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Two complications frequently arise in real-world applications, motion and the contamina-
tion of data by outliers. We consider a fundamental clustering problem, the k-center
problem, within the context of these two issues. We are given a finite point set S of size n
and an integer k. In the standard k-center problem, the objective is to compute a set of k
center points to minimize the maximum distance from any point of S to its closest center,
or equivalently, the smallest radius such that S can be covered by k disks of this radius. In
the discrete k-center problem the disk centers are drawn from the points of S , and in the
absolute k-center problem the disk centers are unrestricted.
We generalize this problem in two ways. First, we assume that points are in continuous
motion, and the objective is to maintain a solution over time. Second, we assume that
some given robustness parameter 0 < t � 1 is given, and the objective is to compute the
smallest radius such that there exist k disks of this radius that cover at least �tn� points
of S . We present a kinetic data structure (in the KDS framework) that maintains a (3 + ε)-
approximation for the robust discrete k-center problem and a (4 + ε)-approximation for
the robust absolute k-center problem, both under the assumption that k is a constant. We
also improve on a previous 8-approximation for the non-robust discrete kinetic k-center
problem, for arbitrary k, and show that our data structure achieves a (4+ε)-approximation.
All these results hold in any metric space of constant doubling dimension, which includes
Euclidean space of constant dimension.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the design of algorithms for optimization problems in real-world applications, it is often necessary to consider the
problem in the presence of complicating issues. We consider two such issues here. The first is the processing of kinetic data,
that is, objects undergoing continuous motion. Applications involving kinetic data are omnipresent, including, for example,
particle-based simulations in physics and monitoring the motion of moving objects such as automobiles, cell phone users,
mobile sensors, or objects carrying RFID tags. The second confounding issue arises when the data is heterogeneous and
the statistical trends of the majority may be obscured by the deviant behavior of a minority of points, called outliers. The
objective is to produce a solution to some given optimization problem that is robust to corruption due to outliers.

These two issues have been considered individually in the context of kinetic data structures and robust statistics, re-
spectively, but no published work to date has involved the combination of the two. The combination of these two issues
presents unique challenges. One reason is the different effects these two issues have on the structure of algorithmic so-
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lutions. Kinetic data structures are typically concerned with handling local properties involving the interaction of a small
number of objects. On the other hand, algorithmic solutions in robust statistics involve global characteristics of the data
set, such as identifying which subset of points constitutes the majority. In this paper we consider a well-known clustering
problem, called the k-center problem, in the context of kinetic data and outliers. We refer to it as the kinetic robust k-center
problem.

Many frameworks have been proposed for handling kinetic data [26,4,38,39]. We assume a common model for process-
ing points in motion, called kinetic data structures (KDS), which was proposed by Basch, Guibas, and Hershberger [5]. In this
model the motion of each point is given by a piecewise function of constant algebraic degree, called a flight plan. KDSs track
specific properties of moving points. This is done through a set of boolean conditions, called certificates, and a corresponding
set of update rules. Certificates guarantee geometric relations necessary to a particular problem’s solution, and update rules
specify how to respond whenever a certificate fails. The KDS framework has become the standard approach for comput-
ing discrete structures for kinetic data sets because it provides a general and flexible framework for the development of
algorithmic solutions that are both provably correct and efficient. Examples include maintaining convex hulls [5], Voronoi
diagrams [2], and minimum spanning trees on geometric graphs [6].

There are four criteria under which the computational cost of a KDS is evaluated: responsiveness, efficiency, compact-
ness, and locality [24,25]. Responsiveness measures the complexity of the cost to repair the solution after a certificate fails.
Efficiency measures the number of certificate failures as compared to the number of required changes to the solution as
the points move. Compactness measures the size of the certificate set. Locality measures the number of certificates in which
each point participates. Guibas provides a more detailed overview of kinetic data structures in [24,25].

The other issue of interest in this paper is robustness. The study of statistical estimators that are insensitive to outliers
is the domain of robust statistics [36]. Robust statistics have been extensively studied in mathematics, operations research,
and computer science. Robustness in the presence of outliers is important, for example, when considering heterogeneous
populations that contain isolated and unusual data points. It is also useful when considering business and public-service
applications. Since cost is an important factor, it is desirable to provide a service to a large segment of the population,
while limiting expensive service costs involving a small fraction of outliers. Charikar et al. [8] explored the robust facility
location problem, which determines the locations of stores while minimizing the distance from customers to the stores and
the total cost of opening facilities. In such a model it is unprofitable to open a new facility to service a small number of
isolated customers. Recently, Degener et al. [14] gave a deterministic algorithm for the kinetic version of the non-robust
facility location problem and Agarwal and Phillips [1] gave a randomized algorithm for the robust 2-center problem with
an O (nk7 log3 n) expected execution time.

We consider a clustering problem that involves a combination of these two important elements. Clustering is a frequently
studied problem in operations research and computer science. Common formulations include k-center, k-means, and facility
location problems [30,29,17,35]. The (standard) k-center problem is defined as follows: Given a set of n points, find k center
points that minimize the maximum distance (called the radius) from any point to its closest center. In the discrete version
the centers must be drawn from the original n points. In contrast, in the absolute version the centers may be arbitrary points
in space [30]. Unless otherwise stated, we will assume the discrete version of the problem.

Kariv and Hakimi [30] proved that the discrete and absolute versions of the k-center problem are NP-hard in a graph-
theoretic context (for arbitrary k). The problem of finding a (2 − ε)-approximation for the discrete k-center problem is
NP-complete (also in a graph-theoretic context) [28,34]. The problem in the Euclidean metric cannot be approximated to
within a factor of 1.822 (assuming P �= NP) [17]. Demaine et al. [15] give algorithms for the k-center problem on planar
graphs and map graphs that achieve time bounds exponential in the radius and k.

Since the k-center problem is NP-hard for arbitrary k or exponential in k for fixed k, we consider approximation algo-
rithms. An algorithm provides a c-approximation to the k-center problem if the radius chosen for the k centers is no more
than c times the optimal radius. Feder and Greene [17] gave a 2-approximation for the geometric k-center problem and
Hochbaum and Shmoys [29] and Gonzalez [21] gave 2-approximation algorithms for the graph-theoretic version of the k-
center problem, both for arbitrary k. In light of the above lower bound of (2 − ε), these approximation algorithms provide
the best possible approximation bounds.

The robust k-center problem generalizes the k-center problem to handle outliers by allowing flexibility in the number of
points that satisfy the distance criteria. In our formulation we are given a set of n points, an integer k, and a threshold
parameter t , where 0 < t � 1. The objective is to compute the smallest radius r such that there exist k disks of radius r that
cover at least �tn� points. The non-robust version arises as a special case, when t = 1.

Since the robust k-center problem is a generalization of the non-robust version, the 1.822 approximation lower
bound [17] for the Euclidean context holds for the robust k-center problem as well (assuming P �= NP). Charikar et al. [8]
showed that in the graph-theoretic context, the robust k-center problem with forbidden centers (in which some locations
cannot be chosen as centers), has a lower bound of 3 − ε. They also gave a 3-approximation algorithm for the robust
k-center problem. Recently, Chen gave a constant factor approximation algorithm for the robust k-median problem [9].

