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1. INTR~OUCTI~N 

Let(a;q),=(l-a)(l-~q)~~~(l-aq”~‘)and(a;q),=~~~=,(l-aq”), 
0 ( q ( 1. We can define (a; q),, for arbitrary complex n by 

(a; cl), 
(a; 4)” = (uq”, q)m ’ o<qc 1. 

Jackson [6] defined a q-analogue of the gamma function as 

=m = (qx; q)m (q;qLJ (1 -qyo <q < 1. 

Note that r, satisfies the functional equation 

l-,(x + 1) =$+&,. 

(1.1) 

He also showed that lim e+I _ T,(X) = T(x). Askey [2] proved the integral 
formula 

I 

m x= a!x r(-a) r(a + 1) 

0 (-(1--4)x; 4lxl= , c7w ’ 
O<q< 1, Re(a)>O. (1.3) 

Using the q-binomial theorem [3, p. 661, 

5 mxXn= @J-v 4)co 
nio (q;q)n (xi 4)w ’ 

(l-4) 

one can easily show that l/(-( 1 - q)x; q), --) emx as q + l-. We can 
estimate the integral in (1.3) by the discrete approximation 

(I)m ‘(’ - ‘jqk’ 
c>o, O<q<l. 
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THE q-LAGUERRE POLYNOMIALS 

This can be written as 

xUd(x, c; q) 

(-(1-4)xX), 

21 

(1.6) 

where the measure d(x, c; q) has a point mass of size c( 1 - q)qk at cqk. Note 
that as q -+ 1, Jpf(x)d(x, c; q)+ lpf(x) a!x for all continuous and 
integrable functionsf(x) on (0, co). 

It turns out that if we normalize xa dx/(-( 1 - q) x; q)m and 
xad(x, c; q)/(-( 1 - q).x; q)m to have total mass one, then the moment 
sequences and orthogonal polynomials for these measures are the same. 
These orthogonal polynomials are q-extensions of the Laguerre polynomials 
and were discovered by Hahn [ 71 although he said little about them. 

The above moment sequence is clearly an indeterminate Stieltjes moment 
sequence, and the set of all measures that generate this moment sequence is 
clearly a convex set. The extreme points of this set will be found; they are 
described in Section 7. 

2. THE ORTH~GONALITY RELATION FOR THE q-LAGUERRE POLYNOMIALS 

The ordinary Laguerre polynomials are defined as 

(2.1) 

where (u)~ = a@ + l)(a + 2) .. . (a + k - 1). These polynomials satisfy the 
orthogonality relation 

I to L:‘(x) L:‘(x) xpepx dx = r(a + n + 1)/n!, m = n, 
0 (2.2) 

= 0, m # n. 

There is a q-analogue of these polynomials which is defined as 

Note that LF’(x; q) + L:‘(x) as q -+ I-. 
One orthogonality relation is 
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THEOREM 1. For a > - 1, 

Proof. 

i 
OD L!$(x; q) LIpl’(x; q) 

x0 dx 

0 (41 - q)x; 4)co 

= Ga + 1) T(-aNI” + ‘; 4)n 

q--arm 4)d ’ 
m = n, 

(2.4) 
= 0, m # n. 

We first show that 

I 
O”LIp’(x; q)xm 

xa dx 

(-(I - 4)x; 4), = O9 
m C n. (2.5) 

0 

In fact by (1.3), 

ptm 

i 
m Ly(x; q) rr 

0 (41 - 4)x; 4L3 dx 

= (qa+‘; 4Jn .c.f7 (4-7 q)kq(~Yq”+a+‘)k(l - dk 

(4; 41n kE0 w+*; 4)k(47 4)k 

(4; 4)n 

x 5 (q-n;q)kq(‘)(q”+a+‘)k~(-k-a-m)~(l +k+a +m) 

k=O (1 - q)-k(q=+l; dkb dkr@ - Q - m, + 

By the reflection formula for the gamma function and the functional equation 
for the q-gamma function, we obtain 

z(qa+ ‘; q), csc(-aa - m72) 

(4; q)J,(-a - 4 
x ,+ (q-n; q)kq’3(q”+“+‘)k(-)k(q-~-k-m;q)k 

k=O w+‘; q)k(q; q>k 

7r(q” + I; q)n csc(-az - mlr) 
= 

(4; s)J,(--a - ml 

x 2 (q-n;q)kq 
($) n+a+l)kq-uk-mk-(k~')(qat~+I;q)k 

(s 
k=o (4 =+ ‘; 4)kG?i 4)k 
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= (qa+l; q)J(-a)T(a + l)(9-“-m; 4),(-Y 
(4; 9)“(1 - 41rn c+4 

There is a sum due to Heine [see 3, p. 681, 

“, (a; q),@; q)k 
k;O (c; q)k(q;q)k 

(c/a;q),(c/b;q), 
cc; 4Mw; s>, * 

(24 

In particular when a = q-“, 

“, (q-“; q)k(hq)k 
k;(, (c; q)k(% q)k 

@hq), -= 
cc; s>, * 

Hence the integral (2.5) is 

(q; q)&(-a)( 1 - q)mq=m +(-,+‘yq” + I; 4)” 

= 0, m < n, 

= r(-a> r(a + l)(@+‘; 4M-1 
r,(-a) 4 an+n2+n(l - 4Y ’ 

m = n. 

