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Abstract

We complete the classification of irreducible 2F-modules for groups of Lie type acting in the natural
characteristic by dealing with the three open cases from [R.M. Guralnick, G. Malle, Classification of 2F-
modules, II, in: C. Ho, P. Sin, P. Tiep, A. Turull (Eds.), Finite Groups 2003, Proceedings of the Gainesville
Conference on Finite Groups, March 6–12, 2003, de Gruyter, Berlin, 2004, pp. 117–183]. We also finish
the classification of such modules for almost quasi-simple groups, and show that in all cases there is an
offender with cubic action.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

Let G be a finite group with F ∗(G) quasi-simple. For an absolutely irreducible KG-module
V over a finite field K of characteristic �, and a subgroup A of G, we let

f (A) := f V (A) := |A|2 · ∣∣CV (A)
∣∣.
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We say that V is a 2F-module for G if CG(V ) is an �′-subgroup of Z(F ∗(G)) and if there exists
a non-trivial elementary abelian �-subgroup A of G satisfying

|V | � f (A); (1)

the group A is then called an offender.
This situation turns out to be important in several contexts. The results in the first two papers of

this series have been used by Aschbacher and Smith [1,2] in the classification of quasi-thin simple
groups. This condition also comes up in Meierfrankenfeld’s program of classifying certain simple
groups by alternative means. Note that groups containing transvections and bi-transvections (i.e.
unipotent elements trivial on a subspace of codimension 2) on V give examples of 2F-modules
over the prime field. Also subgroups of classical groups which contain root subgroups of classical
groups give examples of 2F-modules. Thus, our results include some special cases of results of
Kantor [8] and the first author and Saxl [6]. We refer the reader to [4,5] for further motivation
and history for considering this set-up and for other references.

In this paper we first consider the case where G is itself quasi-simple. In [4,5] the first and
third authors treated this situation, and completely classified all 2F-modules with the exception
of a small number of open cases. For groups of Lie type acting in the natural characteristic, the
situation covered in [5], the unresolved cases are as follows:

(1) G = E7(q) and dimV = 56 over Fq ;
(2) G = 2E6(q) and dimV = 27 over Fq2 ;
(3) G = F4(q), � � 3 and dimV = 26 − δ3,� over Fq .

(Note that in [5] it was shown that if G = F4(q) with q even, then the 26-dimensional irreducible
module is a 2F-module.) We shall show that if q is a power of 3 and V is the 25-dimensional
module for F4(q), then V is a 2F-module; to do this we shall produce an explicit offender.
We shall also show that the rest of these modules are not 2F-modules: here we use the idea of
Mal’cev, who computed the maximal ranks of elementary abelian unipotent subgroups of the
finite Chevalley groups, by converting the problem into one about certain sets of roots.

It turns out that a variation of the methods considered in the Lie case can resolve the open
cases from [4], of Co1 and Co2 acting on their smallest-dimensional modules over F2; these
have been considered by the second author in [10], where it is shown that neither gives rise to a
2F-module. Thus the classification of 2F-modules for quasi-simple groups is complete.

Next we turn to the classification of 2F-modules V for groups G such that F ∗(G) is quasi-
simple. This more general situation was treated in [4], where complete results were obtained
for the cases considered; it was found that all composition factors of the restriction V |F ∗(G) are
2F-modules for F ∗(G). In [5] partial results were obtained showing that if this conclusion does
not hold, then F ∗(G) must be an orthogonal group in even dimension. The results here allow us
to dispose of this alternative.

Theorem 1. Let G be a finite group such that F ∗(G) is quasi-simple, and V be an absolutely
irreducible 2F-module for G; then all composition factors of the restriction V |F ∗(G) are 2F-
modules for F ∗(G).

Theorem 2. Let G be a finite group with F ∗(G) quasi-simple. If V is an absolutely irreducible
2F-module for G over k with an offender A such that G is the normal closure of A, then V is
given in Tables 1–6. Moreover, any V given in the tables is a 2F-module.
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Table 1
2F-modules for groups other than of Lie type in defining characteristic

G d f � Conditions log� |A|
An n − 2 1 2 or 3 � | n 1
Sn n − 2 1 2 2 | n 1
An n − 1 1 2 or 3 � � n 1
Sn n − 1 1 2 2 � n 1
3.A6 3 2 2 1
3.S6 6 1 2 2
A7 4 1 2 1
S7 8 1 2 3
A9 8 1 2 3
2.A5 2 2 3 1
2.A9 8 1 3 3

U3(3) 6 1 2 1
U3(3).2 6 1 2 2
31.U4(3) 6 2 2 3
31.U4(3).22 6 2 2 1
31.U4(3).(22)122 12 1 2 5
2.L3(4) 6 1 3 2
S6(2) 7 1 3 1
2.S6(2) 8 1 3 3
2.O+

8 (2) 8 1 3 1

M12 10 1 2 3
M12.2 10 1 2 4
M22 10 1 2 3
M22.2 10 1 2 3
3.M22 6 2 2 3
J2 6 2 2 4
M23 11 1 2 3
M24 11 1 2 3
M11 5 1 3 2
2.M12 6 1 3 2

We give in Tables 2 to 6 all instances of such groups G and modules V where F ∗(G) is
a group of Lie type and the module is in the defining characteristic. For the convenience of
the reader we collect together from [4] all other instances of such groups G and modules V in
Table 1. Note that in these tables we write d = dimV for the dimension over the smallest field of
definition F�f , and indicate the size of some offender A; in Tables 2 to 5 we denote the type of
automorphism applied as inner, field, graph or graph-field.

For the next result we recall that if V is a 2F-module for the group G, an offender A is called
cubic if

[[[V,A],A]
,A

] = 0.

In [4] it was observed that each absolutely irreducible 2F-module in the cases treated there had
a cubic offender. We shall complete the proof that this is true for all groups G considered here.
We remark that in the tables we always assume that G is the normal closure of an offender A.
If G is quasi-simple this is not an issue, but it is easy to see that if G is not perfect, there are
many situations where no A not contained in F ∗(G) can act cubically. In particular, there may
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be no cubic offenders whose normal closure generates G. However, if we do not insist on this
generation property, we do have:

Theorem 3. Let G be a finite group with F ∗(G) quasi-simple; then any absolutely irreducible
2F-module for G has a cubic offender.

This seems rather curious and suggests that perhaps there is a proof along the lines of a general
version of Thompson’s replacement lemma which guarantees a quadratic offender for F-modules
(see the next paragraph).

The last main result is the classification of F-modules for F ∗(G) quasi-simple. Recall that F-
modules are defined analogously to 2F-modules, where the function f defined above is replaced
by f1 defined by

f1(A) := f V
1 (A) := |A| · ∣∣CV (A)

∣∣.
The classification with G quasi-simple was completed many years ago. See [5] for a proof—we
reproduce the results in Table 7. We classify those absolutely irreducible F-modules with F ∗(G)

quasi-simple and an offender A whose conjugates generate G > F ∗(G).
More specifically we have:

Theorem 4. Let G be a finite group with F ∗(G) quasi-simple. Let V be an absolutely irreducible
F-module for G defined over a finite field of characteristic � such that G is generated by the
conjugates of an offender. If G �= F ∗(G) then (G,V ) are as given in Table 8. Thus, in particular,
if � is odd then G = 〈F ∗(G), γ 〉 where γ is a field automorphism of order � and V is a natural
module for F ∗(G).

The arrangement of the remainder of this paper is as follows. In Sections 2–4 we consider the
open cases mentioned above for quasi-simple groups G, showing that the 25-dimensional module
for F4(q) in characteristic 3 is a 2F-module but the remainder are not. In Sections 5–10 we treat
groups G with F ∗(G) quasi-simple of Lie type acting on modules in the defining characteristic;
we determine all possibilities for 2F-modules in Theorems 6.1, 7.1, 8.3, 9.1, 9.2, 9.3 and 10.1, and
obtain Theorems 1 and 2 as consequences. In Section 11 we prove Theorem 3 on the existence
of cubic offenders. Finally in Section 12 we prove Theorem 4 on F-modules.

2. Abelian sets of roots

We begin with the open cases remaining from [5]; as stated above, we shall use a technique
of Mal’cev to reduce the situation to a question about sets of roots in a certain root system. We
shall deal with the reduction itself in the succeeding sections, as the details will vary a little from
case to case, but in this section we explain the basic strategy to be followed in considering the
sets of roots which arise.

Let Φ be a root system, with positive system Φ+; in the cases which arise here, Φ will be of
type E7 or E8. We write roots as linear combinations of simple roots; thus for example if Φ is of
type E7 we shall write 234321

2 for the highest root. We shall often use dots to denote undetermined
coefficients, our convention being that they may be replaced by any integers which yield a root;
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thus for example if Φ is of type E8, the statement “ 1 · 21000
1 ∈ X” means that the set X contains

both roots 1121000
1 and 1221000

1 . Moreover, we shall on occasion write equations of the form

0 · 11000· + 0 · 10000· = 0121000
1 ;

this means that the roots 0 · 11000· may be matched with the roots 0 · 10000· in such a way that the
sum in every case is 0121000

1 .
Let Ψ be a subsystem of Φ and Ω a subset of Φ+ \Ψ +. In the application to the action of the

group G on the module V , the sets will be chosen so that the roots in Ψ and Ω will arise from G

and V , respectively.
Recall that a subset X of Ψ + is called abelian if (X +X)∩Ψ = ∅, where we write S1 + S2 =

{s1 + s2: si ∈ Si}. Here it will be convenient to consider sets which may contain negative roots;
as the natural generalization, we shall call a subset X of Ψ abelian if (X + X) ∩ Ψ0 = ∅, where
we set Ψ0 = Ψ ∪ {0}.