The (non-robust) kinetic k-center problem is a generalization of the static version, so again the 1.822 approximation
lower bound [17] holds. No other lower bounds are known for the kinetic problem. Gao, Guibas, and Nguyen [18] give an
8-approximation algorithm for the kinetic discrete k-center problem. Har-Peled handles the discrete and absolute kinetic
k-center problems with an O (nk) time algorithm, which creates a larger static set of centers that is competitive at any
time [27].
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The kinetic robust k-center problem has not been studied before, but many application domains involving moving points
benefit from robust clustering calculations. These include the segmentation problem in vision, which attempts to separate
meaningful parts of a moving image [7,16,40]; context-aware applications, which run on mobile devices that are carried
by individuals and interact with the environment and each other [41]; and traffic detection and management, which we
use as our main motivating example. Traffic detection has been studied extensively with tactics that include using sensors
[31,23,37], knowledge-based systems [12], and individual vehicle monitoring (e.g., car GPS navigation systems) [19,3,20].
Our model assumes individual vehicle monitoring with the assumption of a flight plan provided by the navigation system
and a desired number, k, of congested areas to monitor.

Throughout this paper, we will assume that the point set S resides in a space of constant doubling dimension. We define
the disk of radius r centered at point u to be the set of points of S whose distance from u is less than or equal to r.
A metric space is said to have constant doubling dimension if any metric disk of radius r can be covered by at most a
constant number, λ, of disks of radius r/2. Euclidean space of constant dimension is an example. The doubling dimension d
is defined to be log2 λ [32]. To generalize the concept of a metric space to a kinetic context, we assume access to functions
giving the distance between two points at a given time and the earliest future time at which two points will be within
some given distance.

1.1. Contributions

As mentioned above, we present the first concurrent consideration of two practical domains, robust statistics and kinetic
data structures, and an approximation algorithm and corresponding efficient kinetic data structure to solve the kinetic robust
k-center problem. Our algorithm approximates the static k-center, kinetic k-center, and robust k-center problems as well,
since all are special cases of our problem.

The input consists of a kinetic point set S in a metric space of constant doubling dimension d, the number of centers k,
a robustness threshold 0 < t � 1, and an approximation parameter ε > 0. Some of our complexity bounds depend on the
aspect ratio of the point set, which is defined as follows in a kinetic context. Let dmin and dmax be lower and upper bounds,
respectively, on the distance between any two points over the entire motion. The aspect ratio, denoted by α, is defined to be
dmax/dmin. We obtain a (3 + ε)-approximation for the static and kinetic forms of the robust discrete k-center problem and
a (4 + ε)-approximation for the absolute version of the robust k-center problems. Note that the first bound improves upon
the 8-approximation for the kinetic discrete k-center problem as given by Gao, Guibas, and Nguyen [18] and generalizes
it to the robust setting. However, due to complications arising from the need for robustness, our result assumes that k is
constant, while theirs holds for arbitrary k. We improve their result for the non-robust kinetic problem for arbitrary k by
showing that our data structure achieves a (4 + ε)-approximation, while maintaining the same quality bounds as their KDS
(see Section 5). To our knowledge, our kinetic robust algorithm is the first approximation algorithm for the kinetic absolute
k-center problem (even ignoring robustness). We give an example in Section 3.3.4 to show that our (3 + ε)-approximation
for the robust discrete k-center problem is tight.

The KDS used by our algorithm is efficient. In Section 4.3 we will establish bounds of O ((logα)/εd) for locality and
O (n/εd+1) for compactness. Our responsiveness bound is O ((log n logα)/ε2d), implying that the data structure can be up-
dated quickly. Our efficiency bound of O (n2(logα)/ε) is reasonable since the combinatorial structure upon which our kinetic
algorithm is based requires Ω(n2) updates in the worst case (even for the non-robust case) [18], so any approach based on
this structure requires Ω(n2) updates.

2. Weak hierarchical spanner

Our approach is to extend a spanner construction for kinetic data structures developed by Gao et al. [18], which they
call a deformable spanner. This kinetic structure is defined assuming a point set S in R

d for any fixed d, but the construction
generalizes easily to any metric space of constant doubling dimension. The spanner is based on a hierarchical clustering
involving a sparse subset of points, called centers. To avoid confusion with the use of the term center as a cluster center,
henceforth we use the term node for a point in the discrete hierarchy, and the term center when referring to the center of a
disk in the solution to the k-center problem. We will use the term point to refer to an element of S . Each node is associated
with a point of S . Because of the close relationship between nodes and the associated points, we will sometimes blur this
distinction, for example, by referring both to a node u in the spanner and point u in S , or referring to the distance between
two nodes (by which we mean the distance between their associated points).

Given a point set S , a hierarchy of discrete centers is a sequence of subsets S0 ⊇ S1 ⊇ · · · ⊇ Sm such that the following
properties hold for 0 � i � m:

• S0 = S and |Sm| = 1.
• For i � 1, each node of Si−1 is within distance 2i of some node in Si , the ith level of the hierarchy.
• For any two nodes u, v ∈ Si , with associated points u, v ∈ S , ‖uv‖ � 2i .

By definition, for each node v in level i − 1, there exists a node u in level i such that v is within distance 2i of u.
One such node u is selected (arbitrarily) to be v ’s parent (and v is a child of u). We use other standard tree relationships
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including ancestors and descendants (both of which we consider in the improper sense, so that a node is an ancestor and
descendant of itself) and siblings [11]. Some properties about the deformable spanner, which follow immediately from the
above properties or are proven in [18], are given below:

• The hierarchy has a height O (logα).
• Any node in S0 is within distance 2i+1 of its ancestor in level Si .

Gao et al. [18] showed that the hierarchy of discrete centers could be used to define a spanner for the point set S . Given
a parameter γ � 1, called the stretch factor, a γ -spanner for a point set is a graph where the points are the vertices and the
edge set has the property that the shortest path length in the graph between any two points is at most γ times the metric
distance between these points. Given a user-supplied parameter c > 4, two nodes u and v on level i of the hierarchy are said
to be neighbors if they lie within distance c · 2i of each other. For each pair of neighboring nodes in the hierarchy, an edge
is created between their associated points. Gao et al. show that the resulting graph is a spanner for S , and they establish a
relationship between the value of c and the resulting stretch factor. Throughout, we will assume that c = 8, which implies
that the resulting graph is a 5-spanner. Although we will use the term spanner when referring to our structure, we will not
be making use of spanner properties directly in our results.

The KDS presented in [18] for the deformable spanner is shown to be efficient, local, compact, and responsive. The
algorithm maintains four types of certificates: parent-child certificates, edge certificates, separation certificates, and potential
neighbor certificates. We will use these same certificates in our algorithm, but with different update rules.

There is one additional difference between our structure and that of Gao et al. In order to obtain our stronger approxi-
mation bounds, we will need to make a number of copies of this structure, each with slightly different parameter settings.
The number of copies, which depends on the approximation parameter ε, will be denoted by s(ε), or simply s whenever ε
is clear from context. Its value will be given in the next section. Recall that the ith level of the hierarchy of discrete centers
is naturally associated with the distance 2i (both as the covering radius and as the separation distance between nodes).
The lowest level of the hierarchy is associated with the distance 20 = 1, which we call the base distance of the hierarchy.
Each copy in our structure will employ a different base distance. In particular, for 0 � p < s, let bp = (1 + p

s ). Observe that
1 � bp < 2. In our structure, the ith level of the pth spanner copy, denoted Si(p), will be associated with the distance bp2i .
The neighbors of a node are defined to be those nodes within distance c · bp2i , rather than c · 2i .

