Human 
Quad Custom 670 array (Illumina, San Diego, CA, USA) 
and genome-wide gene expression data obtained for 
monocytes and derived macrophages with the 
HumanRef-8 v3 Beadchip array (Illumina, San Diego, 
CA, USA).13

For our primary replication cohort, we used data for 
339 unrelated white patients of French origin who had 
venous thrombosis recruited into the MARseille 
THrombosis Association (MARTHA) cohort.14 These 
patients had been genotyped with the Human 
610/660W-Quad arrays (Illumina, San Diego, CA, USA).14

We analysed methylation sites that showed a signifi cant 
association in the primary replication cohort in a second 
replication cohort of 1789 white participants from 
Germany who had been recruited for the KORA 
(Cooperative Health Research in the Region of Augsburg) 
F4 survey.15 Genome-wide genotyping was done for 
KORA F4 with the Aff ymetrix 6.0 GeneChip array (Santa 
Clara, CA, USA).

To investigate whether the association between 
methylation at HIF3A sites and BMI that we observed in 
blood DNA would also be seen in other tissues, we 

analysed data for white female individuals from the UK 
obtained as part of the Multiple Tissue Human Expression 
Resource (MuTHER) study.16 HumanMethylation450 
arrays had been done for 635 subcutaneous adipose tissue 
biopsies and for 395 skin biopsies. The adipose tissue 
samples came from 249 twin pairs (93 monozygotic and 
156 dizygotic twins) and 137 singletons. Skin samples 
came from 108 of the 249 twin pairs (44 monozygotic and 
64 dizygotic) and 179 singletons. The collection and 
processing of the biopsy samples in the MuTHER study 
have been described previously.17 In addition to the 
methylation arrays, genome-wide genotype data (obtained 
with a combination of HumanHap300, HumanHap610, 
and 1M-Duo and 1·2M-Duo Illumina arrays; Illumina, 
San Diego, CA, USA) and genome-wide expression 
profi les in adipose tissue (obtained with the IlluminaHT-12 
v3 array; San Diego, CA, USA) were available for the 
MuTHER participants.17 All individuals provided written 
informed consent to participate in the primary studies 
and to allow DNA analysis of their samples.

Procedures  
Details of the methylation assay done for the discovery 
cohort and the quality checks that were undertaken are 
given in the appendix (p 2). Methylation is described as a 
β value, which is a continuous variable ranging between 0 
(no methylation) and 1 (full methylation). In any one 
sample, a probe with a detection p value (a measure of an 
individual probe’s performance) of more than 0·05 was 
assigned missing status. If a probe was missing in more 
than 5% of samples, we excluded it from all samples. We 
excluded 830 probes on this basis. To avoid spurious 
associations, we also excluded probes containing genomic 
sites where variation is already known according to the 
HumanMethlyation450 annotation fi les or the 
Infi niumHD Methylation SNP list that had a minor allele 
frequency of more than 1%, leaving 351 699 probes. Before 
analysis, methylation values were corrected for 
background values and then normalised with SWAN18 in 
the R Package minfi . We used the array annotations 
provided by Illumina (version 1.1) to assign probes to their 
corresponding genes.

We used the same Illumina HumanMethylation450 
array in the replication cohorts and in the MuTHER 
samples, following similar experimental procedures. We 
did post-array processing in a similar way for all studies 
and normalised methylation values before analysis with 
SWAN18 for the two blood replication cohorts and by 
quantile normalisation19 for the MuTHER study samples.

Statistical analysis  
BMI was not normally distributed in the discovery cohort 
and therefore was transformed on the log scale. 
Regression analysis of log-transformed BMI with 
methylation level at each probe was adjusted for age, sex, 
smoking status, methylation array batch, and centre. 
Adjustment for centre also adjusted for whether patients 

For the Infi niumHD Methylation 
SNP list see http://support.
illumina.com/downloads/
infi nium_hd_methylation_snp_
list.ilmn

For the R Package minfi  see 
http://www.bioconductor.org/
packages/release/bioc/html/
minfi .html

See Online for appendix
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had had myocardial infarction. Chip assignment was not 
associated with BMI and was therefore not included in 
the model. For models in which the dependent variable 
(BMI in this case) has been log transformed, the β 
coeffi  cients from the regression analysis can be 
interpreted as the change in the dependent variable by 
100×(coeffi  cient) for an increase in one unit in the 
independent variable. Therefore, we present β coeffi  cients 
as percentage change. A correction for genomic control 
(λ=1·092) was applied (appendix p 11). We estimated 
q values for false discovery rates20 and associations with a 
false discovery rate q value of 0·05 or less were taken 
forward for replication.