Using Mal’cev’s technique, we shall see that an elementary abelian �-subgroup A of G gives
a subset X of Ψ , while its fixed point space CV (A) gives a subset Y of Ω . The conditions which
X and Y must then satisfy are

(X + X) ∩ Ψ0 = (X + Y) ∩ Ω = ∅. (2)

Set x = |X| and y = |Y |; then A is non-trivial if and only if x > 0, and the condition for a non-
trivial A to be an offender translates into an inequality of the form 2x + y � m, where the value
of m is closely related to dimV . We therefore assume that

X and Y satisfy condition (2), x > 0 and 2x + y � m,

and work to obtain a contradiction.
We shall say that a root α ∈ Ψ excludes the root β ∈ Ψ ∪ Ω if α + β lies in Ψ0 (for β ∈ Ψ )

or Ω (for β ∈ Ω). Observe that Y may be assumed to contain all roots of Ω not excluded by those
in X; indeed, our strategy will be to begin with X = ∅, Y = Ω and build up X successively, at
each stage reducing Y by removing the roots in Ω which have been excluded. We shall call a
root in Ψ or Ω available at a given stage if it is not one of the roots chosen by that stage and has
not been excluded either by the roots chosen or by an explicit argument.

There are two principles which will be used several times to restrict the sets which must be
considered; both concern a root α ∈ Ψ which is available at a certain stage. Suppose that α

excludes either (i) no available roots from Ψ and at most two from Ω , or (ii) just one available
root α′ from Ψ and none from Ω . Any set X which may be obtained from this point may or may
not contain α; but given any such set which does not, inserting α (and, in (ii), removing α′ if it
is present) cannot decrease the value of 2x + y. Thus, among the possible sets X, the maximal
value of 2x + y occurs at one which contains α; so we may assume α ∈ X (and thus α′ /∈ X

in (ii)). We shall call these the first and second insertion principles.

3. The smallest module for F4(q)

We begin by treating the action of F4(q) on its module over Fq of dimension 26 − δ3,�, where
� is an odd prime and q is a power of �. We shall view F4(q) as lying inside the E6 parabolic
subgroup of E7(q).
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Let Φ be a root system of type E7, with simple roots α1, . . . , α7 numbered in the usual fashion.
Let Ψ = {∑7

i=1 niαi ∈ Φ: n7 = 0} = { · · · · · 0· }, so that Ψ is a root system of type E6; set Ω =
{ · · · · · 1· }, so that we have Φ+ = Ψ + ∪Ω . Let τ be the automorphism of Ψ given by the symmetry
of the Dynkin diagram, and set Ψl = {α ∈ Ψ : τ(α) = α}, Ψs = Ψ \ Ψl ; then the τ -orbits in Ψs

are pairs {α, τ(α)}. Moreover, the τ -orbits in Ψ may be seen as forming a system Σ of type F4,
with long roots the elements of Ψl and short roots the τ -orbits in Ψs ; we take

β1 = 000000
1 , β2 = 001000

0 , β3 = { 010000
0 ,

000100
0 }, β4 = { 100000

0 ,
000010

0 }

as the simple roots of Σ , and write
∑4

i=1 niβi as n1n2n3n4.
We have F4(q) < E6(q) < E7(q), where each short root subgroup of F4(q) is diagonally

embedded in the product of two root subgroups of E6(q) whose roots are interchanged by τ .
Let Q be the unipotent radical of the E6 parabolic of E7(q), so that Q is the product of the
root subgroups of E7(q) whose roots lie in Ω ; we may view Q as an irreducible 27-dimensional
E6(q)-module. The centralizer C of F4(q) in Q is 1-dimensional, diagonally embedded in the
product of the root subgroups corresponding to the roots

122111
1 ,

112211
1 ,

012221
1 .

If � > 3 then C is a direct summand of the F4(q)-module Q, whose complement is the irre-
ducible 26-dimensional module V (λ1) (in standard notation). On the other hand, if � = 3 then
the F4(q)-module Q is indecomposable and self-dual, with socle C; it contains a 26-dimensional
submodule, whose quotient by C is the irreducible module V (λ1).

First assume � = 3; let V be the 26-dimensional submodule contained in Q. Let A be the
subgroup of F4(q) which is the product of the root subgroups corresponding to the 8 roots

2342, 1342, 1242, 1232, 1231, 1222, 1221, 1220,

so that |A| = q8; the corresponding roots in E7 (meaning those lying in the relevant τ -orbits) are

123210· ,
· · 2 · · 0

1 .

Then CV (A) contains both C and the 9 root subgroups corresponding to the roots

· · 4321
2 ,

123 · · 1· ,

and thus |CV (A)| � q10. Therefore f V (A) � q26, and so V is a 2F-module; taking the quotient
by C shows the following.

Theorem 3.1. V (λ1) is a 2F-module for F4(q) in characteristic 3.

For the remainder of this section we assume � > 3. Let A be a non-trivial elementary abelian
�-subgroup of F4(q); we may assume that A lies in the product U of the positive root subgroups.
We follow the procedure of Mal’cev as expounded in [3, 3.3]: we let h be a linear functional on
ZΣ taking positive Q-linearly independent values on the simple roots βi , and use it to determine
an ordering on the roots by setting α < β if and only if h(α) < h(β). The abelian subgroup A
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then gives rise to an abelian Lie subalgebra I (A) of the Lie algebra I (U), with corresponding
abelian set of roots SA ⊂ Σ , and we have |A| � |I (A)| = q |SA|.

Writing W for the Weyl group of F4(q), we have the following lemma.

Lemma 3.2. Any abelian set of short roots in Σ is the image under an element of W of one of
the following:

∅, {1232}, {123 · }, {123 · , 1221}.
Proof. Let S be an abelian set of short roots in Σ . If S �= ∅, the transitivity of W on short
roots means that we may assume 1232 ∈ S; this excludes all negative short roots, together
with · · 10. Similarly, if |S| > 1, the transitivity of stabW(1232) on the roots · · · 1 means
that we may assume 1231 ∈ S; this excludes 0001, · · 11. Finally, if |S| > 2, the transitivity
of stabW(1232, 1231) on the roots · · 21 means that we may assume 1221 ∈ S; this excludes
· 121, and there are no further roots which could lie in S. �

Observe that the stabilizers in W of these sets are

W, 〈wβ1,wβ2 ,wβ3〉, 〈wβ1 ,wβ2,wβ4〉, 〈wβ1 ,wβ3,wβ4〉,
respectively.

We now view F4(q) as a subgroup of E6(q) and therefore of E7(q); we let B = CQ(A), so
that AB is an elementary abelian �-subgroup of E7(q). We use the linear functional h to obtain
one on ZΦ as follows. Write ai = h(βi) for i = 1,2,3,4; choose ε, ε′ small and positive and
ω > h(2342) such that a1, a2, a3, a4, ε, ε′, ω are Q-linearly independent, and set

h′(α2) = a1, h′(α3) = a3 − ε, h′(α1) = a4 − ε′,
h′(α4) = a2, h′(α5) = a3 + ε, h′(α6) = a4 + ε′, h′(α7) = ω.

Again determine an ordering on Φ by setting α < β if and only if h′(α) < h′(β). The choice of
ω means that all roots in Ψ are smaller than those in Ω ; by taking ε and ε′ sufficiently small we
may ensure that the ordering on Ψ is compatible with that on Σ (and that roots interchanged by
τ are adjacent). Note that since ε, ε′ > 0 we have α < τ(α) for α ∈ { 1221 · 0

1 ,
112100

1 }; these three
τ -orbits {α, τ(α)} are the short roots arising in Lemma 3.2.

Now the elementary abelian subgroup AB gives rise to an abelian set SAB of roots in Φ; write
X = SAB ∩ Ψ and Y = SAB ∩ Ω , and subdivide X into Xl = X ∩ Ψl and Xs = X ∩ Ψs . The
choice of h′ means that the roots in Xl are just the long roots in SA, while the roots in Xs all lie
in different τ -orbits, and these τ -orbits are just the short roots in SA. Set xl = |Xl |, xs = |Xs |,
x = xl + xs = |X| and y = |Y |.

By the above and Lemma 3.2, if we now allow the possibility that X contains negative roots
we may assume that Xs is one of

∅, { 122110
1 }, { 1221 · 0

1 }, { 1221 · 0
1 ,

112100
1 }.

Moreover, for each of these possibilities we may apply elements of the stabilizer in W of the
corresponding set of short roots; these stabilizers are

〈w2,w4,w3w5,w1w6〉, 〈w2,w4,w3w5〉, 〈w2,w4,w1w6〉, 〈w2,w3w5,w1w6〉,
respectively, where we write wi for wαi

. We shall prove the following.
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Theorem 3.3. If X and Y are as above and x > 0, then 2x + y � 26.

We have |A| � qx , |B| � qy ; thus Theorem 3.3 will give |A|2|B| � q26, showing that Q is not
a 2F-module. As Q = V (λ1) ⊕ CQ(F4(q)), an immediate consequence will be the following.

Theorem 3.4. V (λ1) is not a 2F-module for F4(q) in characteristic greater than 3.

As explained in the previous section, we shall prove Theorem 3.3 by contradiction; thus for
the remainder of this section we shall consider the condition

X and Y are as above, x > 0 and 2x + y � 27. (3)

Note that if we write z for the number of roots of Ω excluded by X, we have z = 27 − y; the
inequality 2(xl + xs) + y � 27 thus becomes xl � z

2 − xs . Note moreover that xl � 6 since the
root system Ψl is of type D4. Write ρ = 234321

2 .
We now work through the four possibilities for Xs .

Lemma 3.5. If X and Y satisfy condition (3), then Xs �= { 1221 · 0
1 ,

112100
1 }.

Proof. Assume the converse. The roots in Xs exclude the 12 roots 0 · · · · 1
0 , 0 · 1111

1 , · 12211
1 ,

· · 2221
1

from Ω , giving xl � 12
2 − 3; since xl � 6 we must have z � 18. The 〈w2,w3w5,w1w6〉-orbits on

the available roots in Ψl are

{ 123210· }, { 122210
1 ,

112110
1 ,

012100
1 }, { 111110· ,

011100· ,
001000· } and { 000000· }.