To simplify our algorithm presentations, unless otherwise stated, we will assume that p = 0, and so bp = 1. There is no
loss of generality in doing so, because an equivalent way of viewing the variation in the base distance is to imagine that
distances have been scaled. In particular, when dealing with the pth copy, imagine that all distances have divided by bp ,
and the hierarchy is then constructed on the scaled points using the default base distance of 1.

Since the lowest level of the hierarchy, S0 is required to satisfy the requirement that the distance between any two
points is at least 20bp , it will be useful to assume that distances have been scaled uniformly so that dmin = 2.

3. Robust K -center algorithm

Gao et al. [18] gave an 8-approximation for the non-robust discrete version of the kinetic k-center problem (for arbi-
trary k). In Section 5 we improve this to a (4 + ε)-approximation for arbitrary k. In this section we present a (3 + ε)-
approximation algorithm for the robust discrete version of this problem and a (4 + ε)-approximation algorithm for the
robust absolute version, both for constant k. Recall that the non-robust version is a special case of the robust version (by
setting t = 1), so these algorithms also apply to the non-robust case.

3.1. Intuitive explanation

For the sake of intuition regarding some of the more complex technical elements of our algorithm we first present the
algorithm by Charikar et al. [8] for the static robust discrete k-center problem, which is the basis for our algorithm, and we
explain why it cannot be applied directly in the kinetic context. Henceforth we refer to it as the expanded-greedy algorithm.

The algorithm is given as input a point set S of cardinality n, a number of centers k, and a robustness threshold t . Radius
values are chosen in a parametric search so that all potential optimal values are considered. For a given target radius r and
for each point v ∈ S , we define the greedy disk G v to be a disk of radius r centered at v , and the expanded disk E v to be the
disk of radius 3r centered at v . (We sometimes let G v and E v represent the geometric disk and sometimes the subset of S
contained within the disk. It will be clear from context which interpretation is being used.) Initially all the points of S are
labeled as uncovered. The algorithm repeatedly picks the node v such that the greedy disk G v contains the most uncovered
points, and it then marks all points within the expanded disk E v as covered. If after k iterations it succeeds in covering at
least �tn� points, it returns successfully, and otherwise it fails. The algorithm is presented in Fig. 1.

The analysis of this algorithm’s approximation bound (which will be presented later in Section 3.3) uses a charging
argument, where each point covered by an optimal disk is charged either to the expanded disk that covers it or to a non-
overlapping greedy disk [8]. The proof relies on two main points. First, greediness implies that any optimal disk that does
not overlap any greedy disk cannot cover more points than any greedy disk. Second, if an optimal disk does overlap some
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expanded-greedy(S,k, t, r)
n ← |S|
Cr ← ∅ (Cr will hold the set of k centers being created for radius r)
V ← S (V holds the set of candidate centers)
for each v ∈ V

construct G v and E v and compute count |G v | of uncovered points in S
within distance r of v

for j = 1 to k, let v j be the v ∈ V with largest |G v |
add v j to Cr and mark all points in E v as covered
for all v ∈ V , update |G v |

if at least �tn� points are covered, return Cr , and otherwise return “failure”

Fig. 1. An overview of the expanded-greedy algorithm [8] for a single radius value r.

greedy disk G v , then the expanded disk E v covers all the points of this optimal disk. This implies that optimal disks cannot
be repeatedly “damaged” by greedy disks.

To better motivate our kinetic algorithm, it will be helpful to first consider a very simple static algorithm, which does
not achieve the desired approximation bound, but we will then show how to improve it. This initial algorithm applies the
expanded-greedy algorithm to individual levels of the discrete hierarchy described in Section 2. It starts at the highest level
of the spanner and works down. For each level i, it runs the expanded-greedy algorithm with radius r = 2i , considering just
the nodes at this level as possible centers. It returns the set of centers associated with the lowest level that succeeds in
covering at least �tn� points.

There are, however, some assumptions inherent to the expanded-greedy algorithm that do not hold for this simple static
algorithm. Let us consider each of these assumptions and our approach for dealing with them.

3.1.1. All important radii will be considered
The proof of the expanded-greedy algorithm relies on the possibility for the algorithm to pick a node and cover all points

within the optimal radius of that node. However, in this initial algorithm, if the optimal radius is slightly larger than 2i then
our algorithm would be forced to choose the centers at the next higher level, nearly doubling the radius value.

As mentioned at the end of Section 2, we solve this problem by creating multiple spanners with base distances that vary,
thus partitioning the interval between 2i and 2i+1 into O (1/ε) subintervals (see Section 4). The algorithm is then applied
to all spanners, and the best result over all is chosen.

3.1.2. All points in S are candidate centers
Our simple static algorithm considers only nodes in level i as possible centers, and so points of S that do not reside on

level i are excluded from consideration. If some of these excluded centers are in the optimal solution, then the algorithm
might need to substitute a node at level i at distance up to 2i+1 from an optimal center, which would require the need for
a larger radius.

It would be unacceptably slow in the kinetic context to consider all the points of S . Our solution instead is to take
candidate centers from level i − l − 1, for a suitably chosen l (whose value will depend on ε). We will show that, for each
optimal center, there is at least one candidate point that is close enough to enable us to obtain our approximation bounds.
We are now able to cover all of the points covered by an optimal solution since the optimal center is a descendant of some
center in this lower level.

3.1.3. |G v | and |E v | are known exactly
For the static case, the algorithm of Charikar et al. [8] accurately counts the number of points within the greedy and

expanded radii of each node. However, maintaining these counts in a kinetic context would require keeping certificates
between each point in S and all potential covering centers. This would increase the compactness and locality complexities
(presented later in Section 4.3) by an unacceptable amount.

The hierarchical spanner structure allows us to count the number of points in a fuzzy greedy disk in which all points
within some inner distance are guaranteed to be counted and no points outside of some outer distance are counted. We call
this range sketching. Due to fuzziness, some of the counted points may lie outside the greedy radius, but we can increase the
expanded radius slightly so that any optimal disks affected by this fuzziness are still fully covered by the expanded disk.

3.2. Preconditions

In this section we describe the data that we maintain in our kinetic algorithm in order to produce an approximate
solution to the robust k-center problem. It will simplify the presentation to assume for now that the points are static and
rely on the description of the kinetic data structure in Section 4 for proof that these values are maintained correctly in the
kinetic context.

Recall that our construction involves multiple copies of the spanner using various base distances. From the real parameter
ε > 0 we derive two additional integer parameters s(ε) = �10/ε� and l(ε) = 4 − �log2 ε� (abbreviated respectively as s and
l whenever ε is clear). These values will be justified in the analysis appearing in the proof of Theorem 3.2. The value
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s represents the number of spanners we maintain, and l determines the number of levels of the hierarchy that we will
descend at each step of the algorithm in order to find candidate centers. Observe that s = O (1/ε) and l = log2(1/ε) + O (1).

Our algorithm depends on a number of radius values, each of which is a function of the level i, the spanner copy
0 � p < s(ε), and l(ε). Given ε, i, and p, we define the greedy radius and the expanded radius to be, respectively

gi(ε, p) = 2i
(

1 + p

s

)(
1 + 3 · 2−l) and ei(ε, p) = 3gi(ε, p).

