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Abstract 

In this note we propose a fast parallel iteration process for solving a low-order implicit Runge-Kutta method. 
The resulting scheme can be regarded as a parallel singly diagonally implicit Runge-Kutta (PDIRK) method. On a 
two-processor computer, this method requires effectively the solution of two implicit relations per step. By two 
numerical experiments we compare this method with some sequential methods from the literature, and show its 
efficient behaviour. 
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1. Introduction 

Consider the stiff initial-value problem (IVP) for the system of first-order ordinary differen- 
tial equations (ODES) 

W) 
-==f(y(t)), y(t,)=y,, t,<t<T, y:R+RN, f:IIP”+RN. 

dt (l-1) 

In this note we will concentrate on ODES which have to be solved with low-accuracy demands 
(such as partial d’ff I erential equations). Among the suitable methods for this purpose, the class 
of DIRK methods seems to be very attractive, since they combine good stability properties with 
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low computational costs. The only disadvantage of these methods is their low stage order 
(usually equal to 11, causing order reduction in many stiff problems (cf. [2]). In [7], van der 
Houwen and Sommeijer proposed parallel iterated Runge-Kutta (PDIRK) methods for the 
parallel numerical integration of (1.1). These methods have a high(er) stage order but need 
quite a number of iterations (i.e., implicit stages) in order to be unconditionally stable. These 
methods are able to produce accurate results, but at a relatively high price. Therefore, they 
seem to be not the most suitable candidates to serve the present purpose: to generate 
low-accuracy results at a low price, using an unconditionally stable method. 

In this note we construct a PDIRK method based on the concepts used in [7]. In that paper 
the convergence behaviour of these PDIRK methods was characterized by the magnitude of the 
iteration error function in the left half-plane (see also [8]). The PDIRK method in the present 
paper possesses step point order and stage order equal to 2. The parameters of the PDIRK 
method are chosen such that this method is L-stable and its iteration error function vanishes in 
the whole left half-plane. The resulting PDIRK method can be regarded as an L-stable singly 
diagonally implicit Runge-Kutta (SDIRK) method with four implicit stages. However, on two 
processors, only two sequential implicit stages per step are required. We expect this method to 
be an efficient integrator in the low-accuracy range. By means of two numerical experiments we 
will compare the efficiency of the method constructed in this note with that of a number of 
sequential DIRK methods from the literature and with the code LSODE (in which we 
restricted the order to 2). 

2. PDIRK method 

Starting with an s-stage implicit Runge-Kutta (IRK) method 

which is referred to as the corrector method, we consider a parallel diagonally implicit iteration 
process of the form 

Y(O) = e 63 y n n, (2.la) 

Y”‘-h[D~ZI,]F(Y,“‘)=e~y,+h[(A-D)~ZI,]F(Y,(j-’)), j=l,2,...,m, n (2.lb) 

Y n+l =yn +h[bT@zN]F(Yn(m)). (2.lc) 

Here, the s-dimensional matrix D is of diagonal form with fixed positive diagonal entries. 
Owing to this form, the s components of each iterate YJi) can be solved in parallel. Hence, on 
an s-processor machine, (2.1) requires effectively the solution of m implicit relations per step. 
The freedom in the matrix D will be used to obtain fast convergence, i.e., to minimize the 
value of m. 

Methods of the form (2.1) were first proposed in [7], and can be considered as DIRK 
methods. An extension to second-order ODES can be found in [4,9]. 
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2.1. The iteration error function 

The iteration error of the process (2.lb) is studied on the basis of the model test equation 
y’(t) = Ay(t), where A runs through the eigenvalues of the Jacobian matrix af/ay (cf. [7,8]). For 
this equation we obtain the iteration error equation 

Y,-Y,,‘j’=[Z(z)]‘[Y,-Y,,(O)], j=l,2,...,m, 

Z(z) :=zD[I-zD]-‘[D-‘A -I], z:=Ah. 
(2.2) 

The matrix Z(z) is called the iteration error matrix, and its spectral radius p(Z(z>> the iteration 
error function. The region of convergence is defined by 

C= {z: p(Z(z)) < 1, Re(z) GO}. (2.3) 

In this note we will consider a diagonal matrix D with constant diagonal entries 6, i.e., D = 61. 
Then, the iteration error function reduces to the form 

IzSl 
P(Z(Z)> = ,I _z8, PF’A -I)- (2.4) 

In the next subsection we will construct an L-stable PDIRK method with vanishing iteration 
error function p(Z( z )). 

2.2. Construction of the PDIRK method 

In this note we will restrict our considerations to the case s = 2 and we will first construct a 
suitable IRK method which can serve as the corrector. 

For that purpose we will use the collocation principle and impose the simplifying conditions 
B(2) and C(2) (cf., e.g., [2,3]). Based on the collocation vector c = (a, ljT, we find the corrector 
given by the Butcher array 

42 - cy) (Y* 

cx 2(1-a) 2(cY - 1) 

1 l-2a 
1 

2(1 - cy) 2(1 -(-Y) 

1 l-2a 

2(1 - ff) 2(1 -a) 

(2.5) 

where (Y is still a free parameter which will be used to obtain good convergence. Concerning 
the stability of this corrector method, we have the following theorem. 