(2.7) 

Since LIpi’(x; q) = ((-)nqn2+nu(l - q)“/(q; q)n) x” + ..a , 

I O” (Ljp’(x; q)y (-(1 5;;; q) 
0 co 

which proves the theorem. m 

We can normalize the measure so that the total mass is one, and we 
obtain 

I m LIp’(x; q) Ljna)(x; q) 
x”rq( -a) 

0 (-( 1 - 4l.v 41, r(--a) r(a + 1) d” 

= wt1;4)” 
(9; 4)df ’ 

m = n, 
(2.8) 

ZZ 0, m f n. 
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There is another orthogonality relation using Ramanujan’s sum 

-f @;q)k Xk= (ax; q),(q/tw 4MG dm(v~; 4LJ 

k=-m tb; q)k 
(2.9) 

(See Askey [2].) Equation (2.9) can be rewritten as 

(2.10) 

Let b = 0, and x = qD in (2.10). Then 

This leads to the following result: 

THEOREM 2. 

k=:o, 
Jy(cqk; 4) J%w; 4) (-c(l :;;;; q) 

00 
A 

= (qa + I; 4)n 
4%; dn ’ 

m = n, 
(2.12) 

= 0, m + n, 

where 

A = kg, (-c(I~;;*. 4) 9 co 

= (+&+rl(l - q); q)m (-l/cq@(l - 4); q)aJq; q)co 
; q),(-q/c( 1 - 4); q),(--c(l - q); q)co * 

Remarks. The sum can be regarded as an integral with respect to a 
discrete measure with mass qkatk/(-c(1 - q)qk; q)mA at cqk. The 
normalization factor A is put in so that the measure has total mass one, and 
the sum was evaluated using (2.11). 

Proof. It sufftces to show that this discrete measure has the same 
moments as the measure 

d!?‘(x) = 
xarq(-a) dx 

(-( 1 - q)x; & r(-a) r( 1 + a> 
on [0, co). 
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Now by (1.2), 

Using the 
functional 

I 
m 2” +“&(-a) 
0 (-( 1 - q)c q>J(-a) qa + 1) dt 

= T,(-a) F(-a - n) r(a + n + 1) = ~ 
r,(-a - n) r(-a) ZJa + 1) ” 

functional equations and the reflection formula for T(x) and the 
equation for the T,(x), we get 

Pn = 
(1 -qPa-‘)(l -q-“-‘)... (1 -qq-e-n)csc(-xa-an) 

(1 - q)” csc(-na) 

or 

p,= cq 
a+ I; q),q-on-(“;‘) 

(1 -4)” * 
(2.13) 

The nth moment of the discrete measure is 

ccl (Cqk)nqka+k 

,=;, A(-c(l -q)qk;&, =‘” kg, (-,(:‘;;‘;;) m A’ 

By (2.11) this is 

c”(qa+l; ( qL(--cc - 4); 4L(-Ml- 4); 4, 

x (-c( 1 - 4) qatntl; q),(--c-“/CC1 - 4); 4LJ(4~4), 1 

( 

(-c(1 - q)qn+‘; 4M--4-=/41 - 4); 4M4; 4)m 

. 

x (s a+n+‘; q),(--c(l - 9); 4M-q/a - 4); 4), ) 

Simplifying, we get 

c”w+ l; 4)n(-4 -“-“l41 r 4); 4)n 

C-41 - 4) @‘+I; 4)” 

( 

c”(1 +q-=-“/c(l -q))(l +q’-“-“/c(l-q)) 
a** (1 +q+‘/c(1 -q))(l -qQ+‘) *.. (1 -q=+y 1 

= (1 +c(1 -q)qm+‘)(l +c(1 -q)q”+*) .a* (1 +c(1 -q)qa+“) 

4 -c4qqa+1; q), 
= 

(1 -s>” ’ 

which is the same nth moment as before. 
Hence the orthogonality relation for the discrete measure is the same as 

that of the absolutely continuous one, and the theorem is proved. ! 
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This theorem implies that the moment problem 

I cc x”dY(x) = pu, = q 
-an-(“;‘yqa+l;q)n 

(1 -q)” ’ n = 0, 1) 2 )...) (2.14) 
0 

has many solutions dY’(x), in other words, the moment problem (2.14) is 
indeterminate. By a theorem of Riesz, the orthogonal polynomials 
~P&)1,“m are complete in L’(N) if and only if &P(x) is an extreme point 
of the convex set of solutions of the moment problem. The external solutions 
are purely discrete measures which have mass points located at the zeros of 
an entire function. See Shohat and Tamarkin [ 10, pp. 60, 611 and Stone [ 11, 
pp. 577-6141 for proofs of these facts. The discrete measures we found are 
not extremal since 0 is a limit point of the mass points and no entire function 
can have a finite limit point of its roots. We will give a description of all the 
extreme measures in Section 7 after we establish some preliminary results. 

3. THE THREE-TERM RECURRENCE RELATION FORL~)(X,~) 

Suppose we have a set of polynomials {p,,(~)},“~ which are orthogonal 
with respect to a positive measure &P(x) with p,(x) = k,x” + kix”- ’ + a.. 
and ((p,(x))’ &V(x) = h, > 0, n > 0, ho = p. = 1. Here we assume that the 
measure &P(x) is not a measure with finitely many mass points. From the 
general theory of orthogonal polynomials, the polynomials { P,(x)},“,~ 
satisfy a three-term recurrence relation 

XP,(X) =A, in+ I(x) + B,p,(x) + C,P~-,(x)9 n > 0, (3.1) 

where A,, = k,/k,+ , and B, = kL/k, - ki+ ,/k,+ i for n > 0, while C, = 
k,-,h,/k,h,,-,,n>l. Herek~=p~,=Oandp,=l.Sincep~,=O,C,can 
be arbitrary. In Section 7 we will find second solutions of (3.1) with 
co = -1. 

For the q-Laguerre polynomials, the three-term recurrence relation is 

(1 -q”+‘) 
-4%; 4) = - (1 _ q) q2n+a+ 1 ~jp:,tx; 9) 

+ (,-q)q2n+a + (1-q)q2"+"tl GYw) [ 
(1 - 4”) (1 -qn+a+l) 

I 

(1 -q”+“) 
- (1 _ q) q2n+a G%x; 417 n > 0. (3.2) 

We have already seen that as q + l-, Lr’(x; q)+ L:‘(x). Also (3.2) 
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becomes the three-term recurrence relation for the ordinary Laguerrc 
polynomials which is 

XL?‘(X) = - (n + 1) Ljp:,(x) 

+ (2n + a + l)LIp’(x) - (n + a)LIP_‘,(x). (3.3. 

In some applications, a three-term recurrence relation of the form (3.1: 
occurs, and one uses it to generate a sequence of polynomials { p,,(~)}:=~ 
By a famous theorem of Favard [S], a set of polynomials {p,(x)}?=, 
satisfying (3.1) withA,, B,, and C, real, n>O, andA,_,C,>O, n> 1, it 
orthogonal with respect to at least one positive measure on the real line 
which is the solution of a certain moment problem. Consequently tht 
orthogonality measure is not unique and is usually difficult to fmd. Sa 
Shohat and Tamarkin [IO, Chap. 21. 