We also define two slightly smaller radii

g−
i (ε, p) = 2i

(
1 + p

s

)(
1 + 2−l) and e−

i (ε, p) = 3g−
i (ε, p).

When ε and p are clear from context, we abbreviate the values as gi , ei , g−
i , and e−

i , respectively. Given the important role
of level i − l − 1 in our constructions, when l is clear from context, we define i− = max(0, i − l − 1), and then use i− in
these contexts.

Our algorithm maintains the following information:

• For each node u at level i of the spanner, we maintain:
– The point of S associated with u, and conversely the nodes associated with each point of S .
– The parent, children, and neighbors of u.
– The number of points of S that are descendants of u.

• For each node u at level i− of the spanner, we maintain:
– The number of points lying approximately within distance gi of u.
– The number of points lying approximately within distance ei of u.
(The sense of approximation will be defined formally in Section 3.3.)

• For each level i in the discrete hierarchy we maintain:
– A priority queue associated with level i storing the nodes of Si− ordered by the counts of points within distance gi

(approximately) as described above. (The use of this priority queue will be clarified in Section 4.)

3.3. The discrete problem

Recall that our algorithm takes as input the set S of n points and additional parameters ε (approximation parameter), k
(number of centers), and t (robustness threshold). Also recall that α denotes S ’s aspect ratio bound. The algorithm makes
use of two parameters s and l, which are both functions of ε. It returns a set of k centers chosen from S for a (3 + ε)-
approximation of the optimal solution to the kinetic, robust k-center problem.

3.3.1. Algorithm overview
The algorithm is applied to all s spanners in our structure. For each spanner, it applies a binary search over its levels, to

determine the smallest covering radius. At each level i, the k best centers for that level are calculated using the per-level
subroutine described later in this section. If this algorithm returns in failure (meaning that it failed to cover at least �tn�
points of S), the binary search continues by considering higher levels of the spanner (larger covering radii); otherwise, it
continues to search through the lower levels (smaller radii). On termination of the binary search, the k centers resulting
from the search are stored as representatives for that spanner. The k centers with minimum radius ei out of all s spanners
is output as the final solution.

3.3.2. Range sketching
In order to maintain the counts described as necessary preconditions, we need to efficiently count the number of points

of S within a fuzzy disk, which we call a range-sketch query. We are given a pair of concentric disks (B−, B), where B− ⊆ B ,
and returns a count including all points within B− and no points outside of B [13]. Given a node v at level i− , let G v and
G−

v denote the disks centered at v of radii gi and g−
i , respectively, and let E v and E−

v denote the disks centered at v of
radii ei and e−

i , respectively. In our algorithm we will apply range-sketch queries of two types, (G−
v , G v) and (E−

v , E v). The
answer to the query (B−, B) will be represented as a collection of spanner nodes, all from the same level of the spanner,
where the desired count is the total number of points descended from these nodes. This collection of nodes will be denoted
by μ(B). See Fig. 2 for an illustration.

We answer a range-sketch query by first identifying an easily computable superset of nodes covering the query region,
and then pruning this to form the desired set of nodes. To determine this superset of μ(G v ) (or μ(E v )) we first develop
the following lemmas. Recall from Section 2 the concept of a node’s neighbors, and let c = 8 denote the parameter used in
the definition. More formally, given a subset U of nodes at some level of the spanner, let

N(U ) =
⋃({u} ∪ neighbors(u)

)
.

u∈U
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Fig. 2. For v ∈ Si− the range-sketch query returns μ(G v ), all the nodes of Si− that lie within G−
v and no nodes with any descendants that lie outside of G v .

These nodes are circled and disks are shaded. The points drawn as “×” are in D(μ(G v )) and are counted for the priority queue. The dashed circle has
radius (g−

i + gi)/2.

Given a node v and h � 0, we define its h-fold neighbor set to be:

N(h)(v) =
{ {v} if h = 0,

N(N(h−1)(v)) otherwise.

Given a set of nodes U , let D(U ) denote the set of descendants of those nodes, and let D(h)(v) = ⋃
u∈N(h)(v) D(u).

Lemma 3.1. For any node v in Si and any h � 1, all the points of S that lie within distance h · 2i+3 − 2i+1 of v are in D(h)(v).

Proof. Under our assumption that c = 8, N(v) contains all the nodes in level i that are within distance c · 2i = 2i+3 of v .
(Recall that we consider the case p = 0.) By induction, N(h)(v) contains all the nodes in level i that lie within distance
h · 2i+3 of v , and thus, any node u in level i that is not in this set is at distance greater than h · 2i+3 from v . Recall that,
from basic spanner properties, all of u’s descendants are within distance 2i+1 of u. It follows that D(h)(v) contains all the
points of S within distance h · 2i+3 − 2i+1 of v . �

The above lemma provides a way to determine a set of nodes that cover all the points of S lying within a given distance
of a given node. Using this, we can identify a set of nodes at level i− whose descendants contain a superset of the points
for the range-sketch queries of interest to us.

Lemma 3.2. Let h(m) = m(2l−2 + 1). Then for any node v in Si− :

(i) The descendants of Nh(1)(v) contain all points within distance gi of v.
(ii) The descendants of Nh(3)(v) contain all points within distance ei of v.

(iii) The descendants of Nh(4)(v) contain all points within distance ei + gi of v.

Proof. By straightforward manipulations (and under our assumption that p = 0), each distance can be rewritten as follows:

(i) gi = 2i(1 + 3 · 2−l) = (2l−2 + 1)2(i−+3) − 2(i−+1) .
(ii) ei = 3 · 2i(1 + 3 · 2−l) < 3(2l−2 + 1)2(i−+3) − 2(i−+1) .

(iii) ei + gi = 4 · 2i(1 + 3 · 2−l) < 4(2l−2 + 1)2(i−+3) − 2(i−+1) .

The proof follows from Lemma 3.1 applied at level i− . �
We will apply Lemma 3.2 as a subroutine in our range-sketching procedure. Using the lemma, we first identify a set

of nodes whose descendants provide a superset of the points that might contribute to the query result (depending on the
radius of interest, gi , ei , or gi + ei), and we then prune this set by eliminating those nodes whose covering disk lies entirely
outside the inner disk. To see how to perform this pruning, recall that if u is a node at level i− , its descendants all lie
within distance 2(i−+1) = 2i−l of u. (Note that if i− = 0, then the only descendant is u itself.) Thus, if ‖uv‖ > (g−

i + gi)/2,
then (under our assumption that p = 0) it is easy to verify (by the definitions of gi and g−

i ) that every descendant u′ of u
satisfies

∥∥u′v
∥∥ >

g−
i + gi

2
− 2i−l = g−

i + gi − g−
i

2
− 2i−l = g−

i ,

and so u′ may be omitted from the range-sketch result. Conversely, if ‖uv‖ � (g−
i + gi)/2, then it is easy to verify that

every descendant u′ of u satisfies ‖u′v‖ � gi , and so u′ may contribute to the range-sketch result. Given this observation,
the code is given in Fig. 3 for the special case of the greedy disk G v . It returns a set μ(G v ) of nodes whose descendants
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range-sketch(node v , level i)
sum ← 0
U ← result of Lemma 3.2 part (i) applied to v
for each u ∈ U

if ‖uv‖ >
g−

i +gi

2 then U ← U \ u
else sum ← sum + |D(u)|

return (U , sum)