Theorem 2.1. The two-stage implicit Runge-Kutta method defined by (2.5) is L-stable for any 
positive real-valued (Y. 
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Proof. The stability function R,,,, (t) of the IRK method (2.5) is defined by (cf., e.g., [2,3]) 

R,,,,(~) = 1 +zbT(z-~)-le= det(z-A +zebT). 
det(Z-tA) 

A simple calculation leads to 

%,,(~) = 
2+(1-c+ 

2-(1+a)z+c& 

(2.6a) 

(2.6b) 

Along the imaginary axis (z = i y) we have 

I R,,,,(iy) I ’ = 
4 +y2(1- CX)’ 

(2 - ‘yy*)* + y2(1 + Ly)* 
G 1, for all real-valued y and (Y. 

Since R,,,,( > z is an analytical function of the left half-plane (its two poles are easily seen to lie 
in the right half-plane for all positive cy), we may conclude that the IRK method (2.5) is 
L-stable for all positive LY. •I 

Now we can exploit the freedom on the choice of the two parameters (Y and 6 to minimize 
the iteration error function of the PDIRK method (2.1). For this purpose we will choose cy and 
6 such that p(Z(w)) = p(S?A - I) = 0. This requirement leads to the condition 

S=++l), a=3+2& (2.7) 

By means of (2.4) we have p( Z(z)) = 0 for all z lying in the left half-plane. Thus, we have the 
following theorem. 

Theorem 2.2. The iteration error function of the PDZRK method defined by (2.11, (2.5), and (2.7) 
is identical to zero in the whole left half-plane {z E C: Re( z) < 0). 

Notice that in condition (2.7) we have two positive values of (Y, but it is natural to choose the 
smaller value Q = 3 - 2fi. 

Theorem 2.2 implies that [Z(z)]* = 0 (zero matrix), in the whole left half-plane; conse- 
quently, with respect to the model equation, the PDIRK method (2.1), (2.5), (2.7) with m >/ 2 
produces exactly the corrector solution. 

Applying the PDIRK method to the model test equation y’(t) = A y(t), we obtain the 
recursion (cf. [7]) 

Y n+l =R,(z)yn, R,(z) =R&z) -z”b’[Z(z)]“[Z-ZA-‘c, (2.8) 

where R corr(~) is the stability function of the RK corrector method (2.51 defined by (2.6). 
Hence, (2.8) together with [Z(z)]* = 0 implies that R,(z) = R,,,,(z). Thus, we have the 
following corollary. 

Corollary 2.3. The PDZRZC method defined by (2.1), (2.5) and (2.7) with m = 2 is L-stable and has 
step point and stage order both equal to 2. 
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3. Numerical experiments 

In this section we will report the numerical results obtained by the PDIRK method defined 
by (2.11, (2.5) and (2.7) with m = 2 (PDIRK, method) and by a number of sequential DIRK 
methods from the literature. We selected the following sequential DIRK methods: 

Norsett, and Norsett,: third- and fourth-order A-stable methods of Norsett (cf. [5]); 
HW, : fourth-order L-stable method of Hairer and Wanner (cf. [3, p.1071); 
cs,: fifth-order A-stable method of Cooper and Sayfy (cf. [l]). 

The computations were performed using fifteen-digits arithmetic. The accuracy is given by the 
number of correct digits NCD, obtained by writing the maximum norm of the error at the end 
of the integration interval in the form 10pNCD. The sequential computational effort is measured 
by the number of sequential stages per unit interval. The (fixed) stepsize h is chosen such that 
the number of sequential stages per unit interval equals a prescribed number M (cf. [9]). In the 
tables of results, s” denotes the effective number of stages per step, required by the various 
methods. 

3.1. Prothero -Robinson-type problem 

Our first example is the difficult system of (uncoupled) Prothero-Robinson-type equations 

(see [91) 

W) - =J[y(t) -g(t)] +g’(t), 
dt 

Y(O) =g(O>, 
(3.1) 

J = diag( - 10 2(j-1)), g(t) = (1 + sin(jt)), j=l ,..., 6, O,<t<20. 

Prothero and Robinson [6] used a problem of this type to show the order reduction of RK 
methods. The exact solution of (3.1) is given by y(t) = g(t) which has slowly (nonstiff) and 
rapidly (stiff) varying components. Table 3.1 lists the numerical results. For this problem, all 
methods show a second-order behaviour. Hence, for the DIRK methods, order reduction really 
occurs. The superiority of the PDIRK, method over all sequential DIRK methods used in this 
experiment is clearly demonstrated. 

