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Abstract This study was performed to prove our hypothesis
that the metabolite(s) of polycyclic aromatic hydrocarbons
(PAHs) caused the activation or phosphorylation of p53 via
DNA damage to suppress the liver X receptor (LXR)-mediated
signal transductions as a probably more direct mechanism. We
found that LXR-mediated trans-activation was inhibited by 3-
methylchoranthrene (MC) and doxorubicin (Dox) in HepG2
cells carrying wild-type p53, but not in Hep3B cells possessing
mutant p53. The exogenous expression of wild-type p53 sup-
pressed the LXR-mediated trans-activation in Hep3B cells.
The expression of mRNA for ATP binding cassette A1 was sup-
pressed by MC and Dox in HepG2 cells. The protein expression
of retinoid X receptor (RXR), a partner of LXR to form a het-
erodimer, was suppressed by MC and Dox in HepG2 cells.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: ABCA1; AHR; Atherosclerosis; DNA damage;
Luciferase assay; MC; Quantitative RT-PCR
1. Introduction

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]-

pyrene (B[a]P) and 3-methylcholanthrene (MC), are ubiqui-

tous contaminants in the environment. PAHs are detected in

multiple sources, including cigarette smoke, exhaust emissions,

industrial wastes and the pyrolysates of foods [1–3]. They

cause a wide variety of toxicities, including carcinogenesis, ath-

erogenesis and teratogenesis [4]. These toxic effects are known

to be mediated by aryl hydrocarbon receptor (AHR), a ligand-

dependent basic helix–loop–helix transcription factor [5–7]. A

ligand-activated AHR translocates into the nucleus, forms a

heterodimer complex with AHR nuclear translocator (ARNT),
Abbreviations: ABCA1, ATP binding cassette A1; AHR, aryl hydro-
carbon receptor; AR, androgen receptor; ARNT, AHR nuclear tran-
slocator; B[a]P, benzo[a]pyrene; CYP, cytochrome P450; DMEM,
Dulbecco’s modified Eagle’s medium; Dox, doxorubicin; GR, gluco-
corticoid receptor; LXR, liver X receptor; LXRE, LXR response ele-
ment; MC, 3-methylcholanthrene; PAH, polycyclic aromatic
hydrocarbon; RT-PCR, reverse transcriptase-polymerase chain reac-
tion; RXR, retinoid X receptor; T1317, TO-901317; TK, thymidine
kinase
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and finally interacts with xenobiotic responsive elements in the

5 0-flanking regions of the AHR-target genes [8]. As one of the

important mechanisms of PAH-induced toxicities, AHR up-

regulates drug metabolizing enzymes such as cytochrome

P450 (CYP), especially CYP1A1, which metabolizes PAHs to

yield reactive intermediates causing DNA damage [9].

Tumor suppressor p53 is also known to be a transcription

factor activated or phosphorylated by many types of stresses,

including DNA damage [10,11]. The activated p53 subse-

quently trans-activates target-genes responsible for growth ar-

rest or apoptosis [10,11]. Recently, it has been reported that

p53 interacts with nuclear receptor, glucocorticoid receptor

(GR), which is activated by glucocorticoids and maintains

homeostasis in response to internal or external stresses [12].

The interaction results in the promotion of the proteosomal

degradation of both proteins [12]. In addition, p53 is reported

to inhibit the specific binding of nuclear receptor, androgen

receptor (AR), which binds to androgens and is critical for

the development, growth and maintenance of the male repro-

ductive system, to DNA as a result of the inhibition of AR

dimerization [12]. These studies provide evidence for a negative

cross-talk between p53 and nuclear receptors.

PAHs, including B[a]P and MC, was reported to induce the

atherosclerosis in several experimental animals [13–15]. Previ-

ously, we reported that MC inhibited liver X receptor (LXR)-

mediated signal transductions, which are known to maintain

cholesterol homeostasis, through AHR to cause atherosclero-

sis [16]. We also reported that the metabolism, probably the

metabolic activation, of MC by CYP1A1 was a necessary step

to repress the LXR-originated signal transductions by MC

[17]. In the present study, we hypothesized that p53 activated

by the metabolite(s) of PAHs suppressed LXR as well as GR

or AR [12]. In this paper, we show evidence supporting our

idea that p53 activated by PAHs acts as a negative regulator

of LXR-mediated signal transductions to cause atherosclero-

sis via suppression of retinoid X receptor (RXR) expression,

which is a partner of LXR to form a heterodimer.
2. Materials and methods

2.1. Cell culture
Human hepatoma-derived HepG2 and Hep3B cells were purchased

from RIKEN (Tsukuba, Japan). The cells were maintained in Dul-
becco’s modified Eagle’s medium (DMEM) (Nissui Pharmacy, Tokyo,
Japan) supplemented with 10% fetal bovine serum (Bio Whittaker,
Warkersville, MD), non-essential amino acids (ICN, Aurora, OH)
and 1 mM sodium pyruvate (Gibco-BRL, Rockville, MD) in 5%
CO2 at 37 �C.
blished by Elsevier B.V. All rights reserved.
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2.2. Plasmids
The p(LXRE)2–thymidine kinase (TK)–Luc was constructed as de-

scribed previously [16]. Full-length human p53 cDNA was obtained
by PCR with a sense primer, p53-XhoI-S (5 0-CGGGCTCGAGC-
CATGGAGGAGCCGCAGTC-3 0), and an antisense primer, p53-
XhoI-AS (5 0-GTGGCTCGAGTCAGTCTGAGTCAGGCCCT-30).
The resultant fragment was digested with XhoI, and inserted into the
XhoI site of the pcDNA 3.1 mammalian expression vector (pcDNA-
p53) (Invitrogen, Carlsbad, CA).