Fig. 3. The range-sketch and counting subroutine for the μ(G v ) query. To answer the μ(E v ) query, all references to μ(G v ) change to μ(E v ), g−
i and gi to

e−
i and ei respectively, and Lemma 3.2 part (ii) is used. We will call the range-sketching routine shown here range-sketchG and the one created through

these substitutions range-sketchE .

update-greedy-disks(node v , level i)
U ← result of Lemma 3.2 part (iii) applied to v
(μ(E v ), |E v |) ← range-sketchE (v, i)
for each u ∈ U

if ‖uv‖ � ei + gi

(μ(Gu), |Gu |) ← range-sketchG (u, i)
for each w ∈ μ(E v )

if w is unmarked and w ∈ μ(Gu)

|Gu | ← |Gu | − |D(w)|
update u’s position in the priority queue

Fig. 4. Subroutine to update greedy disk counts that calls the range-sketch subroutine shown in Fig. 3.

per-level-subroutine(S,k, t, ε, p, level i)
n ← |S|
C p,i ← ∅ (C p,i = {k centers being created for spanner p and level i})
V ← Si− (p) (V = {candidate centers}, Si− (p) = {level i− of spanner p})
for each v ∈ V

(μ(G v ), |G v |) ← range-sketchG (v, i)
(μ(E v ), |E v |) ← range-sketchE (v, i)

for j = 1 to k
let v j be the v ∈ V with the largest |G v |
C p,i ← C p,i ∪ {v j}
update-greedy-disks(v j , i)
for each uncovered w ∈ μ(E v ), mark w as “covered”

if at least �tn� points are covered return (C p,i , ei ) otherwise return “failure.”

Fig. 5. The per-level subroutine for spanner p and level i of the kinetic robust k-center algorithm. This subroutine calls the range-sketch and update-greedy-
disk subroutines shown in Figs. 3 and 4 respectively.

satisfy the requirements of the range sketch. The desired count is the sum of the numbers of descendants of these nodes,
|D(μ(G v ))|. The procedure returns both the set of nodes and the sum.

Recall from our earlier description of the expanded-greedy algorithm, that whenever a center v is added to the solution
at level i, the points lying within the expanded disk E v are marked as covered. In a kinetic setting it is too expensive
to mark these points explicitly. Our approach instead will be to modify the counts associated with each greedy disk that
overlaps E v . In particular, we apply range sketching to determine the nodes u in level i− whose greedy disk Gu overlaps E v ,
and for each unmarked node w in their common intersection, we decrease |Gu | by the weight D(w). The procedure is given
in Fig. 4. To prevent nodes from being counted twice, we mark all these nodes w after E v has been processed (see Fig. 5).

3.3.3. Main subroutine and analysis
We now have the tools needed to introduce the main subroutine for the algorithm. Recall that the input consists of

the point set S and parameters k, t , ε. The quantities s and l depend on ε and represent the number of spanners and
the number of levels of resolution, respectively. The current spanner is indexed by 0 � p < s, and the current level of the
discrete hierarchy is i. The per-level subroutine (presented in Fig. 5) calculates the candidate list of k centers for a given
spanner p and level i. It is called from the algorithm overview presented earlier.

Before giving the kinetic version of the algorithm, we first describe the static version, and we focus on just one stage
of the algorithm. In the static context this algorithm requires preprocessing to create the priority queue and perform range
sketching to determine initial counts for G v and E v in all levels of all spanners. We comment that this can be done in
time O ((1/ε)dn log n logα) since there are n points, priority queue insertions take time O (log n), centers are calculated for
O (logα) levels, and range sketching takes time O (1/εd) as shown by the following lemma.

Lemma 3.3. Range-sketch queries for level i involving any of the distances gi , ei or gi + ei can be answered in time O (1/εd).

Proof. The running time of a range-sketch query for a node v is dominated by the time needed to compute the set U =
Nh(m)(v) of nodes at level i− identified by Lemma 3.2. By Lemma 3.1, the distance from v to any of these nodes is at most
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h(4)2(i−+3) − 2(i−+1) � 4
(
2l−2 + 1

)
2(i−+3) � 16 · 2(i−+l).

Recall that i− = max(0, i − l − 1). If i− = 0, the distance to any of the identified nodes is O (2l). If i− = i − l − 1, the distance
is O (2i).

By definition of the hierarchy, the nodes of level i− are separated from each other by a distance of at least 2i− . By a stan-
dard packing argument, this implies that the number of such nodes within any disk of radius r is at most O ((1 + r/2i− )d),
where d is the dimension. If i− = 0, it follows that the number of nodes identified in Lemma 3.2 is O ((1 + 2l/20)d). On
the other hand, if i− = i − l − 1, the number of nodes is O ((1 + 2i/2i−l−1)d). In either case, the number of nodes is clearly
O (2l·d). Since l = log2(1/ε) + O (1), it follows that the number of nodes is O (1/εd).

The nodes of U are determined by computing the h(m)-fold neighbor set of v . We can do this by applying h(m) levels of
a breadth-first search to the graph of neighbors. The time to do this is proportional to the product of the number of nodes
visited and their degrees. Gao et al. [18] show that each node has degree at most (1 + 2c)d − 1. By our assumptions that
c = 8 and d is fixed, this is O (1). Thus, the total range-sketch query time is proportional to |U |, which is O (1/εd). �
Theorem 3.1. After preprocessing has completed, our algorithm takes time O (k(log n log logα)/ε2d) per spanner, which is
O ((log n log logα)/ε2d) under our assumption that k is a constant.

Proof. We first show that, for a single level of a single spanner, the per-level subroutine takes time O (k(log n)/ε2d). To see
this, observe that it performs k iterations. During each iteration, it updates the counts for O (1/εd) greedy disks (those that
overlap with disk E j ) based on the O (1/εd) nodes in level i− that are contained in each greedy disk. Each update also
involves adjusting the position of an entry in a priority queue holding at most n points, which can be done in O (log n)

time.
This per-level subroutine is invoked O (log logα) times per spanner, since there are O (logα) levels in the discrete hier-

archy, over which the binary search is performed to determine the best radius. Thus, the total time required to update any
one spanner is O (k(log n log logα)/ε2d). Since k is a constant, our algorithm takes time O ((log n log logα)/ε2d). �

We will now establish the approximation bound of 3 + ε.

Theorem 3.2. Let ropt be the optimal radius for the discrete robust k-center solution for S, and let rapx be the radius found by our
algorithm. Then for any 0 < ε � 1, we have rapx � (3 + ε)ropt .

Proof. Let v1, . . . , vk denote the k optimal centers. We may express the optimal radius value, ropt, as 2i + x for some integer
i and 0 � x < 2i . Let p = �sx/2i�. If p = s, set i ← i +1 and p = 0 (effectively rounding up to the next spanner copy). Clearly,
0 � p < s, and p−1

s 2i < x � p
s 2i .

We first show that it is possible, given the information we maintain and the algorithm we use, for us to cover as many
points as are covered by the optimal solution. For 1 � j � k, let O j denote the optimal disk of radius ropt centered at v j . Let
u j denote the ancestor of v j in level i− . (If i− = 0, then u j = v j .) By the basic properties of the discrete hierarchy we have

‖u j v j‖ � 2(i−+1) � 2(i−l).

