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Cyclic cytidine 30,50-monophosphate (cCMP) signals via cGMP kinase I
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We analysed the function and intracellular signalling of the cyclic pyrimidinic nucleotide cCMP. The
membrane-permeable cCMP analogue dibutyryl-cCMP mediated mouse aorta relaxation. cCMP acti-
vated purified cGMP-dependent protein kinase (cGK) Ia and Ib and stimulated cGK in aorta lysates.
cCMP-induced relaxation was abolished in cGKI-knockout tissue. Additionally, deletion of inositol–
trisphosphate receptor associated cGKI substrate (IRAG) suppressed cCMP-mediated relaxation.
Signalling of cCMP via cGKI/IRAG appears to be of broader physiological importance because
cCMP-mediated inhibition of platelet aggregation was absent in cGKI- and IRAG-deficient platelets.
These results demonstrate that cCMP acts as intracellular messenger molecule, most unexpectedly
utilizing the cGMP signal transduction pathway.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The cyclic nucleotides cAMP and cGMP are established second
messengers which are essential for signalling in various mamma-
lian tissues. However, the occurrence of further cyclic nucleotides
acting as second messenger has not yet been established. Analysis
of purine cyclic nucleotides has resulted in several innovative
pharmacological strategies [1]. Formation of the cyclic pyrimidine
nucleotide cyclic cytidine 30,50-monophosphate (cCMP) by cytidy-
lyl cyclases was previously postulated in mammalian tissues
including smooth muscles, blood cells, heart and brain [2,3] but
was debated [4]. Functions regulated by cCMP are largely un-
known. However, cCMP has been implicated in the control of cell
growth and blood cell function [5,6]. Furthermore, intracellular
signal transduction pathways mediated by cCMP have not yet
been identified. In this report we investigated the effect of a
potential third second messenger, cCMP, on intact tissues and
cells, namely vascular smooth muscle and platelets, and on puri-
fied cyclic nucleotide-dependent protein kinases. Furthermore,
for elucidation of cCMP signalling pathways murine mutants of
the cGK cascade were analysed.
chemical Societies. Published by E
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2. Materials and methods

2.1. Materials

Cyclic nucleotides were purchased from BIOLOG, Bremen,
Germany. Dibutyryl-cCMP (Biolog No. D-075) had a purity of
>99.7%. Other reagents were purchased as indicated in the differ-
ent sections.

2.2. Animal strains and maintenance

Wild-type, IRAG-deficient (IRAG�/�) or SMIa-rescue mice were
bred and analysed as described before [7,8]. Experimental proto-
cols were approved by local authorities for animal research and
were conducted according to German law for animal care and
European Guidelines for Laboratory Animal Care.

2.3. Myography

Tension of thoracic aorta segments were analysed isometrically
on a Myograph (Myograph 601, Danish Myo Technology, Aarhus,
Denmark) as described previously [7]. Resting tension was set to
2 mN. After equilibration period, aortic rings were precontracted
with 3 lM phenylephrine in the presence of 100 lM L-NAME
(endothelial NO-synthase inhibitor, Sigma). Effects of submaximal
lsevier B.V. All rights reserved.
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relaxation-doses of db-cCMP, db-cAMP and 8-Br-cGMP on tension
were determined.

2.4. Measurement of kinase activity

Aortic lysates were prepared and kinase activity was measured
as described previously [8]. In brief, reaction was started by adding
20 ll of protein extract to reaction mix (50 mM MES, pH
6.9, 0.4 mM EGTA, 1 mM Mg-acetate, 10 mM NaCl, 0.1% (w/v)
BSA, 10 mM DTT, 40 lM substrate peptide VASPtide (Sequence:
RRKVSKQE), 2 lM cAK-inhibitor peptide, 0.1 mM [c-32P]ATP
(100 cpm/pmol) ± cyclic nucleotide at different concentrations.
Reaction mixtures were incubated for 15 min at 30 �C and then
transferred on Whatman P-81 papers (1.5 � 3 cm). Reactions were
stopped by washing in 75 mM H3PO4. The dried papers were
counted in Rotiszint scintillation liquid. Purified cGKI-isozymes
were measured with 20 ng of purified enzyme and 5 min incubation
time.

2.5. Determination of platelet aggregation

Blood from wild-type, IRAG�/� or SMIa-rescue mice (mice with
cGKI�/�-background and smooth muscle specific overexpression of
cGKIa which have cGKI-deficient platelets) anesthetized by ether
inhalation was collected by cardiac puncture into Alsever’s buffer
(Sigma). Platelets were isolated and analyzed as described [9] with
the following modifications: preincubation of platelets (1.5 �
105 platelets/ll) with 200 lM db-cCMP for 10 min at 37 �C and
aggregation initiation with thrombin (0.03 U/ml). Aggregation
was measured by an optical aggregometer (Chronolog, Havertown,
B

A

Fig. 1. Relaxation of murine wild-type vascular smooth muscle by cCMP. Phenylephrin
(300 lM) and (B) 8-Br-cGMP (300 lM). (C) Summary of relaxation potency of db-cCMP an
number of independent experiments. Error bars denote S.E.M. PE: phenylephrine, IBMX
arginine methyl ester (endothelial NO-synthase inhibitor).
PA, USA) using Aggro/Link Software 5.1 (aggregation: maximal
slope).