We did sequential replication for the MARTHA and 
KORA cohorts with linear regression analysis of log-
transformed BMI adjusted for age, sex, smoking status, 
and array batch. We assessed signifi cance after 
Bonferroni correction.

In the MuTHER cohort, to account for family structure, 
we fi tted a linear mixed eff ects model for log-transformed 
BMI with the lme4 package in R. We adjusted the model 
for age, array batch, and smoking status (fi xed eff ects), 
and for family identifi cation number and zygosity 
(random eff ects). We used the likelihood ratio test 
statistic to assess signifi cance and calculated the p value 
from the χ² distribution with one degree of freedom.

We assessed associations between methylation level for 
sites showing a correlation with BMI and genotypes at 
adjacent SNPs (within 1 Mb) in the discovery cohort, 
assuming an additive allele eff ect. We used a linear mixed 
eff ects model with age, sex, smoking status, centre, BMI, 

and methylation batch array as fi xed eff ects, and 
methylation chip as a random eff ect. We applied 
Bonferroni correction for multiple testing to the results. 
We analysed signifi cant and independent associations in a 
similar manner in the replication cohorts and in MuTHER 
samples (with the addition of family identifi cation number 
and zygosity as random eff ects and exclusion of sex). We 
also used the same model to analyse the association 
between methylation level or BMI with individual blood 
cell counts in the discovery cohort. We did power 
calculations with powerreg in Stata (version 12.1).

Role of the funding source  
The sponsors of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. PD and NJS had full access to data 
for the discovery cohort, D-AT to data for the MARTHA 
cohort, CG for the KORA cohort, and PD for the 
MuTHER cohort. NJS had the fi nal responsibility for the 
decision to submit for publication.

Results
20 individuals from the discovery cohort (two who had 
had myocardial infarction, 18 healthy blood donors) 
were excluded from analyses after quality-control checks 
of the methylation array data (appendix p 2), leaving 
459 participants (table 1). As reported by others21 at a 
genomic level, methylation at CpG dinucleotides in our 
discovery cohort had a bimodal distribution, with the 
most frequent level of methylation occurring at a β value 
of 0–0·05 with a second, slightly lower peak at 0·90–0·95 

For more on the lme4 package 
see http://cran.stat.sfu.ca/web/

packages/lme4/lme4.pdf

Discovery cohort (Cardiogenics) Primary 
replication cohort 
(MARTHA; n=339)

Second 
replication cohort 
(KORA; n=1789)

MuTHER cohort

Individuals who 
had had myocardial 
infarction
(n=239)

Healthy blood 
donors
(n=220)

Adipose tissue 
samples
(n=635)

Skin samples 
(n=395)*

Age (years) 55·2 (6·8) 55·2 (6·8) 43·8 (14·2) 60·9 (8·9) 58·8 (9·3) 58·8 (9·3)

Men 202 (85%) 125 (57%) 74 (22%) 871 (49%) 0 0

Body-mass index (kg/m2) 28·3 (4%) 25·9 (3·6) 24·2 (4·4) 28·1 (4·8) 26·7 (4·9) 26·6 (4·7)

Ever smokers 185 (77%) 89 (40%) 145 (43%) 1003 (56%) 308 (49%) 187 (47%)

Height (cm) 174·5 (8·7) 172·5 (9·1) 166·6 (7·7) 167·8 (9·2) 161·5 (5·8) 161·5 (6·0)

Weight (kg) 86·5 (15·8) 77·2 (12·5) 67·5 (14·4) 79·4 (15·3) 69·8 (13·8) 69·5 (13·3)