The node u j will be considered by our algorithm (during the processing of spanner copy p and level i). Let G−
j denote

the disk of radius g−
i (ε, p) centered at u j . We assert that every point lying within O j will be included in the range-sketch

count for u j . To see this, let w be a point of S lying within O j , that is, ‖v j w‖ � ropt. By the triangle inequality we have

‖u j w‖ � ‖u j v j‖ + ‖v j w‖ � 2(i−l) + ropt < 2(i−l) +
(

2i + 2i p

s

)

= 2i
(

2−l +
(

1 + p

s

))
� 2i

(
1 + p

s

)(
1 + 2−l)

= g−
i (ε, p).

Therefore w lies within G−
j , the inner radius for the range-sketch query, and so it must be included among the points

counted in the range-sketch query for u j . In summary, for each optimal disk O j , there is a point u j at level i− of spanner
copy p whose range sketch covers a superset of S ∩ O j .

To establish the approximation bound, let u1, . . . , uk denote the nodes chosen by our algorithm when run at level i of
spanner copy p. (These are generally different from the u j ’s described in the previous paragraph.) Let G j and E j denote
the disks centered at u j of radii gi(ε, p) and ei(ε, p), respectively. We will show that the expanded disks centered at these
points will cover at least as many points as the optimal solution, which is as least �tn�. Since the algorithm returns the
smallest expanded radius that (approximately) covers at least �tn� points, this implies that rapx � ei(ε, p).

Given a disk D , let |D| denote the number of points of S contained within it. We will show that, for 0 � j � k, |O 1 ∪
· · · ∪ O j | � |E1 ∪ · · · ∪ E j |. Our proof is similar to that of Charikar et al. [8], and is based on an argument that charges each
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Fig. 6. An example for which our algorithm gives an approximation ratio of 3 − ε, where k = 2 and �tn� = 11.

point covered in the optimal solution to a point covered by the solution produced by our algorithm. The proof proceeds by
induction on j. The basis case is trivial, since for j = 0, both sets are empty. Assuming by induction that |O 1 ∪ · · · ∪ O j−1| �
|E1 ∪ · · · ∪ E j−1|, we consider what happens after the next center u j is added to the approximate solution. We consider two
cases:

• If G j intersects any of the k − ( j −1) remaining optimal disks, define O j be any such optimal disk. Any point w of O j is
within distance gi(ε, p) + 2ropt of u j . It is easy to verify that ropt � gi(ε, p), and therefore ‖u j w‖ � 3gi(ε, p) = ei(ε, p).
Thus, E j covers all the points of O j . We charge each point in O j to itself.

• If G j does not intersect any of the remaining O j , let O j be the remaining optimal disk covering the greatest number
of points of S . By our earlier remarks, there exists a node in level i− whose range-sketch count includes all the points
of O j . Since G j was chosen greedily to maximize the number of unmarked points it covers, it follows that the number
of unmarked points covered by G j is at least |O j |. We charge each point in O j to an unmarked point in G j .

Each time a point is charged, it is charged either to itself or to some point in a greedy disk G j that is disjoint from all
remaining optimal disks, and therefore, each point is charged at most once. It follows that |O 1 ∪ · · · ∪ O k| � |E1 ∪ · · · ∪ Ek|.

To complete the analysis of the approximation bound, it suffices to show that rapx/ropt � 3 + ε. As observed earlier, we
have

rapx � ei(ε, p) and ropt = 2i + x > 2i
(

1 + p − 1

s

)
.

Thus, we have

rapx

ropt
<

ei(ε, p)

2i(1 + p−1
s )

= 3 · 2i(1 + p
s )(1 + 3 · 2−l)

2i(1 + p−1
s )

= 3

(
1 + 1

s + p − 1

)(
1 + 3 · 2−l) � 3

(
1 + 1

s − 1

)(
1 + 3 · 2−l).

Under our assumptions that s = �10/ε�, l = 4 − �log2 ε�, and ε � 1, it follows easily that s − 1 � 9/ε, and 3 · 2−l � 3ε/16 �
ε/5. Therefore, we have

rapx

ropt
< 3

(
1 + ε

9

)(
1 + ε

5

)
� 3

(
1 + ε

3

)
= 3 + ε,

which completes the proof. �
The assumption that ε � 1 in the statement of the theorem is a technicality. The analysis may be modified to work for

any constant value of ε.

3.3.4. Tightness of the approximation ratio
In this section, we present an example that demonstrates that our (3 + ε)-approximation ratio for the discrete k-center

problem is nearly tight. In particular, given any sufficiently small ε > 0, we shall show that our algorithm achieves an
approximation ratio of 3 − ε on this example. Let δ = ε/6, and consider the set of 14 points illustrated in Fig. 6. This point
set consists of a collection of nine clusters placed on the real line, where each cluster contains from one to four points,
each lying within distance δ of some integer point. Let k = 2 and �tn� = 11. It is easy to verify that the optimal radius is
ropt = 1 + δ, which is achieved by placing centers at positions 1 and 5, so that the two disks centered at these points cover
the 7 + 4 = 11 points clustered about {0,1,2} and {4,5,6}, respectively.

We will establish our bounds under the most favorable assumptions for the approximation algorithm. In particular, we
assume that the approximation algorithm is free to select any point as a candidate center (not just the nodes in level i−). We
assume that the base distance for the hierarchy of discrete centers has been chosen so that any desired radius arises as the
value of the greedy radius, g−(ε, p), for some level i of some spanner copy p. Finally, we assume that the counts returned
i
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by range-sketching algorithm are exact. Thus, relaxing any of these restrictions in our algorithm will not significantly affect
the tightness of the approximation bound.

We assert that, even under these favorable assumptions, rapx � 3(1 − δ). To see this, suppose not. Letting p and i denote,
respectively, the spanner copy and level that produce this value, we have ei(ε, p) = rapx < 3(1 − δ). For all sufficiently
small δ, this is less than 4 − 2δ. This implies that each expanded disk covers at most the single cluster containing its center
and the clusters about the three consecutive integer points on either side of it. We also have

g−
i (ε, p) < gi(ε, p) = ei(ε, p)

3
< 1 − δ.

Since two points from different clusters are separated by a distance of at least 1 − δ, each greedy disk covers only a single
cluster. Since the cluster near 0 has the most points (four), some point of this cluster will be chosen first. The expanded disk
centered here covers only the seven points in the clusters near 0, 1, and 2. The next center to be chosen is the cluster near
10 having three points. The expanded disk is not large enough to include any other points. Thus, the algorithm succeeds in
covering only 7 + 3 = 10 points, and therefore it fails.

Since rapx � 3(1 − δ), we see that the approximation ratio is

rapx

ropt
� 3(1 − δ)

1 + δ
= 3 − 6δ

1 + δ
� 3 − 6δ � 3 − ε,

as desired.

3.4. The absolute problem

Recall that in the absolute formulation the centers may be any point in space. In this section we present a (4 + ε)-
approximation algorithm for the absolute, robust k-center problem. The algorithm is the same as for the discrete problem,
except that we modify the values of the radii upon which the algorithm is based. In particular, in place of gi(ε, p) and
ei(ε, p), we define:

ĝi(ε, p) = 2gi and êi(ε, p) = 2ĝi(ε, p).