The conditions A n _ i C, > 0, n >, 1, are necessary for the polynomials to bc 
orthogonal with respect to a positive measure. For 0 < q < 1 this means tha 
q” < q-’ so that a is either complex or a > -1. The case 0 ( q < 1 ant 
a > -I is the one considered in this paper. Other cases of orthogonality 
include q > 1 and qn > q-‘, or q < -I and q” < 4-l. In the case )q) > 1, thr 

solution of the associated moment problem is unique. 

4. RELATIONS BETWEEN Z.F’(x; q) AND L?’ *)(x; 4) 

We have shown that the {Lr’(x; q)},“. are orthogonal with respect tc 
x0 dx/(-( 1 - 4)x; 41, on [0, 00). Karlin and McGregor [9] stated a number 
of theorems about the relationships between the polynomials orthogonal wit1 
respect to #P(x) and those orthogonal with respect to xd!P(x), where dY(x 
is a positive measure. We state some of them here. 

Let (p,,(x)}~=, be a set of polynomials satisfying: 

i m P”(X)P,(X) d!w) = hl3 n=m, 
0 (4.1 

= 0, n f m, 

where pa(x) = 1, IF H(x) = 1, ho = 1, and p,(O) = 1, n = 0, 1,2 ,..., am 
h, > 0, n = 0, 1, 2 ,... . 

It follows that the 13,‘s satisfy the three-term recurrence relation 

xPn(x)=~.&+,(x) - c-4” + C,)P,(X) + C,Pn-‘(xh n 20, (4.2 



28 DANIEL S. MOAK 

wherep,=I,p-,=O, andA,_,h,=C,h,_,,n>,l, C,=O. htq&)=’ 
and 

qm+Itx)=-+ b,+dx> - P”(X)19 n > 0. (4.3 
n 

It turns out that the set {q,+,(x)/x}~zc)=, is orthogonal with respect tc 
xd!P(x). See Karlin and McGregor [9]. 

The following relations follow easily from (4.2) and (4.3): 

%+ltx)=A.q,tx)- (A, + C,+,)q,+,tx) 
+ C”+l4n+&X n 2 0, (4.4; 

n-1 h, p,(x)= l- c -pk+l(xX 
k=O k 

’ PkcX) 
qn+,(x)=--X c h’ 

k=O k 

cx _ y) 5 pktxb$y) 

k=O 
= 3 bn+ ,(Y)P”W - A(Y)&+ I(X)1 

n 

(4.5) 

(4.6) 

= 4n+ *(Y)Pn(X) - 4n+ I(X)&(Y). (4.7) 

Now we let p,(x) = ((q; q)n/(q”+‘; 4)“) L?‘(x; q). Then h, = 
(4; dn/dwtl; q)nandA,=-(l-q”t”t’)/(l-q)q2”+“t’,ti>0.Thus 

4n+&-9= (4 Q+lx)n+l 
k;ClM -q)qfi+a+l 

x (4; dn t 1 (4; 4)” (qn+l;q)n+,ctflt~x)- (qa+l;q)n c%q) 1 
at1 (s 1 ;4 nt1 II+1 = (q;q)ntl -q)qn+a+~ kgl [(q+‘;q)kq nk+k - tq-“; q)kq”k] 

or 

qn+l(x) = -xLIp+“(x; 4). (4.8) 
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Substituting all this into (4.4) through (4.7) we get 

(4; q)n+, 

= (1 - q)(qa+‘; q)nqn+=+’ 

x [Jqf$(y; 4) G%; 4) - cw; 4) ~~,@~ 4)l 

29 

(4.9) 

(4.10) 

(4; 4)n 
= w+‘; s>, 

[.&q’l) (x;q)LIp)(y;q)- Y~~‘(YX)~Ip’(v?)]. (4.11) 

Other relations for q-Laguerre polynomials which follow easily from the 
above relations are 

Lip-“(x; q) = q-“[Jy(x; q) - Lf?,(x; q)], (4.12) 

(1 -q*+.> Ljp:-l’(x.q)= (1 -~“+‘)4-n-1Lw (x.q) 
(1-q) ’ (1 -q) 

n+l 9 

+ 4 
[ 

u+nX- (l-q”+‘) q-“-’ 
(l-4) I 

Jy(x; q), (4.13) 

xL’“+l’(x;q)= (1 ,“‘d;“’ q-a-n-lp(X;q) 
” 

- (1 -cl”+‘) q-a-n-IL(n) (x.q) 

(l-4) 
n+l 3 1 (4.14) 

xLIpl+“(x; q) = 
[ 
xq” - ::I”,;’ q-“-n] LIp’(x; q) 

(1 - qn+n) q-“-“L’a_’ (x. q) 
+ (l-4) 

n1, 9 (4.15) 

LIp’(x; q) - L)p’(xq; q) = -x( 1 - q) qa+ ‘Ljp_:“(xq; q), (4.16) 

5 PLIp)(x; q) = 
(rq=+l;q), 2 qk*+ak[-(l -q)xrlk 

II=0 (r; 4)cn k=O (4; q)kb?=+‘; q)k - 

(4.17) 

Equations (4.12)-(4.16) are straightforward to verify, and (4.17) can be 
proved using the q-binomial theorem (1.4). 
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5. SOME BASIC PROPERTIES OF THE ROOTS OFL~)(.X; q) 

Many properties of Lr’(x; q) can be obtained from the orthogonality 
relation, others from the q-difference equation which is satisfied by 
LIp)(x; q). Szegli [12, pp. 44-471 proves a number of theorems about the 
zeros of orthogonal polynomials in general. We will not give any of those 
proofs here, but we will see how these theorems apply to q-Laguerre 
polynomials. We will then establish some additional properties of the roots 
of ,C!$(x; q). The behavior of these roots as II + co is important because the 
roots converge to the mass points of an extreme solution of the moment 
problem (2.14). 