Systolic blood pressure (mm Hg) 130·5 (19·1) NA NA 124·8 (18·7) 129·8 (16·2) 129·1 (16·0)

Diastolic blood pressure (mm Hg) 77·8 (10·9) NA NA 76·1 (9·9) 78·6 (9·4) 78·6 (9·5)

Diabetic 10 (4%) NA 6 (2%) 163 (9%) 30 (5%) 16 (4%)

Methylation of cg22891070† 0·434 (0·110, 
0·189–0·910)

0·453 (0·098, 
0·211–0·740)

0·473 (0·118, 
0·127–0·823)

0·515 (0·131, 
0·154–0·906)

0·177 (0·045, 
0·076–0·358)

0·272 (0·052, 
0·165–0·536)

Methylation of cg27146050† 0·319 (0·051, 
(0·144–0·516)

0·328 (0·047, 
0·191–0·495)

0·315 (0·042, 
0·180–0·458)

0·380 (0·057, 
0·179–0·622)

0·163 (0·037, 
0·086–0·262)

0·232 (0·029, 
0·161–0·368)

Methylation of cg16672562† 0·389 (0·116, 
0·071–0·952)

0·409 (0·101, 
0·157–0·745)

0·454 (0·125, 
0·107–0·795)

0·438 (0·136, 
0·091–0·900)

0·098 (0·039, 
0·016–0·237)

0·174 (0·044, 
0·064–0·422)

Data are mean (SD), n (%), or mean (SD, range). NA=not available. *From subset of participants who had also provided adipose tissue samples. †β values.

Table 1: Characteristics of participants in the studied cohorts
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(appendix p 9). In a previous study (in which the 
Illumina HumanMethylation27 Bead Chip, the 
precursor of the HumanMethylation450 Bead Chip, was 
used),22 a robust association between current smoking 
and methylation at the cg03636183 locus in F2RL3 had 
been shown and replicated. As a form of overall 
validation of our discovery analysis, we examined the 
association of current or ever smoking with methylation 
at this site in our dataset. We recorded a similarly highly 
signifi cant association (p=3·8 × 10−³³) between 
methylation at cg03636183 and smoking, with reduced 
methylation in smokers (appendix p 10).

The distribution of p values in the discovery cohort 
from regression of methylation level at each site and 
BMI is shown in fi gure 1. The quantile–quantile plot for 
expected versus observed χ² values is shown in the 
appendix (p 11). Five probes achieved a false discovery 
rate q value of 0·05 or less, including individual probes 
in CLUH on chromosome 15 and KLF13 on 
chromosome 17 (appendix p 3), and three probes in 
HIF3A on chromosome 19 (table 2). We excluded the 
possibility that these probes showed cross-reactivity for 
several CpG sites.23

We took these fi ve probes forward for analysis in our 
primary replication cohort (MARTHA). Although 
methylation level for the probes in CLUH and KLF13 
were not associated with BMI in this cohort (appendix 
p 3), all three HIF3A probes were signifi cant after 
Bonferroni correction for multiple testing (table 2). We 
further tested the association of these three probes in our 
second replication cohort (KORA). All three probes were 
signifi cantly associated with BMI, although the 
association was weaker than for the other cohorts (table 2).

The three identifi ed HIF3A probes (cg22891070, 
cg27146050, and cg16672562) are neighbouring probes in 
intron 1 of the gene (fi gure 2). Methylation levels at 
cg22891070, cg27146050, and cg16672562 are all highly 
correlated with each other (R²=0·89–0·95 in the discovery 
cohort). The three probes are fl anked by others that had 
nominally signifi cant associations with BMI in the 
discovery cohort (cg05286653: p=2·37 × 10−⁴; cg12068280: 
p=4·89 × 10−³) that did not meet our false discovery rate q 
value threshold of 0·05 or lower. Overall, there are probes 
for 25 CpG sites in HIF3A on the array, and the results 
for all the probes are shown in the appendix (p 4). 
Methylation at CpG sites in the other members of the 