2.6. Statistical analysis

All data are expressed as mean ± S.E.M. For calculation of statis-
tical differences between two means the unpaired t-test was used,
for three means, the ANOVA was used. Significance of P-value was
indicated by asterisks *P < 0.05, **P < 0.01, ***P < 0.001; n.s.: not
statistically significant). N in or above bars indicates number of
independent experiments.

3. Results

3.1. db-cCMP induces smooth muscle relaxation

The effect of cCMP on smooth muscle precontracted with phen-
ylephrine (3 lM) was studied in isolated murine thoracic aorta.
Wild-type tissue showed a strong relaxing response of 44 ± 3% to
exogenously applied dibutyryl-cCMP (db-cCMP) (300 lM) a mem-
brane-permeable and esterase-cleavable prodrug of cCMP (Fig. 1A
and C). db-cCMP relaxed aorta with an EC50 of 479 ± 54 lM. As db-
cCMP is a prodrug of cCMP, the effective EC50 concentration of
cCMP inside smooth muscle cells is lower. All further aorta exper-
iments were performed with 300 lM db-cCMP which is in the
range of concentration previously used for physiological analysis
of smooth muscle with db-cAMP or db-cGMP [10,11]. Addition of
300 lM 8-Br-cGMP, an established membrane-permeable and di-
rectly cGKI-activating cGMP analogue, resulted in smooth muscle
relaxation of 61 ± 2% (Fig. 1B and C). The EC50 of 8-Br-cGMP was
C Aorta WT

db-cCMP 8-Br-cGMP
0

50

100

8 17

***

%
-R

el
ax

at
io

n 
by

 c
N

M
P 

(3
00

 µ
M

)

e-induced contraction of denuded wild-type (WT) aortic tissue with (A) db-cCMP
d 8-Br-cGMP on precontracted aortic tissue (***P < 0.001). Numbers in bars indicate
: 3-isobutyl-1-methylxanthine (unspecific inhibitor of PDEs). L-NAME: Nx-nitro-L-



cAKcGK

Aorta WT

ctr
 (w

ate
r)

cG
MP (1

0 µ
M)

cC
MP (1

0 µ
M)

cG
MP (3

00
 µM

)

cC
MP (3

00
 µM

)
0

5

10

15

3 333

***
n.s.

n.s.
***

***

3St
im

ul
at

io
n 

(x
-fo

ld
 o

f c
on

tr
ol

)

Aorta cGKI-/-

ctr
 (w

ate
r)

cG
MP (1

0 µ
M)

cC
MP (1

0 µ
M)

cG
MP (3

00
 µM

)

cC
MP (3

00
 µM

)
0

5

10

15

3 333

n.s.

3

St
im

ul
at

io
n 

(x
-fo

ld
 o

f c
on

tr
ol

)

-10 -9 -8 -7 -6 -5 -4 -3 -2
0

1

2

3

4

5

6

cGKI : Ka (cCMP) = 66 ± 8 µM
cGKI : Ka (cCMP) = 56 ± 8 µM
cGKII:  Ka (cCMP) = 169 ± 8 µM

cGKI
cGKI
cGKII

log[cCMP], M

A
ct

iv
ity

 c
G

K
 [µ

m
ol

 * 
m

in
-1

* m
g-1

]A

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2
0

2

4

6

8

10

12

Ka (cAMP) = 0.20 ± 0.05 µM
Ka (cGMP) = 59 ± 1 µM
Ka (cCMP) = 106 ± 10 µM

cAMP
cGMP
cCMP

log[cNMP], M

A
ct

iv
ity

 c
A

K
 [p

m
ol

 * 
m

in
-1

* µ
g-1

]B

C D

Fig. 2. Activation of cGKI and cAK by cCMP (A) in vitro concentration-response curves of purified bovine cGKI isozymes using cCMP as activator. (B) In vitro concentration–
response curve of cAK (from bovine heart, Sigma) using cAMP, cGMP and cCMP. (C) Stimulation of endogenous cGKI in aortic tissue of wild-type animals after activation with
water (ctr), cGMP (10, 300 lM) and cCMP (10, 300 lM). (D) Same panel as (C) using cGKI-deficient tissue. All dose–response curves of (A) and (B) were measured in three
independent experiments. Values in bars indicate number of independent experiments. (***P < 0.001, n.s. P > 0.05), error bars denote S.E.M.
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27 ± 9 lM. To exclude effects of the short chain fatty acid butyrate
on second messenger signalling or vasodilatation [12] we applied
butyrate or tributyrin on preconstricted aortic smooth muscle tis-
sue. Butyrate and tributyrin did not influence contractility in lM
range which corresponded to the concentrations taken for the
experiments using dibutyryl-cCMP. But butyrate slightly enhanced
contraction in mM range (Supplementary Fig. S1).