We also define two slightly smaller radii for the range-sketch queries:

ĝ−
i (ε, p) = 2g−

i (ε, p) and ê−
i (ε, p) = 2ĝ−

i (ε, p).

Since the values of these radii have increased, we also increase the values used in various parts of Lemma 3.2 to h(2), h(4),
and h(6), respectively. By a straightforward modification of the analysis of the approximation bound given in the proof of
Theorem 3.2 for the discrete case, we have the following.

Theorem 3.3. Let ropt be the optimal radius for the absolute robust k-center solution for S, and let rapx be the radius found by this
absolute algorithm. Then for any 0 < ε � 1, we have rapx � (4 + ε)ropt .

Proof. The proof of Theorem 3.2 makes use of two key facts about the greedy and expanded disks. The first is that there
exists a spanner copy p and a level i such that, for any optimal disk, there exists a node u in level i− such that the
associated greedy disk G−

u of radius g−
i contains this optimal disk. In the absolute case, the center of an optimal disk O

may be at an arbitrary point of space, but by choosing any point of S that is covered by O and centering a disk O ′ of radius
2ropt at this point, we see that O is contained within O ′ . Therefore, in our modified algorithm, there exists a node u in
level i− such that the greedy disk Ĝ−

u of radius ĝ−
i = 2g−

i contains O ′ , and hence contains O as well.
The second key fact used in our analysis of the discrete algorithm is that, if any optimal disk overlaps a greedy disk Gu ,

then the corresponding expanded disk Eu contains the optimal disk. In the absolute case, if any optimal disk O overlaps a
greedy disk Ĝu , then every point of O lies within distance ĝi + 2ropt � 2gi + 2gi = 4gi = êi of u. Therefore, O ⊆ Êu . Given
these two key facts, the remainder of the proof is the same as that of Theorem 3.2, but with an appropriate adjustment of
the specific values of s(ε) and l(ε) and with the fact that the expanded radius has increased by a factor of êi/ei = 4/3. �
4. Kinetic spanner maintenance and quality

4.1. Certificates

The KDS algorithm of Gao, Guibas, and Nguyen [18] for the deformable spanner maintains four types of certificates.
These are applied to all levels i of each spanner. A parent-child certificate guarantees that a node in level i is within distance
2i+1 of its parent. An edge certificate guarantees that a pair of neighboring nodes in level i lie within distance c · 2i of
each other (where we choose c = 8). A separation certificate guarantees that any two distinct neighboring nodes in level i
are separated by a distance of at least 2i . A potential neighbor certificate guarantees that two non-neighboring level-i nodes
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whose parents are neighbors are separated by a distance of more than c · 2i . (Potential neighbor certificates are maintained
so that edge certificates can be easily maintained when points move closer to each other [18].)

Recall that in our data structure we have multiple spanners with differing base distances bp , for 0 � p < s(ε). As before
we present the algorithm only for the simplest case of p = 0 and hence bp = 1, but the other cases are identical up to
a scaling of distances. Also recall that, for each level i, a set of k centers is maintained as well as a priority queue. The
entries in this priority queue are nodes v in Si− , and the priority values are the counts of points within G v (computed by
range-sketching).

Our update rules are identical to those given in [18], with the following additions to the update rules for parent-child,
edge, and separation certificates. Each rule is stated relative to some level i.

Addition of a spanner edge. Increment the counts for G v and E v for all neighbors indicated by Lemma 3.2 parts (i) and (ii)
that are affected by this edge creation, and update the priority queue for level i appropriately.

Deletion of a spanner edge. Decrement the counts for G v and E v for all neighbors indicated by Lemma 3.2 parts (i) and (ii)
that are affected by this edge deletion, and update the priority queue for level i appropriately.

Addition of parent-child certificate. Increment the descendant counts for all new ancestor nodes and for all counts for
G v and E v for neighbors indicated by Lemma 3.2 parts (i) and (ii), and update the priority queue for level i
appropriately.

Failure of parent-child certificate. Decrement the counts for all previous ancestor nodes and for all counts for G v and E v

for neighbors indicated by Lemma 3.2 parts (i) and (ii), and update the priority queue for level i appropriately.

Whenever either of the count G v changes for some node v , it may affect the k-center solution. In particular, if v ’s
count increases and v is not a center, the k-center solution for that spanner is recalculated. Otherwise, the counts and
priority queue are updated, but the solution need not be recalculated. Similarly, if v ’s count decreases and v is a center, the
k-center solution for that spanner is recalculated, otherwise only the counts and priority queue are updated. In the cases
when recalculating the solution is necessary, our static algorithm is applied. Note that as time progresses our KDS allows
outlying points to become inliers and vice versa.

4.2. Preconditions

Maintaining the following preconditions ensures that the static algorithm will be applicable at any time during the
motion of the points. The preconditions needed for all points are maintained by the certificates and update conditions given
in the original deformable spanner [18].

For each level i in the discrete hierarchy, the following level-specific preconditions are maintained. First, as in Section 3.2,
we maintain a count for each node in the discrete hierarchy of the number of points that are descendants of that node.
These counts are updated whenever parent-child certificates either are created or fail. Also, for each node u at level i− , we
maintain the counts of points lying approximately within distances gi and ei , which are computed through the range-sketch
subroutine. For each level i, we maintain the counts of the points within the fuzzy disks G v associated with the nodes v
on level i. These counts are stored in a priority queue. Whenever such a count changes (in the procedure update-greedy-
disks), the priority queue is updated accordingly. If this update occurs during the course of the algorithm because a center
was chosen and nodes were marked as covered, these changes are kept track of until all centers are chosen. The changes
are undone in reverse order, so that the counts accurately represent the current state as the points continue to move. The
preconditions for each level i are maintained according to the update rules given in Section 4.1.

4.3. Quality

In order to assure the quality of the spanner, we must reason about compactness, locality, efficiency, and responsive-
ness. Recall that n is the total number of points, d the dimension, and α the user-supplied upper bound on the aspect
ratio. In this section we will show that compactness, locality, and efficiency are bounded by O (n/εd+1), O ((logα)/εd), and
O (n2(logα)/ε) respectively, which match the bounds given by Gao et al. [18] up to a factor of s = O (1/ε). In addition, we
will establish a bound of O ((log n logα)/ε2d) on responsiveness.

4.3.1. Compactness and locality
Compactness and locality conditions ensure that maintaining certificates for the kinetic data structure is not too costly

by bounding the number of certificates. Recall that compactness bounds the total number of certificates, and locality bounds
the number of certificates in which each point can participate. Since our data structure consists of s = O (1/ε) copies of the
spanner of [18], it follows that the compactness is larger than theirs by a factor of O (1/ε) and our locality is the same.
Thus we have the following.

Theorem 4.1. Our KDS satisfies compactness and locality with O (n/εd+1) total certificates and O ((logα)/εd) certificates per point.
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non-robust(S,k, ε,α)
for p = 0 to s − 1

for i = �logα� down-to 0
if |Si(p)| > k

rp ← 2i+2(1 + p
s )

K p ← Si+1
while |K p | < k add an arbitrary node of Si(p) to K p

break out of inner loop
r ← minp rp

output (K p , r), each point is serviced by its ancestor in K p

Fig. 7. The non-robust discrete kinetic k-center algorithm for arbitrary k. Recall that Si(p) denotes the ith level of the pth spanner.