Figure 1: Manhattan plot showing the distribution of p values of the association of methylation probes with body-mass index in the discovery cohort
The red dots indicate probes that fall within KLF13 (chromosome 15), CLUH (chromosome 17), and HIF3A (chromosome 19).
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Position Discovery cohort (Cardiogenics) Primary replication cohort (MARTHA) Second replication cohort (KORA)

p value* Percentage 
change in BMI
(95% CI)†

p value Percentage 
change in BMI†

p value Percentage change 
in BMI†

cg22891070 46801642 4·00 × 10�⁸ 3·6% (2·4–4·9) 3·65 × 10�⁴ 2·7% (1·2–4·2) 6·69 × 10�³ 0·8% (0·2–1·4)

cg27146050 46801557 4·82 × 10�⁸ 7·8% (5·1–10·4) 5·09 × 10�³ 6·2% (1·8–10·4) 2·18 × 10�³ 2·1% (0·7–3·4)

cg16672562 46801672 5·36 × 10�⁷ 3·2% (2·0–4·4) 3·47 × 10�³ 2·1% (0·7–3·5) 0·011 0·7% (0·2–1·3)

The signifi cance threshold after Bonferroni correction for multiple testing in the primary replication cohort is 0·01 and in the second replication cohort is 0·016. BMI=body-mass 
index. *λ corrected. †The β coeffi  cients from the association analysis have been converted into percentage change in BMI for every 0·1 unit increase in methylation β value.

Table 2: Association between methylation at sites in HIF3A on chromosome 19 in whole-blood DNA and BMI in the discovery and replication cohorts
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hypoxia inducible transcription factor family (HIF1A 
[13 probes], EPAS1 [38 probes], and ARNT [17 probes]) 
was not associated with BMI (data not shown).

Because the DNA used in our methylation analysis is 
derived from a mixture of diff erent white blood cell types, 
methylation in the HIF3A probes could vary between 
diff erent white cell populations, and the correlation with 
BMI could simply be a result of varying proportions of 
these cell types in individuals with diff erent BMIs. 
Therefore, using cg22891070 as an exemplar, we 
examined the association of methylation level of this 
probe with the number of each cell type in the discovery 
cohort using a linear mixed eff ects model. Additionally, 
we tested for an association between number of each cell 
type and BMI. We recorded a weak positive correlation 
(p=0·019) between methylation at cg22891070 and 
lymphocyte count that did not survive correction for 
multiple testing. We recorded no associations with other 
cell types (appendix p 5). Furthermore, adjustment for 
lymphocyte, monocyte, and neutrophil counts did not 
substantially attenuate the association between 
methylation at cg22891070 and BMI (p=1·04 × 10−⁷).

We also examined the association of DNA methylation 
at HIF3A with the two individual components of BMI—
height and weight—in the discovery cohort. Methylation 
at cg22891070 was signifi cantly associated with weight 
(p=5·2 × 10−⁷) but not with height (p=0·78). In exploratory 
analyses of the population-based KORA cohort, we did 
not fi nd an association between methylation at 
cg22890170 and other characteristics associated with 

BMI, such as physical activity (p=0·955) or type 2 
diabetes mellitus (p=0·680).

For the three signifi cant sites in HIF3A, overall 
methylation β value in the discovery cohort ranged from 
0·18 to 0·90 for cg22891070, from 0·14 to 0·52 for 
cg27146050, and from 0·07 to 0·95 for cg16672562 
(appendix p 12). β values were similar in the replication 
cohorts (table 1). The correlation between methylation 
level at cg22891070 in blood DNA and BMI for the 
discovery cohort, and the change in methylation level at 
cg22891070 by quintile of BMI (and vice versa) are shown 
in the appendix (pp 13–14). Every 0·1 increase in 
methylation β value for cg22891070 was associated with a 
3·6% higher BMI in the discovery cohort (table 2). For a 
person in the discovery cohort with the mean BMI 
(27 kg/m²), this 3·6% increase equates to a 0·98 kg/m² 
higher BMI on average. The increase in BMI was greater 
in participants who had had myocardial infarction 
(4·6%, 95% CI 2·9–6·3) than in the blood donors 
(2·3%, 0·4–4·1). The percentage changes in BMI in the 
replication cohorts for a 0·1 increase in methylation were 
smaller than in the discovery cohort (table 2), and in 
KORA was equivalent to a 0·22 kg/m² higher BMI on 
average.