Table 3.1 
Values of NCD and A4 for problem (3.1) 

Methods Order s* A4 = 60 

Norsett 3 3 2 2.7 
Norsett, 4 3 2.5 
“W, 4 5 3.6 
C% 5 5 1.8 

PDIRK, 2 2 4.5 

Iv=120 M = 240 M = 480 M = 960 

3.3 3.9 4.5 5.1 
3.1 3.7 4.3 4.9 
4.5 5.5 6.0 6.3 
2.2 2.6 2.9 3.3 

5.1 5.7 6.3 6.9 
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Table 3.2 
Values of NCD and M for problem (3.2) 

Methods Order S* M = 30 M=60 M=120 M = 240 

Norsett 3 3 2 3.8 4.4 5.1 5.7 
NGrsett 4 4 3 3.5 4.1 4.8 5.4 
HW, 4 5 3.8 4.5 5.1 5.8 
CS, 5 5 2.6 3.2 4.0 5.0 

PDIRK, 2 2 4.7 5.3 5.9 6.6 

3.2. Nonlinear partial differential equation 

In order to show the performance of the PDIRK, method on problems to be solved with low 
accuracy demand, we consider the convection-diffusion problem (see [7]) 

a+, -4 a%(t, X) 
=“(tT x> ax2 

a+, 4 at --x cos(t) -x2sin(t), 0 ax GX G 1, 0 <t < 1. (3.2) 

The initial and Dirichlet boundary conditions are such that the exact solution is given by 
u(t, x) = x2cos(t). Standard finite-difference discretization of the spatial derivatives on a 
uniform grid with meshsize & leads to a system of 39 ODES with exact solution (&j)2cos(t), 
j= l,.. . ,39. Table 3.2 is the analogue of Table 3.1. Again, order reduction is shown for the 
DIRK methods, and PDIRK, turns out to be the most efficient method. 

3.3. Comparison with the code LSODE 

Next we compare PDIRK, with a BDF method which has in common with all the previous 
methods that only LU-decompositions are required of matrices with dimension N (i.e., the 
ODE dimension). For that purpose we applied to problem (3.2) the famous stiff code LSODE, 
in which we limited the order to 2 (to obtain L-stability). Table 3.3 compares the performances 
of LSODE and PDIRK,. In spite of the fact that LSODE used a variable-stepsize strategy, it 
needed approximately twice as many integration steps (Nsteps) to obtain the same accuracy 
(defined by NCD). As a consequence, the total number of implicit relations that has to be 
solved over the whole integration interval is about the same for both methods. However, the 
most expensive part in both algorithms is the LU-factorization of the Newton-iteration matrix, 
which has to be done after every change in the stepsize or update of the Jacobian. Since 
LSODE needs the double amount of steps, it is very likely that this aspect is in favour of the 
PDIRK, method. Hence, in the low-accuracy range, PDIRK, seems to be at least competitive 
with LSODE. 

Table 3.3 
Values of NCD/N,,,,, for problem (3.2) obtained by LSODE and PDIRK, 

LSODE 3.6/13 4.0/18 4.6/34 5.2/67 5.8/136 
PDIRK, 3.7/5 4.0/7 4.6/14 5.3/28 5.9/56 
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4. Summary 

We have constructed an L-stable six-stage SDIRK method which can be specified by the 
butcher array 

0 0 

3-02111 &T) f(7-OM) i(2 - \/z) 

1 +(1+&T) ;(-l+\iz;) 0 32-a) 

3-2fi 0 0 f(l- 4%) +(7-M) ;(z-fi) 

1 0 0 f(l+fi) $(-1+\/2) 0 i(2 - dq 

0 0 0 0 $(1+ 4T) i(3 - 6) 

When implemented on a two-processor computer, this method effectively requires only two 
implicit stages. It has step point and stage order both equal to 2 (similar to the underlying IRK 
corrector method). Numerical experiments show the high efficiency of the proposed PDIRK, 
method for difficult problems in a range of accuracies which are realistic for these problems. 

References 

111 
121 

131 

t41 

151 

[61 

[71 

Bl 

191 

G.J. Cooper and A. Sayfy, Semiexplicit A-stable Runge-Kutta methods, Math. Cump. 33 (146) (1979) 541-556. 
K. Dekker and J.G. Verwer, Eds., Stability of Runge- Kutta Methods for Stiff Nonlinear Differential Equations, 
CWI Monographs 2 (North-Holland, Amsterdam, 1984). 
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, 
Springer Ser. Comput. Math. 14 (Springer, Berlin, 1991). 
Nguyen huu Cong, A-stable diagonally implicit Runge-Kutta-Nystrom methods for parallel computers, Numer. 
Algorithms 4 (1993) 263-281. 
S.P. Norsett, Semi-explicit Runge-Kutta methods, Report Math. Comput. No. 6/74, Dept. Math., Univ. 
Trondheim, 1974. 
A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of 
ordinary differential equations, Math. Comp. 28 (125) (1974) 145-162. 
P.J. van der Houwen and B.P. Sommeijer, Iterated Runge-Kutta methods on parallel computers, SOiM J. Sci. 
Statist. Comput. 12 (1990) 1000-1028. 
P.J. van der Houwen and B.P. Sommeijer, Analysis of parallel diagonally implicit iteration of Runge-Kutta 
methods, Appl. Numer. Math. 11 (l-3) (1993) 169-188. 
P.J. van der Houwen, B.P. Sommeijer and Nguyen huu Cong, Parallel diagonally implicit Runge-Kutta-Nystrom 
methods, Appl. Numer. Math. 9 (2) (1992) 111-131. 