DEFINITION. Let f and g be two functions defined on (-co, co). We say 
that the roots off and g interlace if a root off lies strictly between two 
consecutive and distinct roots of g and vice versa. 

THEOREM A. Let {p,(~)},“~ be a set of polynomials orthogonal with 
respect to a positive measure dY(x) on the interval (a, b). Then the roots of 
each of the polynomials are real and simple and lie in the orthogonality 
interval. Moreover, the roots of p,,+ , and p, interlace for n = 1,2, 3 ,... . 

COROLLARY. Let 0 < x$(q) < x:$(q) < -., < x?:(q) be the roots of 
L’,“‘(x; q). Then 

THEOREM B. Let {p,,(~)},“~ be a set of polynomials orthogonal with 
respect to a positive measure dY(x). Then for any n, p,(x) has at most one 
root on any interval where Y(x) is constant. 

COROLLARY. Let a and b be two consecurtive roots of LIp’(x; q), 
O<a<b. Then b/a>q-‘. 

ProoJ By Theorem 2, there is a discrete measure with point masses at 
the points { aq”}z= _ 8. Since the interval [a, aq-‘1 contains at most one root 
of Lp’(x; q), b lies outside the interval [a, aq-‘1 and b > aq-*. 1 

In Section 6 we will show that the ratio between consecutive roots is in 
fact >q-*. But to do that, we will have to use q-difference equations which 
will be discussed in Section 6. Now we will study the behavior of Ly’(x; q) 
as a or q varies. Szegti [ 12, pp. 115, 1161 proves a general theorem about the 
behavior of the zeros as a parameter is varied. 
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THEOREM C. Let w(x, t) be a weight function on the interval [a, b J 
depending on a parameter 7 such that w(x, z) is positive and continuous for 
a < x < b, z, < r < r2. Also, assume the existence and continuity of the 
partial derivative w,(x, t) for a < x < b, z, < 7 < rz, and the convergence of 
the integrals 

x”w,(x, z) dx, v = 0, 1, 2 ,..,, 2n - 1, 

untformly in very closed interval 5’ < r < 5” of the open interval (t,, Q). If 
the zeros of p,(x) = p,(x, 5) are denoted by x1(r) < x2(r) < .a. < x,(r), the 
rth zero x,(r) (for a fixed value of V) is an increasing function of r provied 
w,/w is an increasing function of x, a < x < b. 

COROLLARY. Let a > -1, 0 < q < 1, and 

be the roots of Lr’(x; q). Then for any j, 1 < j < n, x:$‘(q) is an increasing 
function of a and a decreasing function of q. 

Proof: The proof of Theorem C given in Szego [ 121 is still valid if 
‘Yncreasing” is replaced everywhere in the theorem by “decreasing.” Also, 
the proof is valid if b = 00. 

Now consider the orthogonality relation (2.4). Let w(x, a, q) = 
x”l(-( 1 - 4)x; 9)m * Then w,/w = In x, which is an increasing function of x 
on (0, co). So x:pn)(q) is an increasing function of a for each j. To prove the 
second part of the corollary, we need to show that (a/ax)(w,/w) < 0 for 
x > 0. 

a W9 _ a q [(n + l)q”- nq”-‘lx 
ax w -ax .zo (1 + (1 -4)q”x) 

= f [(n t 1)q” - nq”-‘1 (1 + (1 -4)fx) - (1 -4)q”x 

n=o (1 + 0 - 4) qn4* 

“, (n + l)q”- nq”-’ = 
&o (1 + (1 -qwx)* 
co 7 (n+ lk” “, n-1 

= “&. (1 + (1 - q)q”x)Z - & (1 + (1”- @@x)2 
cc 

(n + W = (n + lb” 

“go (1+(1 -q)q”x)*-(1+(1-q)q”+‘x)*’ (5.3) 
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For x > 0, the denominator of the second fraction is less than that of the 
first, so each term of the sum is negative. Hence (+?x)(w$w) < 0, and 
xj.Qn)(q) is a decreasing function of q for 0 < q < 1 and we are done. 1 

It turns out that not only are the roots of Lip + “(x; q) larger than those of 
Ljp’(x; q), but the roots of the two polynomials interlace. The proof, 
however, is entirely different from SzEgo’s proof of Theorem B. 

THEOREM 3. Let {xjfn)(q)};=, be the roots of Lr)(x; q). Then 

0 < x?;(q) < XI:; “(4) < x$$(q) < xe; “(4) < * * * 

< xIIp_),,n(q) < ~jp_:~s?) < x!#$(q) < 41yY4). (5.4) 

proof: Divide (4.11) by (x - y) and let y + x. Then we get 

= ( a+‘x)k 
: qk(q; q)k cL~yx; q))2 

k=O q 

(4; d. 

= (q=+‘; 41n 

x $(xLft” 
[ 

(x; q)) LIp’(x; q) - xLjp+ yx; 4) $Ly(x; q) . (5.5) 1 
Note that the left side is strictly positive. Now (d/dx)(xL~“(x; q)j has 
opposite signs at x = 0 and x = x,,, (at ‘j(q), which are two consecutive roots of 
xLp+ “(x; q). Hence LIp’!(O, q) and Lp’(x:T,+ ‘) (4); q) have opposite signs, so 
L!$(x; q) has a root in between, i.e., 0 ( x:$(q) < x’&?‘)(q). Using this same 
argument, we can show that a root of Lr’(x; q) must lie between two 
consecutive roots of Ljp+ “(x; q) and vice versa. Relation (5.4) clearly 
follows. I 

6. THE q-DmEmNcE EQUATIONS SATISFIED BY Lp’(x;q) 

For the classical orthogonal polynomials such as the Laguerre 
polynomials, one often derives results about the zeros from the appropriate 
differential equations using a comparison theorem. There is no convenient 
differential equation for LIp’(x; q). The q-difference operator V,f(x) = 
VGP) -f(x)IlM? - 111 t urns out to be a good analogue of the derivative 
operator for q-Laguerre polynomials. Note also that lim, +, V&x) = f’(x) 
assuming that f’(x) exists. Now we state a number of q-difference rules. 
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v.f(4 + g(x)) = V$(x) + vq g(x)9 
Vqvm) = W,f)(x)9 k a constant, 

vqt.tw g(x)) = f(qWqd(x) (q-product rule), 

(6.1) 