In the MuTHER cohort, methylation level at the three 
HIF3A sites was strongly associated with BMI in adipose 
tissue but not in skin (table 3). The range of methylation 
β values was narrower in both tissues than in blood DNA 
(table 1). However, it was narrower in adipose tissue than 
in skin, which means that a reduced range cannot be a 
reason for why an association was not observed in skin. 
The direction of the association between methylation in 
HIF3A in adipose tissue and BMI was the same as that 
in blood, but the percentage change was greater.

We could analyse whether methylation at the HIF3A 
locus was correlated with HIF3A gene expression for the 
MuTHER adipose dataset, because genome-wide 
expression profi les were available. We recorded a weak 
(β value −0·025, SE 0·008) but signifi cant (p=0·005) 
inverse correlation between methylation at cg22891070 
and one (ILMN_1663015) of fi ve HIF3A gene-expression 
probes on the array (appendix p 6). Although we had 
genome-wide expression data from monocytes and 
macrophages for the discovery cohort,13 expression of 
HIF3A was below detectable levels in these cells so we 
could not directly examine whether variation in 
methylation level at cg22891070 is associated with 
expression of the gene in blood cells.

Because DNA sequence variation can be associated 
with methylation level, we looked for an association 
between SNPs within 1 Mb of cg22891070 and 
methylation at this probe, using the genome-wide SNP 
data available for the discovery cohort (appendix p 15). 
Two SNPs, rs8102595 and rs3826795, with an R² between 
them of 0·006 (D’=1), had independent associations with 
methylation at cg22891070 (table 4). rs8102595 had a 
stronger association than did rs3826795 (table 4). 

Figure 2: Location of methylation probes associated with body-mass index and SNPs aff ecting methylation 
levels of these probes in the HIF3A locus
Vertical black lines represent exons. The arrow indicates direction of transcription. The three methylation sites in 
intron 1 showing an association with body-mass index are shown in red. The two SNPs showing an association 
with methylation levels at these probes are shown in blue. The green blocks represent the position of CpG islands 
in this locus. SNP=single nucleotide polymorphism. 

cg22891070

cg27146050

rs3826795

rs8102595

cg16672562
HIF3A

20 kb

Adipose tissue (n=635) Skin (n=395)

p value Percentage 
change in BMI*

p value Percentage 
change in BMI*

cg22891070 1·72 × 10�⁵ 6·2 (3·4 to 9·0) 0·882 −0·25 (−3·6 to 3·0)

cg27146050 9·27 × 10�⁷ 11·9 (7·2 to 16·7) 0·011 −7·0 (−12·4 to −1·7)

cg16672562 5·01 × 10�⁶ 7·9 (4·5 to 11·2) 0·862 −0·36 (−4·3 to 3·5)

Data in parentheses are 95% CIs. BMI=body-mass index. *The β coeffi  cients from 
the association analysis have been converted into percentage change in BMI for 
every 0·1 unit increase in methylation β value.

Table 3: Association between BMI and methylation at sites in HIF3A in 
adipose tissue and skin DNA in the MuTHER cohort
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rs8102595 is located 3·8 kb and rs3826795 1·2kb 
upstream of cg22891070 (fi gure 2). Associations between 
these SNPs and methylation at cg22891070 were also 
highly signifi cant in the replication cohorts (table 4). 
Furthermore, the same associations were recorded in 
both adipose tissue and skin in the MuTHER cohort 
(table 4). Genetic variation in rs8102595 accounted for 
6·4% of the variation in methylation at cg22891070 in the 
blood DNA in the discovery cohort, 9·9% in the 
MARTHA cohort, and 4·8% in the KORA cohort. This 
genetic variation also accounted for 14·3% of variation in 
methylation at cg22891070 in adipose tissue and 21·8% 
in skin in the MuTHER study.

In view of the association between the two SNPs and 
methylation at cg22891070, we next tested their 
association with BMI in the discovery and other cohorts, 
but observed no consistently signifi cant association 
(appendix p 7). However, the power of these analyses was 
low (appendix p 7). Therefore, we also tested for 
associations between these SNPs and indices of body 
mass in the publicly available GIANT consortium 
datasets.3 We found no signifi cant association of either 
SNP with BMI (rs8102595: n=123 791, p=0·15; rs3826795: 
n=123 847, p=0·25; appendix p 8).