2.3. Transient transfection and luciferase assay
One day before transfection, cells were plated at a density of 1 · 105

cells/well in a 12-well plate. HepG2 cells were transfected with 350 ng
of p(LXRE)2–TK–Luc, 100 ng of pcDNA-hLXRa and 50 ng of pRL-
TK vector (as an internal control for transfection) by using Fugene6
(Roche Diagnostics, Indianapolis, IN). After the transfection, the med-
ium was changed to fresh DMEM containing 1 lM TO-901317
(T1317), a LXR ligand (Sigma–Aldrich, St. Louis, MO), 1 lM MC,
an AHR ligand (Sigma–Aldrich) and 1, 10 or 100 nM doxorubicin
(Dox), a known p53 activator (Sigma–Aldrich). Hep3B cells were
transfected with 350 ng of p(LXRE)2–TK–Luc, 100 ng of pcDNA-
hLXRa, 50 ng of pRL-TK vector and 0.1, 1 or 10 ng of pcDNA-
p53. After the transfection, the medium was changed to fresh DMEM
containing 1 lM T1317 and 0.1 or 1 lM MC. Cells were harvested
after incubation for 36 h. Luciferase activity was measured using
Dual-Luciferase Reporter Assay System (Promega, Madison, WI).

2.4. Real-time RT-PCR analysis
HepG2 cells were treated with 10 lM T1317, 10 lM MC and

100 nM Dox. After incubation for 24 h, total RNA from these cells
was prepared using a GenElute Mammalian Total RNA Miniprep
Kit (Sigma–Aldrich). Reverse transcription reaction was performed
by using a First Strand cDNA Synthesis Kit for reverse transcrip-
tase-polymerase chain reaction (RT-PCR) (AMV) (Roche Diagnos-
tics). Quantitative real-time PCR was performed as described
previously [16].

2.5. Western blot analysis
HepG2 cells were treated with 10 lM T1317 and 10 lM MC or

100 nM Dox. Nuclear extracts from these cells were prepared after
incubation with MC for 0, 6, 12 or 24 h and with Dox for 24 h accord-
ing to the method of Dignam et al. [18]. Protein concentration was
determined using bovine serum albumin as a standard by BCA Protein
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Fig. 1. Inhibition of LXR-mediated transcriptional activity by MC and D
p(LXRE)2–TK–Luc and pcDNA-hLXRa, and to the culture were added 1 l
measured after incubation for 36 h. Values in the figure represent the averag
Assay Reagent Kit (Pierce Biotechnology, Rockford, IL). Western blot
analysis was performed using antibodies to LXRa (C-19), RXRa (D-
20), p-p53 (Ser 15), p21 (C-19) (Santa Cruz Biotechnology, Santa Cruz,
CA) and b-actin (AC-15) (Abcam, Cambridge, MA).
3. Results and discussion

To examine a possibility of whether the activation of p53

was a process critical for the suppression of LXR-mediated

signal transductions, the effects of Dox, one of the representa-

tive p53 activators, on LXR-mediated transcriptional activity

were investigated by a luciferase reporter assay using a repor-

ter plasmid, p(LXRE)2–TK–Luc (Fig. 1). When T1317, a LXR

ligand, was added to a culture containing HepG2 cells trans-

fected with the pcDNA-hLXRa,the luciferase activity seen

with p(LXRE)2–TK–Luc was elevated to a level of 12-fold

higher than that of control (Fig. 1). The luciferase activity seen

with p(LXRE)2–TK–Luc in the presence of T1317 was de-

creased to a level of approximately 20–30% by co-treatment

with MC (Fig. 1). Similarly, the luciferase activity was de-

creased by co-treatment with Dox in a dose-dependent manner

(Fig. 1). These results support the idea that the activation of

p53 is a process responsible for the suppression of LXR-med-

iated signal transductions by PAHs.

To further support the idea that p53 was involved in the sup-

pression of LXR-mediated signal transductions by PAHs, the

effects of MC and the exogenous expression of p53 on LXR-

mediated transcriptional activity were investigated in Hep3B

cells, a human hepatoma-derived cell line lacking wild-type

p53 [19]. When T1317 was added to a culture containing

Hep3B cells transfected with the pcDNA-hLXRa, the lucifer-

ase activity seen with the p(LXRE)2–TK–Luc was increased

to a level 15-fold higher than that of control (Fig. 2A). The

co-treatment of Hep3B cells with MC did not affect the lucif-

erase activity seen with the p(LXRE)2–TK–Luc (Fig. 2A).