(6.2) 

(6.3) 

v 

( > 

ml-o(x)) 

q g(x) g(x) g(qx) 
7 

g(x) e g(qx) # 0 (q-quotient rule), 

V,U@)) = 4V,f)(ax), 

(6.4) 

(6.5) 

P:: -kf)(qkx)(q8)w~ (6.6) 
4 

where [;lq= (q;q)n/(q;q)k(q;q)n-k is the Gaussian binomial coefficient (q- 
Leibnitz rule). 

f(wx> = f@x) + N? - 1 mJ)@4? (6.7) 

(q;q)n P;f)w = (1 _ q) [x,xq,xq2 ,...) xQ;f] 

Here the square bracket quantity denotes the tih order divided difference 
off on the points x, xq,..., xq”; &j lies between x and xq”. 

P;fw = (6.9) 

oy)(x) = P'W~f)(P"X), p=q-'3 (6.10) 

q”-Vqf>(s”-‘4 + 4”-*(v,f)(q”-*4 
+ *** + q(V,fW) + mJ-)W 

. (6.11) 
4 “-‘+qn-*+...+q+l 

It is straightforward to verify these identities directly from the definition. 
Exton [4] derived a q-difference equation for q-Laguerre polynomials which 
in our notation is, 

xv;z$yx; q) + 
[ 

(1 -qa+y 
(1 _ q) - qa+*x V,LIp;‘(qx; 4) 

I 

+ (1 - 4”) q”+‘~‘u’(qx. q) = 0 
(1-q) n ’ 

(6.12) 
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Note that as q + 1 -, (6.12) becomes 

xLsp’“(x) + (a + 1 - x)LIp”(X) + nL?‘(x) = 0, (6.13) 

which is the differential equation for the ordinary Laguerre polynomials. 
We can rewrite (6.12) as a q-difference equation without a V, term. The 

technique is similar but a bit more complicated than that of ordinary 
differential equations. Let k(x) be a continuous function on (0, co). For 
brevity, we let L,(x) = LIp’(x; q), then for x > 0, 

vgw &t(x)) = (v;ux)) k(x)+ (4 + w,~“)(qmv)w 

+ hk7Zx)(qw) 

using (6.6). By (6.7) 

v~w)L(x)) = P&J(x) k(x) + KV,W) + q(V,k)(qs)l(V,~,>(qx) 

+ UFW; k)(x). 

Using (6.12) and doing some algebra, we get 

v;(W) L(x)) 
(1 -q=+‘) = k(q24 - k(x) + 

x(q - 1) ( 
qa + 2 _ 

(1 - 4)x 1 1 k(x) &L)(w) 
f (1 - 4”) (V$D) - (1 _ q)x q a+ ‘k(x) L,(qx). 

I 

To make the V,L,(qx) coefficient vanish, we set 

k(qzx)-k(x)=(x(q-l)q”+2+q”+1-l)k(x) 

or 

k(x) = 
1 

qn+v +a-- lk) 
kk24- 

One solution of the functional equation is 

(6.14) 

k(x) = 
X(a+ I)/2 

(-41 - 4); hc ’ 
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Now let 

k(x) = 
X(a+ 1)/Z 

(-xq(l - 9); q2)m ’ 

and 

u(x) = 
x(o+1u2 

(-xq( 1 - q); q2), L’R’(x; 4). 

Substituting for k(x) and simplifying in (6.14) we get 

cv: u)(x) 
+ [ 

(1+4) 
x2(1 - d24 

(1 + qm + Xqn+u+’ (1 - M--w2(1 - 4); q2)m - 
x2( 1 - q)2q’a + I)“(-xq( 1 - 4); q2), 1 u(qx) = * (6.15) 

We will use (6.15) to derive some results about the roots of Lr’(x; q). 

DEFINITION. Let u(x) E: C(0, co). Then we say that the roots of U(X) are 
well separated if u(c) = u(d) = 0 and 0 < c < d implies that d/c > 9-I. 
Moreover, if U(C) = u(d) = 0 and 0 < c < d implies that d/c > q-*, then we 
say that the roots are very well separated. 

We have already shown in the corollary to Theorem 4 that the roots of 
Ljp’(x; q) are well separated. But now we have an even stronger result which 
is: 

THEOREM 4. The roots of Lr’(x; q) are very well separated. 

Proof. Equation (6.15) can be rewritten as 

u(q2x) + u(x) = 
[ 
(xq n+=+l(l-q)+qa+ w-xq*u-dx*), 

q’” -‘U’(-xq( 1 - q); q2)oo I 
u(qx) (6 16) . . 