3.2. cCMP activates purified cGKs and cAK

We examined whether cCMP activates cAMP-dependent or
cGMP-dependent protein kinases in vitro. Purified cGKIa and
cGKIb isozymes [13–15] or commercially available cAMP-depen-
dent kinase (cAK) were used for peptide-specific radioactive phos-
photransferase assays. The Ka (cCMP) for cGKIa and for cGKIb were
66 ± 8 lM and 56 ± 8 lM, respectively (Fig. 2A). db-cCMP did not
activate cGKI isozymes (Supplementary Fig. S2). The Ka (cGMP)
and Ka (cCMP) for cAK were 59 ± 1 lM and 106 ± 10 lM, respec-
tively (Fig. 2B). cGMP concentration–response curves for activation
of cGKI isozymes revealed no leftward shift by cCMP (10 lM) (Sup-
plementary Fig. S3), indicating that sensitivity of cGKI-stimulation
by cGMP was not changed by cCMP. However, enhanced activity of
cGKI at submaximally effective concentrations of cGMP in pres-
ence of cCMP (10 lM) indicated that cGMP-dependent activity of
purified cGKI isozymes was enhanced by addition of low cCMP
concentrations.

3.3. cCMP activates cGKI in aortic tissue lysates

We analysed whether cCMP activates endogenously expressed
cGKI, determining phosphotransferase activity of wild-type aortic
lysates (Fig. 2C). cCMP at concentrations also used for myograph
experiments (10 and 300 lM) stimulated substrate peptide (VASP-
tide) phosphorylation by cGKI. Phosphorylation by cAK during these
experiments was excluded by addition of PKA5–24-inhibitor peptide.
cGMP (10 lM) induced 12-fold stimulation, cGMP (300 lM) a 13.5-
fold stimulation. cCMP (10 lM) resulted in 1.5-fold stimulation, and
cCMP (300 lM) exhibited more than 8-fold stimulation. In contrast,
cGKI-deficient aortic lysates exhibited no stimulated phosphoryla-
tion of substrate peptide either with cGMP (10 and 300 lM) or with
cCMP (10 and 300 lM) (Fig. 2D), suggesting that cGKI achieves
cGMP- and cCMP-induced substrate phosphorylation.

3.4. db-cCMP induces smooth muscle relaxation via cGKI/IRAG
signalling

In the next set of experiments we examined whether cGKI is in-
volved in cCMP-mediated vascular smooth muscle relaxation using
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cGKI�/�- aortic tissue (Fig. 3). As described [16], 8-Br-cGMP had al-
most no effect on precontracted cGKI-deficient tissue (2.5 ± 0.2 %).
Interestingly, this tissue showed a much smaller response to db-
cCMP than wild-type tissue (cGKI�/�: 4.3 ± 0.8 %). To prove that
cAMP signalling was still intact in cGKI�/�-tissue, we added db-
cAMP (300 lM) which relaxed nearly to basal tone. This observa-
tion also showed that 8-Br-cGMP and db-cCMP (300 lM each)
had only a small cross-activating effect on cAMP. To further ana-
lyse the role of db-cCMP in cGKI signalling we tested its effect on
IRAG-deficient tissue. IRAG is a substrate of the cGKIb-isozyme
which is essential for NO- and atrial natriuretic peptide-mediated
smooth muscle relaxation [7,17]. IRAG-deficient smooth muscle
tissue exhibited strongly impaired cGMP-mediated relaxation [7]
which was also shown using 8-Br-cGMP (efficacy reduced to
16.7 ± 1.5%) (Fig. 3E). The relaxing effect of db-cCMP was substan-
tially reduced (8.9 ± 0.5%) in IRAG-deficient tissue (Fig. 3D and F).
Accordingly, SMIa-rescue tissue (cGKI�/�-background with smooth
muscle specific overexpression of cGKIa, i.e. cGKIb-KO) [8] also had
a defect in smooth muscle relaxation after db-cCMP addition in
comparison to wild-type tissue (data not shown). Additionally,
we analysed whether a rise in cGMP levels is provoked by cCMP
via inhibition of phosphodiesterase (PDE) 5A, which could lead to
smooth muscle relaxation (Supplementary Fig. S4). Precontracted
aortic wild-type tissue was preincubated for 30 minutes with
1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble
guanylyl cyclase inhibitor. This should lead to reduction of intra-
cellular cGMP due to degradation by PDEs. Subsequent PDE5 inhi-
bition with zaprinast mediated reduced relaxation in comparison
to zaprinast relaxation without ODQ preincubation. ODQ preincu-
bation with subsequent db-cCMP administration had no effect on
relaxation in comparison to db-cCMP addition alone. These results
imply that a reduced cGMP level does not alter cCMP-mediated
smooth muscle relaxation. Therefore, cGMP does not determine
relaxation by cCMP.