Suppose if possible that Xl were contained in the first two orbits; thus xl � 5 and so z � 16.
Since xl � 3 we must have a root from the second orbit present, which we may take to be 122210

1 ,
which excludes · 12111

1 from Ω , giving z � 14 and so xl � 4. Thus we must have another root
from the second orbit present, which we may take to be 112110

1 , which excludes 122211
1 from Ω ,

giving z � 15 and so xl � 5. We therefore in fact must have 123210· ,
012100

1 ∈ Xl as well; but these
exclude 111111· from Ω so that z = 17, contrary to assumption.

Now suppose Xl meets the fourth orbit; we may assume 000000
1 ∈ Xl , which excludes 001000

0 ,
011100

0 , 111110
0 , 123210

1 from Ψl and 111111
0 , 123 · · 1

1 from Ω , so z � 16 and xl � 5. The remaining
available roots in Ψl are 001000

1 , 01 · 100
1 , 11 · 110

1 , 122210
1 , 123210

2 ; of these only 123210
2 excludes no

further roots from Ω , so that the value of z will increase and we must have xl = 6, but of these
seven roots there are three pairs summing to 123210

2 so that Xl can contain at most four of them.
Thus 000000· /∈ Xl .

It follows that Xl must meet the third orbit; we may assume 111110
1 ∈ Xl , which excludes

001000
0 , 011100

0 , 012100
1 from Ψl and 012111

1 , 123211
1 from Ω , giving z � 14 and xl � 4. For each

of the 7 available roots in Ψl there is a different root in Ω which it excludes: for each α ∈
{ 12 · 210· ,

112110
1 ,

111110
0 } we may take ρ − α, while 011100

1 and 001000
1 exclude 123221

1 and 123321
1 ,

respectively. Since z � 18 we can exclude at most 4 more roots from Ω , and so may choose
at most 4 more roots in Xl , giving xl � 5; but we must choose at least 3 more, giving z � 17,
forcing xl � 6, contrary to assumption. �
Lemma 3.6. If X and Y satisfy condition (3), then Xs �= { 1221 · 0

1 }.
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Proof. Assume the converse. The roots in Xs exclude the 9 roots 00 · · · 1· ,
· 122 · 1

1 from Ω , giving
xl � 9

2 − 2, i.e., xl � 3; since xl � 6 we must have z � 16. The 〈w2,w4,w1w6〉-orbits on the
available roots in Ψl are { 12 · 210· }, { 11 · 110· ,

01 · 100· } and { 00 · 000· }.
Suppose if possible that Xl meets the third orbit; then we may assume 001000

1 ∈ Xl , which
excludes 122210

1 , 111110
0 , 011100

0 together with the remaining negative roots from Ψl and · 11111
0 ,

1222 · 1
1 , 123321

1 from Ω , giving z � 14 and so xl � 5. The remaining available roots in Ψl are
000000

1 , 001000
0 , 01 · 100

1 , 11 · 110
1 , 123210· ; of these only 123210

2 excludes no further roots from Ω , so
that the value of z will increase and we must have xl = 6. However, we cannot choose 001000

0 as
it excludes the 3 roots · 11111

1 , 123321
2 from Ω , whereas z can increase by at most 2; and of the

remaining seven roots there are three pairs summing to 123210
2 so that Xl can contain at most four

of them. Thus 00 · 000· /∈ Xl .
As each of the available roots in Ψl excludes at least 2 further roots from Ω , the value of z

will increase by at least 2 and so xl � 4; so we must have some root from the second orbit, which
we may take to be 112110

1 , which excludes 011100· from Ψl and 011111· , 122211
1 from Ω , giving

z � 12 and so xl � 4. For each of the 6 available roots in Ψl there is a different root in Ω which
it excludes: for each α ∈ { 12 · 210· ,

111110· } we may take ρ −α, while 012100
1 excludes 122221

1 . Since
z � 16 we can exclude at most 4 more roots from Ω , and so may choose at most 4 more roots
in Xl , giving xl � 5; but we must choose at least 3 more, giving z � 15, forcing xl � 6, contrary
to assumption. �
Lemma 3.7. If X and Y satisfy condition (3), then Xs �= { 122110

1 }.

Proof. Assume the converse. The root in Xs excludes the 6 roots 000001
0 , 00 · 111· , · 12211

1 from Ω ,
giving xl � 6

2 − 1 = 2; since xl � 6 we must have z � 14. The 〈w2,w4,w3w5〉-orbits on the
available roots in Ψl are { 12 · 210· ,

11 · 110· } and {± 01 · 100· ,
00 · 000· }. As each of these roots excludes

at least 3 roots from Ω , we must have xl � 4.
Suppose if possible that Xl were contained in the first orbit; using w3w5 we may assume

that Xl contains at least two of 12 · 210· , and using w2 and w4 we may assume 123210· ∈ Xl ,
which excludes 000011

0 , · 11111· from Ω , so z � 11 and xl � 5. We may therefore further assume
122210

1 ,
11 · 110

1 ∈ Xl , which excludes · 12111
1 , 12 · 211

1 from Ω , giving z � 15, contrary to assump-
tion.

It follows that Xl must meet the second orbit; we may assume 012100
1 ∈ Xl , which excludes

− 011100· , − 001000· , 111110· from Ψl and 000011
0 , 111111· , 1 · 2221

1 from Ω , giving z � 11 and so xl � 5.
The root 000000

1 excludes the 4 roots 011111
0 , 123 · · 1

1 from Ω , and likewise − 000000
1 excludes the 4

roots 011111
1 , 123 · · 1

2 from Ω ; since z can increase by at most 3, neither of these can be chosen.
For each of the other 8 available roots in Ψl there is a different root in Ω which it excludes:
001000· excludes 123321· ; 011100· excludes 123221· ; 112110

1 excludes 122211
1 ; 12 · 210· excludes 01 · 111· .

Since z � 14 we can exclude at most 3 more roots from Ω , and so may choose at most 3 more
roots in Xl , giving xl � 4, contrary to assumption. �
Lemma 3.8. If X and Y satisfy condition (3), then Xs �= ∅.

Proof. Assume the converse, so that X = Xl and xl � z
2 ; since xl � 6 we must have z � 12.

Using W we may assume that 123210
2 ∈ Xl , which excludes the 6 roots · · · · · 1

0 from Ω , giv-
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ing xl � 6
2 = 3, as well as the negative roots − 123210

2 , − 12 · 210
1 , − 11 · 110

1 , − 01 · 100
1 , − 00 · 000

1

from Ψl .
Now suppose if possible that Xl contains no pair of orthogonal roots. Using 〈w4,w3w5,w1w6〉

we may assume 123210
1 ∈ Xl , which excludes the 3 roots · · 1111

1 from Ω , giving xl � 9
2 ; by as-

sumption the only available roots in Ψl are then 122210
1 , 112110

1 , 012100
1 , so all three must lie in

Xl and we must have xl = 5. However, between them these exclude the 6 roots · 12111
1 , 012211

1 ,
122211

1 , 1 · 2221
1 from Ω , giving z � 15, contrary to assumption.

Thus Xl must contain a pair of orthogonal roots; using 〈w4,w3w5,w1w6〉 we may therefore
assume 111110

0 ∈ Xl , which excludes the 5 roots 0 · · · 11
1 , 123211

2 from Ω , giving xl � 11
2 , as well as

the roots − 111110
0 , 00 · 000

1 , 01 · 100
1 from Ψl . Since z � 12, at most one further root may be excluded

from Ω . The 〈w4,w3w5〉-orbits on the remaining available roots in Ψl are { 12 · 210
1 ,

11 · 110
1 } and

{± 011100
0 ,± 001000

0 }. However, each root in the second orbit excludes a further 4 roots from Ω ,
and so cannot be included in Xl ; each root in the first orbit excludes just one further root from Ω ,
but the roots excluded are all different. �

By combining Lemmas 3.5–3.8, we have therefore proved Theorem 3.3 and so also Theo-
rem 3.4.

4. The 56-dimensional module for E7(q)

We next consider the action of E7(q) on its 56-dimensional module over Fq ; here we shall
view E7(q) as lying inside the E7 parabolic subgroup of E8(q).

Let Φ be a root system of type E8, with simple roots α1, . . . , α8 numbered in the usual fashion;
we shall write the root

∑8
i=1 niαi as n1n3n4n5n6n7n8

n2
. Let

Ψ =
{

8∑
i=1

niαi ∈ Φ: n8 = 0

}
= { · · · · · · 0· },

so that Ψ is a root system of type E7; set Ω = { · · · · · · 1· }, and denote the highest root 2465432
3 of

Φ by δ, so that we have Φ+ = Ψ + ∪ Ω ∪ {δ}.
Let Q be the unipotent radical of the E7 parabolic subgroup of E8(q), so that Q is the product

of the root subgroups of E8(q) whose roots lie in Ω ∪{δ}. Let Q′ be the root subgroup with root δ,
and set V = Q/Q′; then V is an irreducible E7(q)-module of dimension 56.

Let A be a non-trivial unipotent elementary abelian subgroup of E7(q); we may assume that
A lies in the product U of the positive root subgroups of E8(q). We then obtain an abelian Lie
subalgebra I (A) of the Lie algebra I (U), and hence an abelian set of roots X. Let B = CA(Q);
let I (B) be its Lie algebra and the corresponding set of roots (excluding δ) be Y . Then I (AB) =
I (A) + I (B) is a Lie subalgebra of I (U) that is abelian modulo I (Q′), so as in Section 2 we
have (X + X) ∩ Ψ0 = (X + Y) ∩ Ω = ∅, where we allow X to contain negative roots so as to
permit the application of the Weyl group W of E7(q). With x = |X| and y = |Y |, we shall prove
the following.

Theorem 4.1. If X and Y are as above and x > 0, then 2x + y � 55.