4.3.2. Efficiency
The efficiency condition ensures that maintaining the kinetic data structure is not too expensive by bounding the number

of certificate failures that can occur. This is compared to the number of required changes to the combinatorial structure of
the spanner to determine the efficiency of the KDS.

Theorem 4.2. Our KDS satisfies efficiency (with respect to the number of spanner updates) with O (n2(logα)/ε) possible certificate
maintenance events.

Proof. The deformable spanner of [18] has O (n2 logα) possible maintenance events because, under pseudo-algebraic mo-
tion, events only occur when the distance between two points is at the boundary of some certificate on a given level i,
namely 2i or c · 2i . Since there are O (logα) possible levels and 2n2 of these inter-point distances, there are O (n2 logα)

possible maintenance events [18]. Recall that there are s spanners that differ according to their base distances, but the
bound on the number of maintenance events per spanner remains the same, so the total possible number of maintenance
events increases by a factor of s = O (1/ε). Since the spanner has not changed except for the base distance, the number of
changes required by the combinatorial structure of each spanner remains Ω(n2) [18], so any approach based on a spanner
requires Ω(n2) changes. So the kinetic data structure is efficient. �
4.3.3. Responsiveness

The responsiveness condition ensures that maintaining the kinetic data structure is not too expensive by bounding the
amount of time taken to repair each failed certificate. Our spanner satisfies responsiveness with O ((log n logα)/ε2d) time
per certificate update. This time is due to the possibility that a failure or addition of a certificate could require the algorithm
to be re-run and the possibility that certificates may need to be updated on each level of a single spanner.

Theorem 4.3. Our KDS satisfies responsiveness with O ((log n logα)/ε2d) time per certificate update.

Proof. As shown in [18], the certificates of each copy of the hierarchical spanner can be updated in O (1) or O ((logα)/εd)

time depending on the specific certificate that fails. In our case, the failure or addition of a certificate could require our
static algorithm to be re-run. When the priority queue is updated during the re-running, a list of changes is maintained.
After k centers for a level are chosen, the priority queue is returned to its original state (the state assuming all points
are uncovered). Since the changes made are undone, this increases the running time by only a constant factor. By Theo-
rem 3.1, the solution can be recalculated in time O (k(log n log logα)/ε2d). Given our assumption that k is a constant, this is
O ((log n log logα)/ε2d).

The failure or addition of a certificate could also require points to be updated for O (1/εd) nodes (see Lemma 3.3) on all
O (logα) levels. Each such update may induce a change to a priority queue entry, adding an additional factor of O (log n).
Thus, the total time to repair a failed certificate is O ((log n logα)/εd). The overall responsiveness is the maximum of these
two bounds (recalculation and certificate repair), which is bounded by O ((log n logα)/ε2d), as desired. �
5. Non-robust kinetic K -center algorithm

In this section we mention that by using our hierarchical spanner, it is possible to improve on the non-robust discrete
k-center algorithm presented by Gao et al. [18]. That algorithm achieved a factor-8 approximation, and we will improve this
to a (4 + ε)-approximation (both for arbitrary k). Recall that, rather than using a single spanner, we generate s(ε) = O (1/ε)

spanners with differing base distances. Our approach is to run the algorithm presented by Gao et al. on all spanner copies
and return the smallest radius over all these runs. The algorithm is illustrated in Fig. 7. The value of s is restricted in the
proof of Theorem 5.1. For proof of maintenance under motion, we refer the reader to the proof of a similar algorithm given
by Gao et al. [18].

Theorem 5.1. Let ropt be the optimal radius for k-centers chosen from the input points and rapx be the radius found by our non-robust
kinetic k-center algorithm, then rapx � (4 + ε)ropt .
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Proof. The algorithm chooses some Si on spanner p with associated radius 2i+1(1 + p
s ), where Si has the minimum ra-

dius such that |Si | � k. Since 2i+1(1 + p−1
s ) < 2i+1(1 + p

s ), |Si | > k on spanner p − 1. So at least two points from Si are

assigned to the same center in the optimal solution. These points are separated by a distance of at least 2i(1 + p−1
s ), so

the optimal radius must be at least 2i−1(1 + p−1
s ). To determine the approximation ratio we consider the ratio between

ropt � 2i−1(1 + p−1
s ) and rapx � 2i+1(1 + p

s ). Choosing s(ε) � 2
ε + 1

2 results in a (4 + ε)-approximation algorithm. �
6. Conclusion

Our work demonstrates the first kinetic robust approximation algorithm for the k-center problem with an approximation
ratio of (3 + ε) in the discrete case and (4 + ε) in the absolute case for fixed k. In addition, we give a (3 + ε)-approximation
algorithm for the static robust k-center problem for fixed k and a (4 + ε)-approximation algorithm for the kinetic non-
robust k-center problem for arbitrary k. Our algorithm is one of the first to tackle the conflict between the necessarily local
conditions required by the kinetic data structures framework to achieve responsive update rules and globally dependent
statistical information.

The KDS algorithm allows for points to change their designation as outliers or inliers over time. When considering traffic
detection, outlier flexibility ensures that cars uncovered by the chosen k centers (cars that are not in traffic) may be covered
at a later time (can get stuck in traffic) and vice versa. The robust kinetic k-center algorithm presented here can also be
modified to handle k-center queries that have the added anonymity requirement that a given number of points must be
served by a center for it to be added to the k-center solution [33]. This anonymity constraint can be satisfied by modifying
the binary search through the hierarchy to find the appropriate level as presented in Section 3.3 so that all log α levels are
searched instead. The set of k centers at the lowest level that satisfy both the current constraints and this added anonymity
constraint are output as representative for that spanner. This modification will not increase the KDS quality bounds but will
increase the static algorithm runtime to O ((log n logα)/ε2d).

Open problems in this area include revisions to the algorithm and/or kinetic framework to allow more efficient mainte-
nance of global statistical properties under motion so that algorithms move farther away from their static counterparts and
rarely need to invoke the static version of the algorithm. These modifications might additionally allow the k-center problem
to be considered for arbitrary k. Currently, the algorithm assumes a fixed k, since allowing k to be arbitrary would yield an
update time of O (k(log n logα)/ε2d) for the kinetic data structure’s responsiveness. This update time is caused by re-running
the static algorithm when changes to the set of centers are suspected. Due to the global nature of the k-center problem and
the sequential incremental nature of our algorithm, small changes to the set of centers cannot be fixed by local incremental
manipulations of the solution. Removing the restriction on k would require a different, non-sequential local solution.

In addition, it would be interesting to remove the dependence on the aspect ratio from the algorithm’s time bounds.
This dependence is due to the structure of the deformable spanner. Cole, Gottlieb, and Roditty [10,22] have worked on a
dynamic hierarchical spanner that does not depend on the aspect ratio. Use of this spanner does not immediately yield a
kinetic algorithm with no aspect ratio dependence. The Cole and Gottlieb [10] spanner makes use of path compression so
that trivial spanner paths in which a point appears in multiple levels of the hierarchy without any children are represented
as only the top and bottom of the path (Cole and Gottlieb call these jumps). However, the robust kinetic k-center algorithm
requires a maintained priority queue for each level containing weights for each point at the level. Maintaining these priority
queues would negate the space advantages of the spanner’s path compression. Thus a significantly different strategy is
needed to remove the aspect ratio dependence.
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