Another hypothesis was that cCMP triggers cGKI activation via
cGMP. This could be caused either by direct cCMP-binding to one
of two cyclic nucleotide binding sites of cGKI or indirectly by inhi-
bition of a cGMP–PDE. Therefore, we examined whether db-cCMP
at a submaximally effective concentration of 10 lM enhances
relaxation by 8-Br-cGMP (Supplementary Fig. S5). Phenylephrine-
precontracted wild-type tissue was preincubated with db-cCMP
for 15 minutes, followed by addition of 8-Br-cGMP. However,
db-cCMP had no effect on intensity of relaxation suggesting that
cCMP does not modulate cGMP-activation of cGKI.

3.5. db-cCMP inhibits platelet aggregation via cGKI/IRAG signalling

db-cCMP strongly inhibited platelet aggregation (aggregation:
36.6 ± 6.5% of control N = 5). cGKI/IRAG signalling is mainly in-
volved in cGMP-mediated inhibition of platelet aggregation [9].
Hence, we studied whether cCMP signals via cGKI in isolated plate-
lets. The inhibitory effect of db-cCMP was suppressed in cGKI- or in
IRAG-deficient platelets (aggregation: 88.3 ± 5.7% of control N = 7;
103.5 ± 9.3% of control N = 6, respectively) (Fig. 4).
4. Discussion

Using purified enzymes and isolated vascular smooth muscle
and platelets we revealed that cCMP acts as signalling molecule
which utilizes the cGKI signalling pathway. Other groups reported
potential cross-activation of cGMP- and cAMP-signalling pathways
via cAMP or cGMP, respectively, [18,19]. However, substantial
activation of cAK by cCMP could be excluded because of strongly
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reduced relaxation of cGKI�/�-aortae by db-cCMP. Nevertheless,
the remaining about 4% relaxation induced by db-cCMP in cGKI�/

� aortae could result from cAK.
We have no indication that inhibition of cGMP-stimulated

phosphodiesterases including PDE5A alter relaxation by cCMP sug-
gesting that PDE5A is not involved in hydrolysis of cCMP. There-
fore, cCMP might accumulate in tissues and cells and, thereby
mediate its pharmacological effects. Furthermore, there is no indi-
cation that cGMP concentration is effectively altered by db-cCMP
application as pre-treatment by ODQ did not change the db-cCMP
effect on smooth muscle. Previous work reported the presence of
cCMP-phosphodiesterases in mammalian tissues [20]. Comparison
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of the long-term relaxing effect of 8-Br-cGMP being completely
PDE-resistant and db-cCMP revealed a slight time-dependent
reduction of db-cCMP-induced relaxation (Supplementary
Fig. S6). Therefore, it cannot be excluded that an as yet un-identi-
fied cCMP-PDE or cCMP transport proteins are present in smooth
muscle. Interestingly, cCMP or cGMP induced a slight relaxation
(Supplementary Fig. S7). In fact, cGMP transporters have already
been reported [21,22].

The physiological role of the cCMP is still unclear. A tentative
cytidylyl cyclase that synthesizes cCMP in tissues has not yet been
identified. Occurrence of cytidylyl cyclase was reported previously
but was debated [2,4,23]. The presence of cCMP and increase of
cCMP concentration by ranitidine, prostacyclin and prostaglandin
E-2 was reported in gastric mucosa [24]. Stability of cCMP against
PDEs may result in sufficiently high cCMP concentrations that
mediate physiological effects. cCMP-dependent phosphorylation
was detected in mouse brain [25], and Rab23 was cCMP-depen-
dently phosphorylated [26]. This observation could lead to identi-
fication of specific cCMP-dependent protein kinases which may,
e.g. activate cGKI and thereby mediate the observed effects.

Here, we show that cCMP stimulates cGKI and thereby induces
smooth muscle relaxation and inhibits platelet aggregation. A sum-
mary of our results concerning the cCMP signalling cascade in
smooth muscle is given in Fig. 5. This discovery demonstrates that
cCMP mediates an intracellular messenger function in specific tis-
sues and cells and actually achieves its effects via the cGMP-signal-
ling cascade. This is most unexpected, challenging the current view
regarding base-specificity of cyclic nucleotide second messenger
systems.
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