Discussion
We have identifi ed and replicated a specifi c association 
between BMI and methylation of HIF3A in whole blood 
DNA. We recorded the same association in DNA from 
adipose tissue, which is of high relevance to bodyweight 
and obesity, implying that it is biologically relevant. 
Although some preliminary reports are available of 
whole-blood methylation profi les in relation to indices of 
body composition and obesity,24–27 we are the fi rst to have 
undertaken a large-scale analysis with replication of the 
principal fi nding (panel).

HIF3A is a component of the hypoxia inducible 
transcription factor (HIF), which regulates a wide variety 
of cellular and physiological responses to reduced oxygen 
concentrations by controlling expression of many target 
genes.30 It is a heterodimer that is composed of a 
β subunit (ARNT) and one of three α subunits (HIF1A, 
EPAS1, and HIF3A). The binding of each α subunit to 

ARNT targets diff erent sets of downstream genes in a 
cell-specifi c manner.30 In the case of HIF3A, a further 
layer of complexity is added by the fact that the HIF3A 
locus is subject to much alternate splicing, leading to at 
least seven variants with diff ering targets.31 The induction 
of target genes by HIF3A binding to ARNT is generally 
weaker than is that evoked by HIF1A and EPAS1 binding 
to ARNT.30,31 Furthermore, especially in situations in 
which the amount of ARNT could be limiting, at least 
some isoforms of HIF3A seem to hinder the response to 
hypoxia by sequestering ARNT and restricting its binding 
to HIF1A and EPAS1.32,33

Although the main focus on HIF has been its role in 
cellular and vascular response to changes in oxygen 
tension during normal development or pathological 
processes (eg, cardiovascular disease and cancer30), 
compelling and increasing experimental data suggest 
that the HIF system also plays a key part in metabolism, 
energy expenditure, and obesity.34–37 Specifi cally, targeted 
disruption of either HIF1A or ARNT in adipocytes in 
transgenic mice is associated with reduced fat formation 
and protection from obesity and insulin resistance 
induced by high-fat diets.34 Similarly, systemic use of an 
antisense oligonucleotide to HIF1A for 8 weeks in mice 
with diet-induced obesity substantially suppresses 
HIF1A expression in liver and adipose tissue and is 
associated with increased energy expenditure and weight 
loss.35 In the hypothalamus, HIF signalling (primarily via 
EPAS1) has a role in glucose sensing and regulation of 
energy balance and weight by aff ecting expression of pro-
opiomelanocortin.36

Although HIF3A has not been investigated as 
thoroughly as the other α subunits in this context, it has 
been shown to have a role in the cellular response to 
glucose and insulin, and functions as an accelerator of 
adipocyte diff erentiation.38,39 Furthermore, siRNA 
inhibition of HIF3A in Hep3B cells signifi cantly 
downregulates mRNA expression of ANGPTL4,31 which 
could have a role in acquired obesity.40

The cross-sectional nature of our analysis means that 
we cannot assign a cause–eff ect association directly from 
the association we observed between HIF3A methylation 
and BMI. Previous studies41,42 have shown that DNA 

rs8102595 rs3826795

Frequency 
of eff ect 
allele*

β (95% CI) p value Frequency 
of eff ect 
allele†

β (95% CI) p value

Discovery (Cardiogenics) 0·10 0·063 (0·042–0·083) 6·29 × 10�⁹ 0·81 0·039 (0·023–0·056) 3·21 × 10�⁶

Primary replication cohort (MARTHA) 0·10 0·097 (0·062–0·121) 1·41 × 10�⁹ 0·79 0·051 (0·023–0·076) 2·14 × 10�⁵

Second replication cohort (KORA) 0·09 0·073 (0·058–0·086) 9·18 × 10�²³ 0·82 0·048 (0·037–0·059) 2·26 × 10�¹⁸

MuTHER cohort: adipose tissue 0·10 0·041 (0·033–0·049) 1·05 × 10�²¹ 0·81 0·021 (0·014–0·028) 3·61 × 10�⁹

MuTHER cohort: skin 0·10 0·062 (0·052–0·074) 7·09 × 10�²⁵ 0·82 0·023 (0·013–0·034) 1·77 × 10�⁵

The β values are from an additive model and are a unit change in methylation per copy of the eff ect allele. *G. †C.