We have |A| � |I (A)| = qx and |B| � |I (B)| = qy+1, so that f (A) = |A|2|B/Q′| � q2x+y �
q55 < |V |; so we shall have shown the following.
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Theorem 4.2. V (λ1) is not a 2F-module for E7(q).

As an immediate consequence we obtain the following.

Corollary 4.3. The 54-dimensional module for 2E6(q) (defined over Fq ) is not a 2F-module.

Proof. Let V be the module concerned; then V + = V ⊕ U , where V + is the 56-dimensional
module for E7(q) and U consists of the fixed points of G (cf. [7]). Thus, if A is an el-
ementary abelian unipotent subgroup of 2E6(q), we have f V (A)q2 = f V +

(A) < |V +|, so
f V (A) < |V |. �

As in the previous section, we shall prove Theorem 4.1 by contradiction; thus for the remain-
der of this section we shall consider the condition

X and Y are as above, x > 0 and 2x + y � 56. (4)

Note that if we write z for the number of roots of Ω excluded by X, we have z = 56 − y; the
inequality 2x + y � 56 thus becomes x � z

2 .
Since 2343210

2 may be added to each of the 12 roots 0 · · · · · 1· but to no others in Ω , the transitiv-
ity of W on Ψ shows that any root in X excludes 12 roots of Ω . We shall write X = {ξ1, ξ2, . . .}.
As explained in Section 2, our strategy will be to begin with X = ∅, Y = Ω and build up X

successively, at each stage reducing Y by removing the roots in Ω which have been excluded; at
various stages we shall employ the first and second insertion principles.

We begin with a straightforward result.

Lemma 4.4. If X and Y satisfy condition (4), then X contains a pair of orthogonal roots.

Proof. Assume that X does not contain two orthogonal roots. As X �= ∅, using W we may as-
sume ξ1 = 2343210

2 ; thus z � 12 and so |X| � 6. The root ξ1 excludes the negative roots − 2343210
2

and − 1 · · · · · ·· , and by assumption no root 0 · · · · · ·· lies in X, so the remaining roots in X must be of
the form 1 · · · · · ·· ; as the stabilizer in W of ξ1 is transitive on these, we may assume ξ2 = 1343210

2 .
This excludes the 7 roots 11 · · · · 1· , 0011111

1 from Ω , giving z � 19 and so |X| � 10; it also ex-
cludes from Ψ the root 1000000

0 , and by assumption no root 11 · · · · 0· can now lie in X, so we must
have X ⊆ {ξ1, ξ2,

12 · · · · 0· }. Again using transitivity we may assume ξ3 = 1243210
2 , and arguing

similarly we have X ⊆ {ξ1, ξ2, ξ3,
123 · · · 0· }; then we may assume ξ4 = 1233210

2 , and we obtain
X ⊆ {ξ1, ξ2, ξ3, ξ4,

1232 · · 0
2 ,

1233210
1 }. However, this contradicts |X| � 10; so X must in fact con-

tain a pair of orthogonal roots. �
By Lemma 4.4 and the transitivity of W(D6) on the roots 0 · · · · · 0· , we may henceforth assume

ξ1 = 2343210
2 , ξ2 = 0122210

1 ;

between them these exclude the 22 roots 0 · · · · · 1· , 1 · · · 111· , 23432 · 1
2 from Ω , so that |X| � 11. The

stabilizer in W of {ξ1, ξ2} has four orbits on the remaining available roots in Ψ :

O1 = { 1 · · · 210· }, O2 = { · · · · 1 · 0· }, O3 = { 0 · · · 000· }, O4 = { 00000 · 0
0 },
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of sizes 8, 32, 24 and 2, respectively. The roots in O1 are orthogonal to neither ξ1 nor ξ2, and
each excludes 2 available roots from Ω ; those in O2 are orthogonal to exactly one of ξ1 and ξ2,
and each excludes 5 available roots from Ω ; those in the remaining two orbits are orthogonal
to both ξ1 and ξ2, but those in O3 form a D4 subsystem with each excluding 8 available roots
from Ω , while those in O4 form an A1 subsystem orthogonal to the D4 with each excluding 9
available roots from Ω .

Our proof will consist of three propositions, which successively limit the possibilities for the
orbits Oi in which the remaining roots in X may lie.

Proposition 4.5. If X and Y satisfy condition (4), then X does not contain three mutually or-
thogonal roots which are orthogonal to a D4 subsystem in Ψ .

Proof. Assume the result false; then we may take ξ3 = 0000010
0 , which excludes the 9 roots

1 · · · 211· , 2465421
3 from Ω , giving z � 31 and so |X| � 16, as well as the 17 roots · · · · 100· , − 0000010

0

from Ψ . Of the 48 available roots in Ψ , the 24 roots 1 · · · 210· , · · · · 110· each exclude just one avail-
able root from Ω (different in each case) and no two may be added, while the 24 roots 0 · · · 000·
each exclude 6 available roots from Ω . Thus if X contained no root 0 · · · 000· , the value of 2x + y

would be maximized by including each of the 24 roots 1 · · · 210· , · · · · 110· , giving X = { · · · · · 10· },
Y = { 2465431

3 }; but then 2x +y = 2.27+1 = 55, contrary to assumption. So X must contain some
root 0 · · · 000· ; using W(D4) we may assume ξ4 = 0121000

1 , which excludes the 6 roots 1 · 22221
1 ,

1233321· , 234 · 321
2 from Ω , giving z � 37 and so |X| � 19, as well as the 15 roots − 0121000

1 ,
− 0 · 1 · 000· , 000 · 110

0 , 1111110· , 1 · 22210
1 from Ψ . By the second insertion principle we may now as-

sume

ξ5 = 0121110
1 , ξ6 = 0122110

1 , ξ7 = 1232110
1 ,

ξ8 = 1232110
2 , ξ9 = 1243210

2 , ξ10 = 1343210
2 ,

so that ± 0000000
1 ,± 0100000

0 ,± 0001000
0 /∈ X.

Now of the 20 available roots in Ψ , the 12 roots 0 · 11110· , 1 · 2 · 110
1 , 123 · 210· again each ex-

clude just one available root from Ω (different in each case) and no two may be added,
while the 8 roots 0 · 1 · 000· each exclude 3 available roots from Ω . As before, if X contained
no root 0 · 1 · 000· , the value of 2x + y would be maximized by including each of the former,
giving X = { 0000010

0 ,
0 · 11110· ,

0121000
1 ,

012 · · 10
1 ,

1 · 2 · 110
1 ,

123 · · 10
1 ,

· · · · · 10
2 }, Y = { 1 · 4 · 321

2 ,
1354321· ,

246 · 321
3 ,

2465431
3 }; but then 2x + y = 2.22 + 7 = 51, contrary to assumption. So X must con-

tain some root 0 · 1 · 000· ; using 〈w2,w3,w5〉 we may assume ξ11 = 0111000
1 , which excludes the

3 roots 1232221
1 , 1243321

2 , 2354321
2 from Ω , giving z � 40 and so |X| � 20, as well as the 4 roots

0010000
0 , 0011110

0 , 1121110
1 , 1232210

1 from Ψ . By the second insertion principle we may now assume

ξ12 = 0111110
1 , ξ13 = 1222110

1 , ξ14 = 1233210
2 ,

so that 0011000
0 ,

0010000
1 ,

0110000
0 /∈ X.

This leaves just 9 available roots in Ψ , each excluding either 1 or 2 available roots from Ω ;
since we have still roots in X to select, the value of z will increase, and so |X| � 21, meaning that
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at least a further 7 roots of the 9 must be chosen. However, among the 9 we have three disjoint
pairs which may be added:

0111000
0 + 1232210

2 = 1343210
2 ,

0110000
1 + 1122110

1 = 1232110
2 ,

0011000
1 + 0111110

0 = 0122110
1 .

Thus at most 6 further roots may be chosen, a contradiction. �
Thus all remaining roots in X must be chosen from O1, O2 and O3.

Proposition 4.6. If X and Y satisfy condition (4), then X does not contain three mutually or-
thogonal roots.

Proof. Assume the result false; then by Proposition 4.5 we may take ξ3 = 0121000
1 , which ex-

cludes the 8 roots 1 · 222 · 1
1 , 1233321· , 234 · 321

2 from Ω , giving z � 30 and so |X| � 15, as well as the
19 roots − 0121000

1 , − 0 · 1 · 000· , 000 · 1 · 0
0 , 11111 · 0· , 1 · 22210

1 from Ψ . By Proposition 4.5 again we have
± 0001000

0 /∈ X (since these roots form the A1 subsystem of the D4A1 orthogonal to ξ1 and ξ3),
and ± 0000000

1 /∈ X (similarly with the D4A1 orthogonal to ξ2 and ξ3). By the second insertion
principle we may assume ξ4 = 1343210

2 , ξ5 = 1243210
2 , so that ± 0100000

0 /∈ X.
The stabilizer in W of {ξ1, . . . , ξ5} has two orbits on the 36 available roots in Ψ :

{ 012 · 1 · 0
1 ,

123 · · · 0· }, { 0 · 1 · · · 0· ,
1 · 2 · 1 · 0

1 },

of sizes 12 and 24, respectively. Suppose if possible that the remaining roots in X all lie in the
first orbit; then |X| � 5 + 12 = 17. However, the inclusion of any of the 12 roots excludes 2
from Ω , giving z � 32 and so |X| � 16, so that in fact at least 11 of the 12 must be included;
but then between them the 11 exclude all 8 roots 123 · 2 · 1· from Ω , giving z � 38 and hence
|X| � 19, a contradiction. Thus X contains some root from the second orbit, so we may assume
ξ6 = 0111110

0 ; this excludes the 4 roots 12 · · 211
2 , 2354321

3 from Ω , giving z � 34 and so |X| � 17,
as well as the 6 roots 001 · · 00

1 , 112 · 100
1 , 1232100

2 from Ψ . Moreover by Proposition 4.5 X also does
not contain 0011110

1 or 0011100
0 (as may be seen by considering the D4A1 subsystems orthogonal

to ξ6 and ξ1, and ξ6 and ξ3, respectively). By the second insertion principle we may now assume
ξ7 = 1232110

1 , so that 0111100
1 /∈ X.