Let c and d be two consecutive roots of u(x), 0 < c < d, and let p = q-‘. 
Since the roots of Lp)(x; q) are well separated, the roots of u(x) = 
~~~~‘~‘~(l/(-x(l - q); q2),) Lp’(x; q) are also well separated, so pc < d. 
Now U(X) has one sign in the interval (c, d), and for simplicity in the 
argument, we assume that U(X) > 0 on (c, d), the argument for U(X) < 0 being 
analogous. See Fig. 1. Let x=pc in (6.16) and assume that 
c < pc < d < p2c. Since the roots of u are well separated, no root of U(X) lies 
in the interval (d, p2c]. u’(d) < 0, so U(X) < 0 in (d, p’c]. But then U(C) = 0, 
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FIGURE I 

z&c) > 0, and u(p*c) < 0. So with x = p2c the square bracket quantity in 
(6.16) is positive, and the right side of (6.15) is positive while the left side is 
negative. This is a contradiction. Hence d > p2c, and since c and d were 
arbitrary positive roots of u(x), the roots of ti are very well separated and the 
proof is complete. I 

7. THE LIMITING FUNCTIONS AND THE EXTREME MEASURES 

When a Stieltjes moment problem is indeterminate the associated 
orthogonal polynomials then converge to an entire function, the roots of 
which are the mass points of an extreme measure. See Shohat and Tamarkin 
[ 10, pp. 44-601. We will show directly that the q-Laguerre polynomials 
converge to [x(1 - q)]-42J,(2 x/(1 -4); q), where J-(X; q) is a q 
analogue of a Bessel function. The roots of the polynomials also converge as 
n + co, which is clear from (5.1). 

THEOREM 5. Let 

LIp’(x; q) = ‘(4 (q-“; q)kq(:)(qn+a+lx)k(l - q)k 

ka+lx) (q 4) k; k 

. (7.1) 

Then Lf$(x; q) converges uniformly in any bounded domain to the entire 
function 

LE’(x; q) = 
qk’+ Pk( 1 - q)k(-X)” 

k=O (q”+‘; q)k(& q)k * 
(7.2) 
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Proof: It suffkes to show that 

6 (q-“; q)k(q”+a+lx)kq’:‘(l - q)k 

ky0 (qn+‘; q)k(% q)k 

converges on bounded domains to 

qkZ+ =k( 1 - q)k(-X)” 

ke0 ha+‘; q)k(& q)k ’ 
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(7.3) 

(7.4) 

In fact 

qk2+ &k( 1 - q)k(-X)k 

k%O bat ‘; q)k(q; (I)k 

‘+ (4-i q)k(q 
n+a+l)kq(:)(l _ q)kXk 

- 

k:O w+‘; q)kb; q)k 

= 2 [qk2-(q-"-1)(q'-"-1)...(qk_;n-l)q.ktk+(~)] 

k=O 

x qaku - dk(--Nk 

(4 = + ‘; q)kb?; q)k 

< f \qkL(l -q”)(l -q”-1) . . . (1 -q’+n-k)qk*( 
k=O 

qakQ - dk lxlk 

’ (f+h)k(dk * 
(7.5) 

The inequality nzE1(l - xk) > 1 - c;,, xk9 0 < xk < 1, k = l,..., n, can 
easily be proved by induction on n. Hence 

jqkZ- (1 Bq”)(l m-q”-‘) . . . (1 -q’+“-k)qkZI 

14 < k= 
)I 

=4 
k2+n (l -q-k) 

(1 -q-‘) =q 
k2-k+n+l (l - qk) < qk2-k+“+’ 

(1 -q) (1-q) ’ 
k< n. 

Therefore 

Iqk2-(l vq”)(l v-“-l) . . . (1 -q’+n-k)qk21< qk2;~,;+’ . (7.6) 
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Note that (7.6) is valid for all nonnegative values of k. Substituting this 
estimate back into (7.9, we get 

_ 2 (q-“; q)k(qn+a+1)kq(3(1 - q)kxk 

k=O (4 a+ ‘; dk(& dk 

n+1 co 

’ (1”- 4) k=o 
-c 

qk2+-(l - q)k(X(k 

(@+l; q)k(q; q)k ’ 

The last series has an infinite radius of convergence and is therefore 
bounded in every bounded domain. It follows that the first expression in 
(7.5) + 0 as n + co uniformly in bounded domains. Hence the series (7.3) 
converges to (7.4) uniformly on bounded domains and the theorem clearly 
follows. I 

L!$(x; q) is closely related to the q-Bessel function 

00 (-)kqk2+ak(X/2)2k+a 

Ja(x;q)= k?,, T,(k+a+ l)I’,(k+ 1) ’ 

In fact 

L%‘(x; q) = [x(1 - q)]-“9, (2 A&$4) * 

(7.7) 

(7.8) 

Ismail [8], has derived a number of results about J,(x; q) and its roots. 
Some of these results can be obtained from the corresponding results for 

LF’(x; q), by letting n + co. It is not hard to show that for each j, 
lim n +oo x&)(q) = xj$(q) exists and is a root of Lg’(x; q). So 

cl < x::&(q) < xpp(q) < xg&(q) < x:;,+“(q) < * ** . (7.9) 

Letting n -P co in (6.12), we see that 

xv($gyx; q) + 
[ 

(1 -q=+‘) _ ,cz+zx 

V-4) 1 v pyxq. q) 4oD ’ 
a+1 

+ (f-s) ___ L’,a’ (xq; q) = 0, (7.10) 
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and xca + ‘)‘* (l/(-xq( 1 - q); q2)w) L’,“‘(x; q) satisfies 

(%4(x) + [ 
(1 + 4) 

x2(1 - d24 
(1 + q”)(-xq2(l - 4); q2)m 

- x’( 1 - q)2q’” + I”*(-xq( 1 - q); q2)m I u(qx) = 0, (7.11) 

by (6.15) hence the roots of Lg’(x; q) are very well separated. 
Now we will begin to construct the extreme measures for the moment 

problem (2.14). We start by first obtaining the Stieltjes transform of the 
measure 

qz, Y)=,S. (7.12) 

The role played by I(z, Y) in solving the moment problem is suggested by 
the following theorem. 

THEOREM D. If Y(t) is any solution of the moment problem 

I 
t” dY(t) = pn, Pn > 0, n = 0, 1, 2 ,..., (7.13) 

then Z(z; Y) is analytic in Im(z) > 0. Im(l(z; Y)) ,< 0, and is asymptotically 
represented by the series ~~‘Op,z-“-’ in any sector E <argz Q K- E, 
0 < & < Z/2. 

Conversely, if f(z) is analytic in Im(z) > 0, Im(f(z)) < 0 in Im(z) > 0, 