Table 4: Association between methylation level at cg22891070 and single nucleotide polymorphisms at the HIF3A locus

For the datasets see http://www.
broadinstitute.org/
collaboration/giant/index.php/
GIANT_consortium_data_fi les
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sequence variation can aff ect levels of methylation at 
individual sites (methylation quantitative trait loci). To 
investigate directionality of the association between 
HIF3A methylation and BMI, we searched for genetic 
variants that associate with HIF3A methylation to 
establish whether these variants also associate with BMI 
in turn. We identifi ed signifi cant independent 
associations between genotypes at two SNPs—rs8102595 
and rs3826795, upstream of HIF3A—and methylation at 
one of our identifi ed HIF3A probes, cg22891070. 
However, we identifi ed no association between these 
variants and BMI in our cohorts or in the large GIANT 
genome-wide association meta-analysis of BMI which 
included more than 123 000 individuals. Our analysis of 
GIANT data had more than 95% power to detect an 
association for both SNPs if one existed (appendix p 8). 
These fi ndings suggest that the association between 
increased methylation and higher BMI is not causal. 
Furthermore, the fi nding that methylation in HIF3A in 
skin was not associated with BMI, despite a strong 
methylation quantitative trait locus for cg22890170 in 
this tissue, also indicates the absence of causal 
directionality. Therefore, our fi ndings suggest that 
increased methylation at the HIF3A locus is a result of 
increased BMI.

An alternative possibility is that the association 
between methylation at HIF3A and BMI is due to a 
confounding factor which aff ects both variables. 
However, we did not observe the association between 
HIF3A methylation and BMI in skin. Furthermore, we 
did not observe any association with other characteristics 
associated with BMI, such as physical activity or diabetes.

The mechanism by which increased BMI could lead to 
rises in HIF3A methylation is unknown. Obesity 
predisposes individuals to obstructive sleep apnoea,43 
which is associated with intermittent hypoxia. In turn, 
hypoxia activates HIF signalling. Therefore, chronic 
upregulation of HIFs in response to obstructive sleep 
apnoea could result in secondary changes in methylation 
of the HIF genes. However, the association of methylation 
level at the HIF3A locus showed a linear correlation 
across the range of BMI levels, and increased methylation 
was not confi ned to obese individuals (appendix p 13). 
Furthermore, the association of BMI with variation in 
methylation was specifi c to HIF3A and was not noted for 
HIF1A and EPAS1.

We identifi ed a signifi cant inverse association between 
HIF3A methylation and HIF3A expression in adipose 
tissue. The association was only recorded with one of fi ve 
HIF3A expression probes on the genome-wide expression 
array (appendix p 6), suggesting that the eff ect of 
methylation could be transcript-specifi c.31 In this context, 
we note that all three CpG sites at the HIF3A locus that 
were associated with BMI are situated within regions of 
open chromatin as identifi ed by formaldehyde-assisted 
isolation of regulatory elements (FAIRE) in H1-hESC 
cells and K562 cells, suggesting that these sites lie in a 
regulatory region.44 However, two of the expression probes 
analysed (ILMN_1663015 and ILMN_1687481) are 
reported to tag the same HIF3A transcript (appendix p 6), 
and the reason for the discrepant fi ndings for these two 
probes is unclear. Therefore, further work needs to be 
done to confi rm the eff ect of methylation on expression 
and any transcript specifi city. However, our fi nding 
supports the possibility that even if the association 
between increased methylation of HIF3A and BMI is 
secondary, an alteration in HIF signalling as a result of 
obesity-induced HIF3A methylation could still have an 
important role in some of the deleterious downstream 
eff ects of the disorder.