We now consider the set S = { 123 · 211
1 ,

123 · 221
2 } of 4 roots among those available in Ω ; the

stabilizer in W of {ξ1, . . . , ξ7} is transitive on S. Since we have so far chosen just 7 roots in X,
and each available root in Ψ excludes some available root from Ω , the value of z must increase,
as must therefore the lower bound on |X|; so we must choose at least 11 further roots in X.
Assume if possible that after X has been completed at most 2 of the 4 roots in S have been
excluded; by transitivity we may assume 1232211

1 and at least one other root γ from S fail to
be excluded. We cannot have γ = 1232221

2 or 1233221
2 because there are just 11 available roots

in Ψ which exclude neither 1232211
1 nor γ , two of which are 0011110

0 and 0110000
1 , which may be

added; so we must instead have γ = 1233211
1 . Since there are just 13 available roots in Ψ which

exclude neither 1232211
1 nor 1233211

1 , and they include two pairs 001 · 000
0 + 122 · 100

1 = 1232100
1 , all the

other 9 roots must be included in X; but one of the 9 is 0111100
0 , which excludes the 3 available

roots 12 · · 221
2 from Ω , giving z � 37 and so |X| � 19, which is not possible. Thus at least 3 of

the 4 roots in S must be excluded; again using transitivity we may assume 123 · 211
1 , 1232221

2 are
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excluded. Since each of 012 · 110
1 , 1233210

1 excludes one of the three (different in each case) and
no other available roots from Ω , and just one available root from Ψ , by the second insertion
principle we may assume ξ8 = 0121110

1 , ξ9 = 0122110
1 , ξ10 = 1233210

1 , so that 122 · 100
1 ,

0110000
1 /∈ X.

By this point we have z � 37, so that |X| � 19; by the second insertion principle again we
may now assume ξ11 = 1232110

2 , so that 0111100
0 /∈ X. We have 17 available roots in Ψ , and must

choose at least 8 of them to be included in X; as each excludes at least 1 available root in Ω , and
no available root in Ω is excluded by more than 5 available roots in Ψ , the value of z will need
to increase by at least 2, giving |X| � 20, so that in fact at least 9 of the available roots in Ψ must
be chosen. However, we have eight disjoint pairs which may be added:

001 · 000
0 + 122 · 110

1 = 1232110
1 ,

012 · 100
1 + 112 · 110

1 = 1243210
2 ,

011 · 000
0 + 123 · 210

2 = 0111000
1 + 1232210

1 = 0111110
1 + 1232100

1 = 1343210
2 .

Thus ξ12 must be the remaining root 0011110
0 , and we must have one from each of the eight pairs;

since 0011110
0 excludes 0111000

1 we must in fact have ξ13 = 1232210
1 . However, between them ξ12

and ξ13 exclude the 3 available roots 1233221
2 , 1343211

2 , 2454321
3 from Ω , and ξ14 is either 0110000

0

or 1233210
2 and thus excludes either 1244321

2 or 1232221
1 from Ω , so that z � 41, giving |X| � 21,

which is impossible. �
Thus all remaining roots in X must be chosen from O1 and O2.

Proposition 4.7. If X and Y satisfy condition (4), then X does not contain three roots of which
one is orthogonal to the other two.

Proof. Assume the result false; then by Proposition 4.6 we may take ξ3 = 1232110
2 , which ex-

cludes the 5 roots 1 · · · 211
1 , 1233321

1 from Ω , as well as the 5 roots · · · · 100
0 from Ψ . Moreover, the

7 available roots 1111110
0 , 1 · · · 100

1 are orthogonal to both ξ2 and ξ3, so by Proposition 4.6 again
are excluded. By the first insertion principle we may assume {ξ4, . . . , ξ15} = { 0 · · · 110

1 ,
1 · · · 210· };

these roots exclude the 16 roots 1 · · · 221
1 , 1 · · · 2 · 1

2 , 2 · · · 321
2 from Ω . By Proposition 4.6 we then

cannot have any root 0 · · · 100
1 , 0 · · · 110

0 in X, since each of these is orthogonal to ξ3 and ξi for
some 4 � i � 15. By the first insertion principle again we may now assume {ξ16, . . . , ξ22} =
{ 1232100

2 ,
1 · · · 110

1 }. However, then Y = { · · · · · · 1
3 }, and so 2x + y = 2.22 + 7 = 51, a contradic-

tion. �
Thus all remaining roots in X must be chosen from O1; but this is impossible, as we have

|X| � 11. This completes the proof of Theorem 4.1.

5. Auxiliary results

We now turn to the consideration of groups G with F ∗(G) quasi-simple. The following easy
observation allows us to study 2F-modules for cyclic extensions.

Proposition 5.1. Let N be normal in G of prime index �. Let V be a 2F-module for G of char-
acteristic � with offender A. Let x ∈ A with G = 〈N,x〉 and assume that W := CV (x) is an
absolutely irreducible CN(x)-module, with dimV = �dimW . Then either
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(a) W is an F-module for CN(x) with offender B := A ∩ N , or
(b) A = 〈x〉, � � 3, dimW � 4 − �.

Proof. By assumption we have

f V (A) = |A|2∣∣CV (A)
∣∣ = �2|B|2∣∣CW(B)

∣∣ � |V |.
But then

(
f W

1 (B)
)2 = |B|2∣∣CW(B)

∣∣2 = �2|B|2∣∣CW(B)
∣∣ |CW(B)|

�2

� |CW(B)|
�2

|V | � |CW(B)|
�2

|W |� � 1

�
|W |2.

Thus f W
1 (B) � |W |/√�, but since both are integral powers of �, this forces f W

1 (B) � |W |.
Hence W is an F-module for CN(x) if B �= 1, that is, if A �= 〈x〉. Otherwise �2|W | � |V | � |W |�,
so �2 � |W |�−1. �

We will apply this result to the situation where G is an extension of the quasi-simple group N

of Lie type in characteristic � by a field automorphism x of order � and V is the induced to G of
an absolutely irreducible N -module. Then CN(x) is a group of Lie type of the same type as N

(but over a smaller field), and W is automatically irreducible for CN(x).
The following result is very useful for inductive arguments along parabolic subgroups (see [4,

Proposition 2.4]):

Proposition 5.2. Let V be a 2F-module for G. Let H � G such that H contains an offender.
Then either there exists an offender A � U := O�(H), or CV (U) is a 2F-module for H/U .

Throughout, we will freely make use of the results expounded in [3] on automorphisms of or-
der p of groups of Lie type in characteristic p. More precisely, the classes of field and graph-field
automorphisms and their centralizers are described in [3, Proposition 4.9.1], while the classes of
graph automorphisms and their centralizers are investigated in [3, Proposition 4.9.2].

6. Linear groups

In this section we consider the case S = Ln(q), q = �a . Let Yn denote the natural module for
SLn(q) of dimension n, with right SLn(q)-action.

Theorem 6.1. The absolutely irreducible 2F-modules for groups G with F ∗(G) = SLn(q),
q = �a , n � 3, with an offender whose conjugates generate G are as given in Table 2.

Proof. By [5, Proposition 4.7] we may assume that G involves proper outer automorphisms.
Moreover, if V is a 2F-module for G then V |F ∗(G) has a composition factor W which is a 2F-
module for F ∗(G) by [5, Proposition 4.8]. Thus, up to twists and taking duals, W is either the
natural module Yn, the exterior square ∧2(Yn) for n � 4, the symmetric square Σ2(Yn) for � > 2,
the third exterior power ∧3(Y6) for n = 6, or a tensor product Yn ⊗ Y

(a/2)
n of the natural module

with a Frobenius twist thereof.
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1. First assume that G = SLn(�
a).� involves a field automorphism of order � (so in particular

� | a). We go through the cases for W . If V is induced then application of Proposition 5.1 together
with the list of F-modules in [5, Table 2] for the centralizer SLn(�

a/�) shows that either W = Yn

or W = ∧2(Yn). If W = Yn is the natural module, the bounds on ranks of �-subgroups with given
centralizer in [5, Proposition 3.10] lead to the condition

n(� − 1) + c � 2
(
c(n − c) + �/a

)
for an offender A on V with A∩F ∗(G) of centralizer dimension n− c � n/2 on Yn. This is only
satisfied for � � n/2 + 1. When � � (n+ 1)/2 this is Example 6.6. If � = n/2 + 1 then moreover
� � 3, so in fact n = 4, � = 3, or n = 2, � = 2. An application of [5, Proposition 3.10] now shows
that a = 3 in the first case, a � 4 in the second, which is again Example 6.6.

For W = ∧2(Yn), we arrive at(
n

2

)
(� − 1) + c(n − c − 1) � 2

(
c(n − c) + �/a

)
by the bounds on centralizers on exterior squares in [5, Corollary 2.11] applied to inner elements
with commutator space of dimension c on Yn. This forces � = 2, n � 5. If n = 5 then neces-
sarily c = 2, and A contains elements with distinct centralizers. This can be ruled out using [5,
Lemma 2.10]. The case n = 4 concerns the natural module for SO+

6 (q), and the better bounds
for orthogonal groups in [5, Proposition 3.14] allow us to exclude this case.

The only 2F-module invariant under field automorphisms is W = Yn ⊗ Y
(a/2)
n with � = 2 and

2 | a. Let A � G be an offender such that A′ := A ∩ F ∗(G) has centralizer dimension at least
n − c � n/2 on Yn. Any outer element g ∈ A \ A′ acts on CYn(A

′), thus by [5, Lemma 2.12] its
commutator on CV (A′) is of dimension at least (n − c)(n − c − 1)/2. By [5, Corollary 2.11] this
gives the condition 2c(n− c)+ (n− c)(n− c − 1)/2 � 2c(n− c)+ 4/a, hence n/2 � n− c � 2.
Thus we have n � 4, a � 4. When n = 4 then A has to have rank 4a, hence will contain elements
with distinct centralizers on Yn. Application of [5, Lemma 2.10] rules out this case. For n = 3
the rank equals 2a, but then the centralizer on V is at most 4-dimensional. This forces a = 2, and
we arrive at Example 6.7.