and if f(z) is asymptotically represented by the series JJ~Zp=o~,z-“-l in any 
sector E < arg z < z - E, 0 < E < n/2, then there exists a unique solution Y(t) 
of the moment problem, such that f (z) = I(z; Y). 

For a proof, see Shohat and Tamarkin [ 10, pp. 27-291. 
Now we will try to construct a function f(z) satisfying the above 

properties. First we consider the three-term recurrence relation. 

XP”(X)=A.Pn+*(X)+B?fP”(x)+C,Pn-l(X), n>O, Co=-+,, (7.14) 

PO= 1, p.-, =o, (7.15) 

for the polynomials {p,(x)}zZo orthogonal with respect to a solution Y(x) of 
the moment problem. Note that the {P,(x)}~=~ and the equation (7.14) 
depend only on the moments {pl,}FZo of the measure dY(x). Next we let the 
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sequence of polynomials {q,(x)},“O satisfy (7.14) with the initial conditions 
q-i = 1, qO = 0. It follows easily by induction on n that 

qn(z) = 1 O” P,(Z) - Pm #p(Q , n=o, 1,2. 
-co z-t 

Consequently, if p,(z) = CjjCO ukzk, then 

qn(z) = @&ok”-’ + (%P, + %-,Po)z”-* 

+ *a* + (a#,-, +a”-,&-, + .‘. +u,jlu,). (7.17) 

q,,(z) is called the numerator polynomial associated with p,(z). 

LEMMA. The continued fraction 

f,(Gf)= - 

4n+ l(Z) - FL(z) 
= P,+,(Z) - OPtI 

converges us n + 00 for each real value of a to I(z, yd), where !PO is u 
solution of the moment problem. 

For a proof, see Shohat and Tamarkin [ 10, pp. 46-5 11. 
Now for the moment problem (2.14), p,(z) = Lfp’(z; q). We denote the 

associated numerator polynomial as v’R’(z; q). Define 

A.+,(z) = - (q2; 4)” v’!,(z; 4) vlp;‘,(O; 4) I 
(4 a+l;q)“qn+a+r Vy(z;q) Vy(O;q) / ’ 

- (q2; 4h 

Bfi+&)= (qa+l;q)nqn+a+l 

Cn+,(z>= 
- @I*; 4)” 

(4 
“+l;q)nqn+n+l 

LE&; 4) v’R:lKe 4) ’ 
LIp’(z; 4) vp’(O; 4) I ’ 

vlp:,(z; 4) J$w 4) 
(7.18) 

v’,a’(z; q) LIp’(O; 4) ’ 

D”,,(Z) = 
- (q2; 4). L(‘L) (z- q) LCn) (0. q) it+1 3 n+1 3 

(4 n+l;q)“qn+n+l LIp’(z;q) LF’(O;q) ’ 

L%(z)= .f 
( 

4%; 4h 
kc0 G?=+‘; Q)” 

@yz; q)12) - *. 
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Using the three-term recurrence relation (3.2) but with C, = -p, = -1, we 
get 

A,+,(z) = z ,to ($y& q)(z; 4) v’,a’P; 41, 
J 

B,+,(z)=-1 +z 2 
j=O 4 t 

$T;‘): 
; 4)j 

LI”‘(z; q) v’j”‘(O; q), 

” d(q;q)J qyz; q) L;“‘(o; q), Cn+1@)= 1 +z c 
j=O t q”+ ‘; 4)j 

D,+,(z) = z f 4’tqiq)j 
j=O qa+';4)j ( 

Lj”‘(z; q) LjU’(O; q). 

(7.19) 

DEFINITION. Let dYY,(x) and dY,(x) be two measures on the real line. 
Then dY, and d!P’, are substantially equal if If(x) dY,(x) = If(x) d!PY,(x) 
for all continuous functions f with compact support. 

Let 

(7.20) 

If Y(f) is of bounded variation, then we have the Stieltjes inversion 
formula 

4 [ ul(t, + 0) + Y(t, - O)] - ; [ qt, + 0) - Y(t, - O)] 

[Z(t + is) - Z(t - k)] dt. 

See Stone [ 111. Thus Y((t) is substantially uniequely determined by Z(z, Y). 
With these preliminary definitions established, we are now ready to state 

the main theorems. 

THEOREM E. The polynomials A,, 1(z), B,, ,(z), C,, ,(z), and D,, ,(z) 
converge uniformly in bounded domains to entire functions A(z), B(z), C(z), 
and D(z). Moreover the series 

1 -= z ( “+l;q)k 
P(Z) 

", qk(q; q)k p4qz; q))2 
k=O 4 

(7.22) 

converges uniformly in every bounded domain. 
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THEOREM F. If Y(t) is a measure which is a solution of the moment 
problem (2.14) then 

I a dY’(t) A(z) - a(z) C(z) 
-a, z-t = ICz; y? = B(z) - u(z) D(z) ’ 

(7.23) 

where o(z) is analytic in the half plane, Im(z) > 0, satisfying Im(a(z)) < 0 
for Im(z) > 0. Moreover, a(z) is ‘uniquely determined by the solution Y(t). 
Conversely, for each function a(z) satisfying the above conditions there is 
substantially one solution Y(t) of the moment problem which also satisfies 
(7.23). For each non-real value of z, the function 

A(z) - UC(Z) 
B(z) - uD(z) 

describes the circumference of a circle C(z) when the real parameter u 
describes [-a~, ao]. The value of I(z; Y) is always either on -the boundary or 
in the interior of C(z). To each point &, of the circumference of a circle C(z,) 
there corresponds a substantially unique solution of the moment problem Y(t) 
such that Z(z,; Y) = &,. It is given by (7.23) with u(z) replaced by the 
constant u0 determined from 

< = &o) - uoC(zo) 
O B(zo) -uoD(zo) * 

The set of solutions Y(t) satisfying I(z,; Y) = co, where co is on the circum- 
ference of C(z,) does not depend on zo. To each co interior to the circle C(z,) 
there correspond continuously many solutions Y(t) such that Z(z, ; Y) = co. 

THEOREM G. Let u E [-co, co ] and !PU be a solution of the moment 
problem (2.14) such that 

A(z) -UC(Z) gz. y ) 
B(z) -uD(z) ' u * 

Then Y0 is a step function; the location of the mass points coincides with the 
set of zeros of the denominator B(z) - uD(z), and the mass concentrated at 
each mass point xi(u) is p(xj(u)). The spectrum {xj(u)},Eo interlaces with the 