Although we recorded signifi cant associations between 
increased HIF3A methylation in blood DNA and increased 
BMI in three diff erent cohorts, the strength of the 
association varied substantially across the diff erent 
cohorts. The gradient of the relation between methylation 
at HIF3A and BMI was four-times steeper in the discovery 
cohort than in the second population-based replication 
cohort (KORA), despite a similar distribution of 
methylation values. Whether this diff erence represents an 
element of winner’s curse45 or refl ects other variation in 
the characteristics of the cohorts (including the presence 
of disease in some) is unclear. Even in the discovery 
cohort, we noted a diff erence in the level of association 
between the individuals who had had myocardial 
infarction and the healthy blood donors. The strength of 
the association in the blood donors was similar to that in 
the MARTHA cohort, which comprised patients with 
deep vein thrombosis, suggesting that the variation is not 
entirely related to disease status. Therefore, further 

Panel: Research in context

Systematic review
We searched Medline on Dec 1, 2013, with the terms “BMI & DNA methylation”, “obesity & 
DNA methylation”, “BMI & epigenetics” and “obesity & epigenetics”. We identifi ed hundreds 
of reports, many of which were reviews about the potential relevance of epigenetics in 
obesity. Of original research, some reports focused on methylation of specifi c genes already 
known to be associated with body-mass index (BMI) or obesity, such as FTO and POMC. In a 
few small genome-wide studies,24–27 the association between methylation and BMI or other 
indices of obesity has been explored, without defi nitive fi ndings. One study of overweight or 
obese adolescents28 identifi ed fi ve regions that showed diff erential methylation levels 
between individuals who had a high and low response to a multidisciplinary weight-loss 
intervention. Another study showed signifi cant changes in genome-wide methylation 
pattern in human adipose tissue after a 6-month exercise intervention.29 Although further 
validation is necessary, these studies show that DNA methylation can be dynamic and could 
also aff ect whether weight changes in response to lifestyle and dietary measures.

Interpretation
Ours is the fi rst large-scale genome-wide analysis of the association between adult BMI and 
DNA methylation. We have shown that BMI is associated with methylation of HIF3A in blood 
and adipose tissue. Our fi ndings provide a strong foundation for further exploration of the 
part played by the epigenome in regulation of BMI and the downstream detrimental eff ects 
of increased bodyweight. Understanding of this role could identify novel therapeutic targets 
to tackle obesity.
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studies are needed to identify factors that aff ect HIF3A 
methylation and modulate the association between BMI 
and HIF3A methylation in whole-blood DNA. Further 
work is also necessary to deduce the timing of the variation 
in methylation at the HIF3A locus in relation to BMI and 
whether it is dynamic or not.

Blood is readily accessible for DNA analyses. By 
contrast with genetic analyses, a challenge of epigenetic 
analyses is that circulating leucocytes—the source of 
DNA in blood—are composed of several diff erent cell 
subtypes that could each show cell-type specifi c variation 
in DNA methylation patterns. To an extent, as we have 
shown, this variation can be assessed and statistical 
adjustment done. Perhaps a more fundamental issue for 
the epigenetics community is whether analysis of blood 
DNA methylation is worthwhile and can refl ect changes 
in relevant tissues for a phenotype. In this regard, our 
fi nding of an association between BMI and specifi c 
HIF3A methylations sites in both blood and adipose 
tissue DNA supports the use of whole-blood DNA 
methylation profi ling for identifi cation of relevant 
epigenetic changes and provides a rationale for other 
studies of this type.

We used a strict sequential replication design to avoid 
the penalty of multiple testing for confi rmation of the 
association of probes identifi ed in the discovery cohort. 
We also started with a fairly small discovery cohort. 
Therefore, we recognise that we have probably missed 
associations between methylation of other genes and 
BMI. Meta-analyses of the datasets used in our study 
together with other datasets could yield additional 
insights into epigenetic changes associated with BMI.

In summary, we have reported a novel association of 
increased BMI in adults of European origin with increased 
methylation at the HIF3A locus in blood cells and in 
adipose tissue. The fi nding extends reports linking HIF 
and obesity in experimental models and provides direct 
evidence in people that perturbation of HIF signalling 
could have an important role in mediation of some of the 
downstream adverse responses to increased BMI.
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