2. Next consider the case that � = 2 and G = SLn(2a).2 is obtained by adjoining the graph
automorphism γ . The centralizer in SLn(2a) of a graph automorphism of order 2 is contained in
a symplectic group Sp� n

2 �(2a). Thus by [5, Proposition 3.12] its 2-rank equals an(n + 2)/8 for

n even, a(n2 − 1)/8 for n odd. If V is induced from a tensor product W = V1 ⊗ · · · ⊗ Vr for
SLn(q) with di = dim(Vi), then

d1 · · ·dr

a

r
� 2

(
a

⌊
n(n + 2)

8

⌋
+ 1

)
.

This is only satisfied when r = 1 and either d = n, or n = 4, d = 6. But in the latter case, W

is invariant, hence does not occur in this case. Now assume that d = n, so V is induced from a
Frobenius twist of the natural module. If n = 4 or n � 6, this is Example 6.9. Clearly an offender
A has to contain inner elements. Denote by c the codimension of the centralizer of A ∩ F ∗(G)

on W . Since V is induced we reach the condition 3 + c � 2(1 + 1/a) for n = 3, hence c = a = 1.
Similarly, for n = 5 we find 5+ c � 2(r +1/a), where |A| = 2ar+1. Hence r � 2, but then c � 2,
which forces a � 2 (since r � 3). This is again Example 6.9.
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Table 2
2F-modules for linear groups in defining characteristic

G d V f Conditions log� |A| Type

SLn(�a) n Yn a a i
SLn(�a)

(n
2
) ∧2(Yn) a n � 4 (n − 1)a i

SLn(�a)
(n+1

2
)

Σ2(Yn) a � � 3 (n − 1)a i

SLn(�2a) n2 Yn ⊗ Y
(a)
n a �n2/4�a i

SL6(�a) 20 ∧3(Y6) a 5a i

SLn(��a).� �n Yn↑G a � � (n + 1)/2 f
or n = � = 2, a � 2 f
or (n, �, a) = (4,3,1) 5 f

SLn(22a).2 n2 Yn ⊗ Y
(a)
n a n = 2, a � 2 2a − 1 f

or n = 3, a = 1 2 f

SLn(2a).2 2n Yn↑G a n � 4, n �= 5 g
or n = 3, a = 1 2 g
or n = 5, a � 2 3a + 1 g

SL4(2a).2 6 ∧2(Y4) a 3a + 1 g

SLn(22a).2 2n Yn↑G 2a n � 6, n �= 7 gf
or n = 7, a = 1 10 gf

SLn(22a).22 4n Yn↑G a n � 12, n �= 13 f,g
or n = 13, a = 1 23 f,g

SL4(4).22 12 ∧2(Y4) ⊕ ∧2(Y
(1)
4 ) 1 5 f,g

Thus we may assume that V = W restricts irreducibly to F ∗(G), so has highest weight
invariant under the graph automorphism. That is, W is either ∧2(Y4) or ∧3(Y6). The first is
Example 6.8. For ∧3(Y6) we use the fact that the centralizer of a graph automorphism in F ∗(G)

is H := Sp6(2
a). The H -composition factors of ∧3(Y6) are two natural modules and the 8-

dimensional spin module Z3. The graph automorphism acts by interchanging the two natural
modules. Using the bounds in [5, Proposition 3.12] for sizes of 2-subgroups of H and the fact
that any non-trivial element has at most 6-dimensional centralizer on Z3 we deduce that no ex-
ample occurs.

3. Next consider the case that � = 2 and G = SLn(2a).2 is obtained by adjoining a graph-field
automorphism (so a is even). Here, the centralizer of γ of order 2 in SLn(2a) is SUn(2a/2).

So by [5, Proposition 3.11] it has 2-rank
(
n
2

)2
a/2 if n is even, respectively (

(
n−1

2

)2 + 1)a/2
if n is odd. None of the 2F-modules W for F ∗(G) extend in this case, so V is induced. If
V is an induced basic representation, the fundamental inequality leads to the cases d = n or
n = 4, V = ∧2(V0). In the second case, if A′ = A ∩ SLn(q) has centralizer of codimension c

on V0, then 6 + c � 2g + 4/a, where ag denotes the rank of A′. So clearly g � 3, but then
necessarily c � 3. This implies g � 4, whence c � 5, and thus a contradiction. When d = n, so
V is induced from a Frobenius twist of the natural module, clearly A contains inner elements.
Let c denote the codimension of the centralizer of A′ = A ∩ F ∗(G) on Yn. We find the condition
n + c � 2(r + 1/a), where |A′| = 2ar . Using the fact that a � 2 and c > 1 when r > 1 we
conclude that n � 6. When n = 7, the precise bounds given in [5, Proposition 3.11] show that
necessarily a = 2. Together with the cases n = 6 and n � 8 this is Example 6.10.

4. Finally assume that � = 2, 2 | a, and G = SLn(2a).22 contains both the graph and the
field automorphism of order 2. Here again none of the 2F-modules for F ∗(G) are invariant.
For representations of G whose restriction to F ∗(G) contains a basic representation we get the
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dimension bound d � n(n + 2)/4 + 8/a and we conclude that either W = Yn, or n = 4, W =
∧2(Y4) and a ∈ {2,4}. The latter case is the natural module for SO+

6 (2a); we obtain the condition
6 + c � 2r + 8/a for the rank ar of the subgroup A′ with centralizer of codimension c on
∧2(Y4). By [5, Proposition 3.14] we have r �

(
c
2

)
, so the inequality only leaves a = 2, which is

Example 6.11. For the case of W = Yn the natural module we may argue as before.
The standard inequality shows that the case of tensor products does not lead to examples in

this situation. �
We now list the examples for 2F-modules for nearly simple groups G with F ∗(G) = SLn(q)

in defining characteristic.

Case 6.1. On its natural module Yn, G = SLn(q) acts as a transvection group, so we get an
example with |A| = q .

Case 6.2. When n � 4 the alternating square ∧2(Yn) of the natural module is irreducible for
SLn(q). The subgroup

A :=
〈(

1
. . .

1
a1 . . . an−1 1

) ∣∣∣∣∣ ai ∈ Fq

〉
(5)

of order qn−1 visibly has centralizer of dimension at least
(
n−1

2

)
on ∧2(Yn), so this yields an

example.

Case 6.3. For � > 2 the symmetric square Σ2(Yn) is irreducible. Again the subgroup A in (5)
gives an example: its centralizer has dimension at least

(
n
2

)
.

Case 6.4. Let q = �2a and Y
(a)
n the ath Frobenius twist of the natural module. Then Yn ⊗ Y

(a)
n

is irreducible for SLn(q) and defined over the subfield F�a of Fq of index 2. Condition (1) now
reads

n2a − za � 2 · 2a

⌈
n2 − 1

4

⌉

where z � 1 denotes the dimension of the centralizer on Yn ⊗ Y
(a)
n of a maximal elementary

abelian �-subgroup. Thus this gives an example.

Case 6.5. For n = 6 the alternating cube ∧3(Y6) gives an example with the subgroup A from (5):
its rank equals 5a, and it centralizes at least the alternating cube of a 5-dimensional subspace, of
dimension 10.

Case 6.6. Consider the extension G of SLn(�
�a) by the field automorphism σ of order �. This

acts irreducibly on the F�a SLn(�
�a)-module

Yn ⊕ Y (a)
n ⊕ · · · ⊕ Y ((�−1)a)

n = Yn↑G
�a ,
SLn(� )
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and outer �-elements have centralizer of dimension n. Let A be a maximal elementary abelian
�-subgroup in the centralizer SLn(�

a) of σ with �(n + 1)/2�-dimensional centralizer on Yn,
extended by σ . Then (1) becomes

a

(
n(� − 1) +

⌊
n + 1

2

⌋)
� 2

(
a

⌊
n2

4

⌋
+ 1

)
,

and we get an example when � � (n+1)/2. Furthermore, when n = � = 2 we get an example for
L2(22a).2, a ∈ {1,2}, the extension of O−

4 (2a) by the graph automorphism. A further solution of
the above equation is given by n = 4, � = 3, a = 1; in this case |A| = 35.

Case 6.7. With G as in the previous example, where � = 2, the tensor product Yn ⊗ Y
(a)
n is

defined over F2a . For n = 2, the case a = 1 is the deleted permutation module for S5, hence
occurs. The case a = 2, that is, the 4-dimensional representations of L2(16).2 defined over F4,
yield examples since the 2-rank of the centralizer of the outer involution is 3. When n = 3, a = 1,
we get an example by choosing A′ := A ∩ SLn(22a) as in (5).

Case 6.8. Consider SLn(q), q = 2a , n � 3, extended by the graph automorphism γ . Then Yn⊕Y ∗
n

is an irreducible FqSLn(q).2-module. When n = 3, a = 1, the Sylow 2-subgroup of the central-
izer of γ , of order 22, gives an example with centralizer of dimension 2. When n � 4, a maximal
elementary abelian 2-subgroup in the centralizer of γ , extended by γ , gives an example, unless
n = 5, a � 3, with centralizer of dimension �(n + 1)/2�.

Case 6.9. The group G = SL4(2a).2 (extension by the graph automorphism) on ∧2(Y4) is just
the orthogonal group GO+

6 (2a) on its natural module. A suitable conjugate γ of the graph auto-
morphism centralizes an elementary abelian �-subgroup

A′ :=
{(

1
0 1
a1 a2 1
a3 a1 0 1

) ∣∣∣ ai ∈ F2a

}

of order 23a . Thus A = 〈A′, γ 〉 gives an example. There also exists an offender of order 22a+1

centralizing a 2-dimensional subspace. This example actually fits in the infinite series of exam-
ples for orthogonal groups in Case 9.9.