When Hep3B cells were transfected with increasing amounts
+ + + +

+ + + +

+ - - -

-

ox, which is the activator of p53. HepG2 cells were transfected with
M T1317, 1 lM MC and 1, 10 or 100 nM Dox. Luciferase activity was
e ± S.D. from three independent experiments.
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Fig. 2. Effects of MC and the exogenous expression of p53 on LXR-mediated transcriptional activity in Hep3B cells, hepatoma-derived cells carrying
mutant p53. (A) A luciferase reporter plasmid, p(LXRE)2–TK–Luc, was co-transfected into Hep3B cells with pcDNA-hLXRa. The Hep3B cells were
treated with MC (0.1 or 1 lM). The luciferase activity was measured after incubation for 36 h. Values in the figure represent the average ± S.D. from
three independent experiments. (B) A luciferase reporter plasmid, p(LXRE)2–TK–Luc, was co-transfected into Hep3B cells with pcDNA-hLXRa
and pcDNA-p53 (0.1, 1 or 10 ng). The luciferase activity was measured after incubation for 36 h. Values in the figure represent the average ± S.D.
from three independent experiments.
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of pcDNA-p53, the luciferase activity seen with p(LXRE)2–

TK–Luc was decreased depending on the amount of

pcDNA-p53 (Fig. 2B). These results suggest that p53 plays a

key role in the suppression of LXR-mediated signal transduc-

tions by PAHs.

To further support the results of reporter gene experiments,

in which p53 was involved in the transcriptional down-regula-

tion of the LXR-target genes, we examined the effects of Dox

on the expression of mRNA for ATP binding cassette A1

(ABCA1), one of the LXR-target genes [20] (Fig. 3). The

expression of ABCA1 mRNA was induced by treatment of
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Fig. 3. Suppression of the expression of mRNA for ABCA1 by MC
and Dox. The expression of mRNA for ABCA1 was quantified by a
real-time RT-PCR. HepG2 cells were incubated with 10 lMT1317 and
10 lM MC or 100 nM Dox. After incubation for 24 h, total RNA was
prepared from the cells and subjected to the real-time RT-PCR. Values
in the figure represent the average ± S.D. from three independent
experiments. \, Statistically different (P < 0.05) relative to the cells
treated with T1317 alone.
HepG2 cells with T1317 and was suppressed by co-treatment

with MC and Dox (Fig. 3).

It has been reported that p53 interacts with GR to promote

the degradation of GR [12]. To examine the possibility of

whether p53 promoted the degradation of LXR or its heterodi-

meric partner, RXR, the expression of LXR and RXR was

investigated by western blot analysis (Fig. 4). Nuclear extracts

were prepared from HepG2 cells after incubation for 0, 6, 12 or

24 h with MC, and 24 h with Dox. The increase in the amounts

of phosphorylated p53 and p21 expression, which is known to

be a typical p53-target gene, was seen after incubation for 6, 12

or 24 h with MC, indicating that p53 was activated by MC

(Fig. 4). The expression of LXR was not decreased after incu-

bation for 12 or 24 h with MC, while the notable decrease of

RXR expression was found after incubation for 12 or 24 h with
Fig. 4. Effects of MC and Dox on the protein expression of LXR and
RXR. HepG2 cells were treated with 10 lM T1317 and 10 lM MC or
100 nM Dox. Nuclear extracts were prepared after incubation for 0, 6,
12 or 24 h with MC, or 24 h with Dox as indicated in the figure.
Nuclear extracts (50 lg) prepared from the cells were subjected to
SDS–PAGE and analyzed by western blot using antibodies to LXR,
RXR, p-p53, p21 and b-actin.
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Fig. 5. Proposed mechanism(s) for the PAH-induced suppression of
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MC (Fig. 4). When HepG2 cells were treated with Dox for 24 h,

the expression of RXR, but not LXR, was decreased (Fig. 4).

These results suggest that the activated p53 suppresses the

expression of RXR, which is a heterodimeric partner of LXR.

In the present study, we found that the activated p53 sup-

pressed the expression of RXR to cause the suppression of

LXR-mediated signal transductions. Yahagi et al. [21] re-

ported that p53 and its target genes in adipocytes of ob/ob

mice, which develop obesity, insulin resistance and glucose

intolerance owing to an inherited deficiency of the appetite-

suppressing hormone, were highly induced. They also found

that the activation of p53 was responsible for the suppression

of the lipogenic genes which were regulated by LXR. In addi-

tion, p53 is reported to negative-regulate nuclear receptors

including GR and AR [12]. Together with these results, it

may be possible to assume the mechanism of atherosclerosis

induced by PAHs as follows (Fig. 5). First, PAHs bind to

AHR and induce the expression of CYP1A1. Second, PAHs

are metabolized by CYP1A1 to generate a reactive intermedi-

ate(s) and the resultant PAH-metabolites cause DNA damage

to activate p53. Third, the activated p53 suppresses the protein

expression of RXR, which is a heterodimeric partner of LXR.

Finally, the expression of the LXR-target genes is suppressed

to cause atherosclerosis.
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