spectrum {xj(r) }jZ 0, t # u. For any real value of x0 there is a unique value 
o. of U, -OJ ( o < a~, such that x0 E {Xj(o)},Eo. Moreover, for each j, Xj(O) 
is a continuous monotonic function of 0. 

These theorems and their proofs are found in Shohat and Tamarkin [ 10, 
pp. 52-601, and Stone [ 11, 00. 577-6141. It follows that the measures 
{ YU: --Q) < u < co} are the extremal measures. These extreme measures 
have an important property stated in the following theorem. 
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THEOREM H. Let !P(t) be a solution of the moment problem (2.14). Then 
the q-Laguerre polynomials LIp’(x; q) are complete in L*(dY) if and only if 
Y(t) is an extremal solution of the moment problem (2.14). 

For a proof see Shohat and Tamarkin [ 10, pp. 61,621. 
Now we will try to calculate B(z) - oD(z) as explicitly as we can, using 

the following lemma. 

LEMMA. The following relations hold. 

*)(O;q)=((!l~$~ [l- (qiq+iP)“], a#O, n>O, (7.24) 
; n 

D,, 1(z) = zL,lp+“(z; q), (7.25) 

(4; q)n+, 
Bn+1@)=- (qa;q)n+, LIp;,“(Z; q) - ‘tl-;t; ZLf+l’(Z; q), 

a # 0. (7.26) 

ProoJ We start with (7.24). The case a = 0 has to be treated differently, 
because Vna’(O; q) and B,, r(z) have singularities there. We will derive all 
these results for a # 0 and later consider the limiting case as a + 0. 

k=l (4 a+‘; q)k(q; q)k(l - 41-l 

= (qn+l;q)nqa(l -4) + (q-“;q)k(@;dk tqn+l)k 

(q;q),(l -f) k?l (@+‘??)kh?)k ’ 

Now by Heine’s identity (2.6) 

vy(0; q) = (q n+‘; 4)“4”(1 - 4) 
( 

(4; 4)” 
- (4; - d”U 9”) w+ 9 q), l 1 

= qv - 4) 
(1 ( 1 

w+‘; 4)n _ 

-P) (4;q)n 1 . 

(7.27) 

proving (7.24). 



44 DANIEL S. MOAK 

To prove (7.25), we use (7.19) and (4.20) to write D,+,(z) as 

D,+,(z) = z,to bLj=‘(z; 4) 
= ZLIp + ‘I(,; q). 

Similarly, 

B,+,(z)=-1 + (l -qk”z [ 5 6(4; 4)/ 
(1 -4”) j=o (4 

, q), L:a)(z, 4) - 4iL:“Yz; 911 otl. 

using (7.24) and (7.19). By (4.9) and (4.10), 

(4; 4)n + 1 
Bnt 1(z) = - (q”; q)nt, LIp;I”(Z; 4) - (1 - 4wz 

(1 - 9”) 
Lip? + ‘)(z; q), 

which is (7.26). m 

THEOREM 14. Let d!P(x) be a measure which is a solution of the moment 
problem 

1 
00 

x” d!I’(x) = /I, = 
(qP+l; q)nq-d”-P2+‘) 

--oo (1 -4)” ’ 

where a > -1, and 0 < q < 1. 
Then Y(x) is an extremal solution of the above moment problem if and 

only tffor some value of o, --oo < o < a~, Y(x) is substantially equal to the 
measure YJx), which has jumps of size 

P(Ph 4)) = (7.28) 

at the point slp’(u; q), which is the kth root (written in increasing order) of 
the entire function 

G'n'(Z,a;q)=L',"'(Z;q)- UZLg+')(Z; q). (7.29) 

In particular 

G(U) a> -1, a#O. (7.30) 
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For each real number r there is a unique real number 6, --00 < u < 00, 
such that ‘u, has a mass point at T, and o is given by 

U= Lg’(c 4) 
rLz+ yr; q) 

if rL g + yt; q) f 0, 

=--a if tLfg+“(T; q) = 0. 

Moreover, as u increases from --co to 0, T~‘(cJ; q) decreases from 0 to 
--a~, and as u increases from -a~ to 00, $‘(a; q) decreases from xl”+ “(4) 
to 0, and for k > 2, rf’(u; q) decreases from xjp-:“(q) to xjp-:“(q). 

Proof. Our first task is to show that B(z) - uD(z) = C . G(=‘(x, f (a); q), 
where C is a nonzero constant and f (a) is a continuous monotonic function 
of u. 

Let us assume for the moment that a # 0. Then by (7.25) and (7.26), 

B(z) - CD(Z) = - (4; 4)a, 
(4”; dm 

L!.y(z; q) - [ ‘l1;qqt; + u] zLg+“(z; q). 
(7.32) 

Now replace n by n + 1 in (4.12), and add that equation to (1 - q)ql times 
Eq. (4.14). We then get (replacing x by z), 

Ljp,;“(Z;q) + (1 -q)q”zL:+‘) (z; q) = LIp!,(z; q) - qY.lp’(z; q). (7.33) 

By letting n -+ co we obtain 

L’,“-“(z;q)=(1-q”)L~‘(z;q)-(l-q)q”zL’,”+”(z;q). (7.34) 

Then (7.34) becomes 

B(z) - uD(z) = -cl; 4)cn 
(q =+I; 91, c?tz; 9) 

+ [(‘I-;?; (($y’,g, - 1) -u] zL’,n+“(z; 4). (7.35) 

Note that B(z) - uD(z) has a removable singularity at a = 0 so that 
(7.35) remains valid for all a > - 1. We can now factor out 
-c?; 4im/t4”+ ‘; q)a and then reparameterize u to obtain Gtn)(z, a; q). The 
first part of the theorem now follows easily from Theorem 12. Using the 
definition of G(=)(z, a; q) and (7.34), we quickly obtain (7.30). (7.3 1) follows 
by setting GtU)(t, u; q) = 0 and solving for cr. 
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FIGURE 2 

To study the behavior of the roots as u changes, we differentiate (7.3 1) to 
get 

(7LZ + 1)(a; q))* 
. (7.36) 

Letting n--t co and x = r in (5.5) we obtain 

au - w+l; dm [ 
cc 4%; dk ;o(qa+l; q)k (LY(7; 4N2] 

-z 
(4; q)m(7Lz+‘Y7; q))2 

< 0. (7.37) 
a7 

This implies that each root cp’(o; q) of GtU)(x, t; q) is a decreasing function 
of o. Moreover, when we take into account Theorem D and the fact that 
G(“)(r, 0; q) = L$(r; q) has no negative roots, we see that the graph of u vs 7 

must look like Fig. 2. The rest of Theorem 11 follows easily. a 
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