Case 6.10. Consider SLn(q), q = 22a , n � 3, extended by the graph-field automorphism γ . Then
Yn ⊕ Y ∗

n
(a) is an irreducible FqSLn(q)-module. Take a maximal elementary abelian 2-subgroup

in the centralizer of γ , extended by γ . For n � 6, this gives an example with centralizer of
dimension �(n + 1)/2�, unless n = 7, a � 2.

Case 6.11. Let G be the extension of SLn(q), q = 22a , n � 3, by the graph and the field au-
tomorphism, both of order 2. Then a maximal elementary abelian 2-subgroup of the centralizer
in SLn(q) of the two outer automorphisms, extended by both outer automorphisms, gives an
example on the module induced from the natural module when n � 12, unless n = 13, a � 2.

Case 6.12. The extension G of the general orthogonal group GO+
6 (4) by the field automorphism

gives an example on the natural module ∧2(Y4) of GO+(4) induced to G with |A| = 32 and cen-
6
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tralizer of dimension 2. This example actually fits in the infinite series of examples for orthogonal
groups in Case 9.13.

7. Unitary groups

Here we consider the case S = Un(q), q = �a . Let Yn denote the natural module for SUn(q)

of dimension n.

Theorem 7.1. The absolutely irreducible 2F-modules for groups G with F ∗(G) = SUn(q),
q = �a , n � 3, with an offender whose conjugates generate G are as given in Table 3.

Proof. By [5, Proposition 4.11] we may assume that G and A involve proper outer automor-
phisms. Moreover either the restriction of a 2F-module for G to SUn(�

a) contains the natural
module Yn, or n = 4 and it contains ∧2(Y4).

First assume that � is odd and G = SUn(�
a).� involves a field automorphism of order �. For

the module Yn↑G induced from the natural module the bounds on the size of centralizer spaces
in [5, Proposition 3.11] force

� �
{

n+2
4 , n even,

n−1
4 , n odd.

For n = 4, ∧2(Y4) is the natural module for SO−
6 (�a), and using the bounds for orthogonal groups

in [5, Proposition 3.14] we see that necessarily � � 3 cannot occur.
It remains to consider the case that � = 2 and G is obtained from SUn(2a) by adjoining the

graph-field automorphism of order 2. For the natural module the same arguments as above show
that n � 4 for n even, and n � 7 or (n, a) = (5,1) for n odd.

The group SU4(2a).2 on ∧2(Y4) is the reflection group GO−
6 (2a) on its natural module and

gives an example. �
We now list the examples for 2F-modules for nearly simple groups G with F ∗(G) = SUn(q)

in defining characteristic.

Case 7.1. The special unitary group SUn(q) acts as a transvection group on its natural module
Yn over Fq2 , thus we get an example with |A| = q .

Table 3
2F-modules for unitary groups in defining characteristic

G d V f Conditions log� |A| Type

SUn(�a) n Yn 2a a i
SU4(�a) 6 ∧2(Y4) a a i

SUn(��a).� �n Yn↑G 2a n even, 2 �= � � (n + 2)/4 an2/4 f
or n odd, 2 �= � � (n − 1)/4 a(n − 1)2/4 f

SUn(2a).2 2n Yn↑G a n � 4, n �= 5 gf
or n = 5, a � 2 3a + 1 gf

SU4(2a).2 6 ∧2(Y4) a 3a + 1 gf
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Case 7.2. The 4-dimensional unitary group SU4(q) is isomorphic to the 6-dimensional orthogo-
nal group of minus-type. The latter is a bi-transvection group on its natural module, so we get an
example with |A| = q .

Case 7.3. The extension G of SUn(�
�a) by the field automorphism of order � acts irreducibly

on the F�2aG-module Yn ⊕ Y
(a)
n ⊕ · · · ⊕ Y

((�−1)a)
n . We obtain an example by taking A′ = A ∩

SUn(�
�a) maximal elementary abelian of order �an2/4 for n even, with centralizer of dimension

n/2 on the natural module, respectively elementary abelian of order �a(n−1)2/4 with centralizer
of dimension (n + 1)/2 on Yn when n is odd.

Case 7.4. The extension G of SUn(2a) by the graph-field automorphism σ of order 2 acts irre-
ducibly on the F2aG-module V = Yn ⊕ Y ∗

n . The centralizer C of σ is SOn(2a) for n odd, and
Spn(2

a) for n even. Let A be the extension of a maximal elementary abelian 2-subgroup of C

with σ . Then this gives an offender on V for n � 4 even, as well as for n � 7 odd and for n = 5,
a � 2.

Case 7.5. The graph automorphism of the special orthogonal group SO−
6 (2a) centralizes a sub-

group H = SO5(2a). Let A be a maximal elementary abelian 2-subgroup of H , extended by
this graph automorphism. Then A has rank 3a + 1 (see [5, Proposition 3.14]) and at least a
1-dimensional centralizer on the natural module. Thus this gives an example for the natural mod-
ule of SO−

6 (2a).2, so for SU4(2a).2 on ∧2(Y4). This example actually fits in the infinite series of
examples for orthogonal groups in Case 9.9.

8. Symplectic groups

Here we consider the case S = Sp2n(q), q = �a . Let λ1, . . . , λn denote the fundamental
weights for Sp2n, ordered along the Dynkin diagram of type Cn, with the double bond between
the first two nodes. Let Y2n denote the natural 2n-dimensional symplectic module for Sp2n(q);
if � = 2 let Zn denote the 2n-dimensional spin module.

To deal with the spin module for Sp6(2
a) and 8-dimensional orthogonal groups we need the

following lemma:

Lemma 8.1. Let A be an elementary abelian unipotent subgroup of Sp6(q) with |A| > q5 and q

even. Then the fixed space of A on the natural module Y6 is a maximal totally isotropic subspace.
In particular, A is contained in the unipotent radical of the maximal parabolic subgroup that is
the stabilizer of this 3-dimensional totally singular subspace.

Proof. Let P be the stabilizer of a totally singular 3-space with radical U and Levi subgroup
L ∼= GL3(q). Note that U is elementary abelian of order |U | = q6. We may assume that A � P

and we will show that A � U , whence the result.
Set B = A ∩ U . Suppose that B �= A. Set X = A/B � P/U ∼= L. Note that we can enlarge

A by considering ACU(X) which is still elementary abelian. Thus, we may assume that B =
CU(X). In particular, |B| = qb for some b. Moreover, b � 4 since a transvection in L centralizes
only a 4-dimensional subspace of U .

Thus, |X| > q . Note that X is contained in the unipotent radical Y of a maximal parabolic
of L. We claim that |CU(X)| � q3. Note that U has two composition factors as an L-module:
the dual of the natural module and a Frobenius twist of the natural module. On either of these
modules, X and Y have the same fixed points and Y has a 2-dimensional fixed space on one of
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these modules and a 1-dimensional fixed space on the other. Let M be the direct sum of these
two modules. Thus,

∣∣CU(X)
∣∣ �

∣∣CM(X)
∣∣ = ∣∣CM(Y )

∣∣ = q3

and so B = CU(X) has order at most q3. Hence |A| = |X||B| � q5, a contradiction. �
Lemma 8.2. Let V = Z3 be the 8-dimensional spin module for Sp6(q), q = 2a > 2. Then
4|A|2 |CV (A)| < |V |2 for every elementary abelian subgroup A �= 1.

Proof. Let A �= 1 be a counterexample. By [5, Lemma 5.1] we have |CV (A)| � q6, whence
|A| > q4. We may consider G := Sp6(q) as a subgroup of H := SO+

8 (q) on the spin module V ,
which under triality becomes the natural module of H . The bounds in [5, Proposition 3.14] then
show that |CV (A)| � q4, whence |A| � q6/2 > q5 since q � 4. The previous lemma now shows
that A is contained in the unipotent radical U of a maximal parabolic subgroup of G of type
GL3. By a closure argument we may assume that A = U , which leads to a contradiction, since
U has only a 1-dimensional centralizer on V by [5, Theorem 3.1]. �
Theorem 8.3. The absolutely irreducible 2F-modules for groups G with F ∗(G) = Sp2n(q),
q = �a , n � 2, with an offender whose conjugates generate G are as given in Table 4.

Proof. The 2F-modules for G = Sp2n(q) were determined in [5]. So first assume that G =
Sp2n(�

a).� involves a field automorphism of order �. By [5, Propositions 6.2 and 6.12] the re-
striction of a 2F-module V for G to Sp2n(�

a) contains a 2F-module W of G, so either the natural
module Y2n, or the spin module Zn when n ∈ {3,4,5} and � = 2, or the heart of the exterior
square ∧̃2(Y2n) when n � 4, or the tensor product module Y4 ⊗ Y

(a)
4 when n = 2. The standard

inequality shows that the last case does not arise.
In the remaining cases V is induced, so Proposition 5.1 together with [5, Table 2] shows

that either W is the natural module Y2n, or n = 3, � = 2 and W = Z3 is the spin module. If
V is induced from the natural module, then the bounds in [5, Proposition 3.12] on the size of
centralizer spaces on Y2n force � � (n + 2)/2.

Finally, assume that � = 2, n = 3, and V is induced from the spin module Z3 of dimension 8.
If q = 4 this is Example 8.6. The case q > 4 is ruled out by Lemma 8.2.

This completes the proof for n � 3, since there the only outer automorphisms are field au-
tomorphisms. So finally assume that G is an extension of Sp4(2

a), a odd, with the exceptional

Table 4
2F-modules for symplectic groups in defining characteristic

G d V f Conditions log� |A| Type

Sp2n(�a) 2n Y2n a a i

Sp2n(�a)
(2n

2
) − 1 − δ�,n ∧̃2(Y2n) a n = 2,3

(n+1
2

)
a i

or (n, �) = (4,2) 10a i
Sp2n(2a) 2n Zn a n = 3,4,5 (2n − 1)a i

Sp4(�2a) 16 Y2n ⊗ Y
(a)
2n

a 3a i

Sp2n(��a).� 2n� Y2n↑G a � � (n + 2)/2 f
Sp6(4).2 16 Z3↑G 1 6 f
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graph automorphism, where a � 2 (since Sp4(2) ∼= S6 was treated in [4]). Our standard inequal-
ities allow us to rule out this case immediately. �

We now list the examples for 2F-modules for nearly simple groups G with F ∗(G) = Sp2n(q)

in defining characteristic.

Case 8.1. The symplectic group Sp2n(q) acts as a transvection group on its natural module Y2n

over Fq , thus we get an example with |A| = q .

Case 8.2. The irreducible representation with highest weight λn−1 of Sp2n(�
a) is the heart of

the exterior square of the natural representation. Consider the maximal parabolic subgroup of
type GLn. The centralizer of its unipotent radical U has weight λn−2, hence dimension

(
n
2

)
. The

unipotent radical U is elementary abelian of �-rank
(
n+1

2

)
. Thus we find an example when n � 3.

In the case n = 2 we have an alternative interpretation: The 4-dimensional symplectic group is
isomorphic to the 5-dimensional orthogonal group. The latter is a bi-transvection group on its
natural module, so we get an example for Sp4(q) in dimension 5, when � �= 2. When � = 2 this
representation is reducible, and its irreducible constituent of dimension 4 yields an example.

Case 8.3. The spin module Zn for Sp2n(2
a) has highest weight λ1. Consider the maximal par-

abolic subgroup of type Sp2n−2. The centralizer of its unipotent radical U is again the spin mod-
ule for Sp2n−2(�

a), hence has dimension 2n−1. But U is elementary abelian of rank (2n − 1)a.
Thus U is an offender on Zn if 2n − 2n−1 � 2(2n − 1), so for n � 5.

Case 8.4. The tensor product of the natural module Y4 for Sp4(�
2a) with its twist Y

(a)
4 is de-

fined over F�a . A maximal elementary abelian �-subgroup A of order �3a has a 2-dimensional
centralizer on Y4, hence at least a 4-dimensional centralizer on Y4 ⊗ Y

(a)
4 . Thus A is an offender.

Case 8.5. The extension G of Sp2n(�
�a) by the field automorphism g of order � acts irreducibly

on the induced natural module V := Y2n ⊕ Y
(a)
2n ⊕ · · · ⊕ Y

((�−1)a)
2n , which is defined over F�a . Let

A be a maximal elementary abelian subgroup of the centralizer Sp2n(�
a) of G, of rank a

(
n+1

2

)
,

with centralizer of dimension n on the natural module, extended by g. Then A has centralizer of
dimension n on V , so gives an example when � � (n + 2)/2.

Case 8.6. The abelian unipotent radical of the Sp4-parabolic of Sp6(4), of order 210, is nor-
malized by the field automorphism σ of order 2, with centralizer A′ of order 25. It centralizes
a 4-dimensional spin module for the Levi factor. Thus A := 〈A′, σ 〉 of order 26 centralizes a
4-dimensional subspace of Z3 induced to 〈Sp6(4), σ 〉.

9. Orthogonal groups in dimension at least seven

In this section we consider the case S = Om(q), q = �a . We consider separately the subcases
where m is odd and m is even.

9.1. The odd-dimensional orthogonal groups

Let Y2n+1 denote the natural (2n+ 1)-dimensional module for Spin2n+1(q); let Zn denote the
2n-dimensional spin module.
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Theorem 9.1. The absolutely irreducible 2F-modules for groups G with F ∗(G) = Spin2n+1(q),
q = �a , n � 3, � �= 2, with an offender whose conjugates generate G are as given in Table 5.

Proof. Only field automorphisms arise in this situation, since diagonal automorphisms have or-
der at most 2, so G = Spin2n+1(�

a).� with � | a. By [5, Proposition 7.3] either the restriction
V |F ∗(G) of a 2F-module V for G contains the natural representation Y2n+1, or n � 5 and it con-
tains the spin representation Zn. Neither of them is invariant under field automorphisms, so V

is induced from Spin2n+1(�
a). The case of spin representations is ruled out by the standard in-

equality. For the natural representation the bounds for elementary abelian �-subgroups with given
centralizer dimension in [5, Proposition 3.14] show that � � (n−1)/2 or (n, �, a) = (6,3,3). �
9.2. The even-dimensional orthogonal groups

Let λ1, . . . , λn denote the fundamental weights for Spin2n, ordered along the Dynkin diagram
of type Dn, with the first two nodes the ones interchanged by the graph automorphism of order 2.
Let Y2n denote the natural 2n-dimensional module for Spin(±)

2n (q); let Zn−1 denote either one of
the two 2n−1-dimensional half-spin modules.

Theorem 9.2. The absolutely irreducible 2F-modules for groups G with F ∗(G) = Spin+
2n(q),

q = �a , n � 4, with an offender whose conjugates generate G are as given in Table 5.

Proof. 1. First let G be the extension of Spin+
2n(q) by a field automorphism of order �, so � | a.

1A. If there exists an offender contained in the unipotent radical of a proper parabolic sub-
group, then V is already an example for Spin+

2n(q), hence induced from Y2n or from the half-spin
modules Zn−1 when n � 6 by [5, Theorem 7.5]. If V is induced from Y2n, then our usual inequal-
ity gives � � n/2, which is Example 9.6. For Zn−1 Proposition 5.1 gives n � 5, and our inequality
forces � = 2. The case n = 4 is Example 9.8. For n = 5 the outer involution centralizes just half

Table 5
2F-modules for orthogonal groups in defining characteristic

G d V f Conditions log� |A| Type

Spin(±)
n (�a) n Yn a n � 7 a i

Spin2n+1(�a) 2n Zn a n = 3,4,5 (2n − 1)a i

Spin+
2n

(�a) 2n−1 Zn−1 a n = 4,5,6 (2n − 2)a i

Spin−
2n

(�a) 2n−1 Zn−1 2a n = 4,5 (2n − 2)a i

Spin2n+1(��a).� (2n + 1)� Y2n+1↑G a � � (n − 1)/2 or f

(n, �, a) = (6,3,1) f

Spin+
2n

(��a).� 2n� Y2n↑G a � � n/2 f

Spin−
2n

(��a).� 2n� Y2n↑G a 2 �= � � n/2 f

Spin+
8 (22a).2 16 Z3↑G a f

Spin±
2n

(2a).2 2n Y2n a 3a + 1 g

Spin+
8 (2).2 16 Z3↑G 1 6 g

Spin+
2n

(22a).2 4n Y2n↑G a gf

Spin−
8 (2).2 16 Z3↑G 1 6 gf

Spin+
2n

(22a).22 4n Y2n ⊕ Y
(a)
2n

a f,g
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the space, so our offender A has to have order at least q5. But then [5, Lemma 5.2] shows that
A ∩ Spin+

10(q) centralizes at most a 10-dimensional subspace of the spin module, whence A also
has centralizer of dimension at most 10. Thus |A| � q10. Then [5, Proposition 5.3] gives the final
contradiction to the 2F-condition.

1B. Otherwise, by Proposition 5.2, CV (U) is an example for all proper Levi subgroups L

of parabolics P = U.L, extended by the field automorphism. But the only example for n = 3,
that is for SL4(q), is the half-spin module, by Theorem 6.1. Applying this for all three end-node
parabolics we conclude that for n = 4 we only find Y8 and Z3. Induction now shows that there
are no new examples for n � 5.

2. Consider G the extension of SO+
2n(2

a) by the graph automorphism γ of order 2, with

centralizer of 2-rank
(
n−1

2

)
a + 1. The usual estimates yield the following possibilities for 2F-

modules V of G: V is the extension to G of the natural module Y2n, or the tensor product of
the natural module with its a/2th Frobenius twist with a even, or we have n = 4 and either V is
induced from the spin module Z3 or V is the extension of the basic module with highest weight
λ1 + λ2.

The natural module is Example 9.9; the spin module for a = 1 is Example 9.10. The case
a � 2 is ruled out by Lemma 8.2. On the other hand, the centralizer dimensions on the tensor
product Y2n ⊗ Y

(a/2)

2n can be estimated by [5, Corollary 2.11], showing that this does not give
an example. The module with highest weight λ1 + λ2 is not an example by [5, Proposition 2.4],
since the centralizer of the unipotent radical of the SO+

6 (2a)-parabolic is the adjoint module for
GL4(2a) by [5, Theorem 3.1], which is not a 2F-module by Theorem 3.1.

3. Consider G the extension of Spin+
2n(2

a) by the graph-field automorphism of order 2, so
2 | a. Here, we have to deal with the module induced from the natural module, and with the
tensor product Yn ⊗ Y

(a/2)
n . The natural module is Example 9.11. The tensor product can be

ruled out by the usual calculation of centralizer dimensions.
4. Consider G = SO+

2n(2
a).22, the extension by the graph and the field automorphism of

order 2, so 2 | a. The standard estimates only allow for modules lying over the natural module
and for the tensor product Yn ⊗ Y

(a/2)
n . The natural module is Example 9.13. The tensor product

can be eliminated by using the more precise information on centralizers of groups with given
size on the natural module from [5, Corollary 2.11 and Proposition 3.14].

5. Consider G the extension of Spin+
8 (3a) by the graph automorphism of order 3, with cen-

tralizer of 3-rank 4a + 1. The standard inequalities show that only the exterior square ∧2(Y8)

of the natural module Y8 might give an example. But computation of possible centralizer spaces
using [5, Corollary 2.11 and Proposition 3.14] shows that this does not occur. The cases where
G contains a graph-field automorphism of Spin+

8 (3a) are immediately ruled out by the standard
inequalities. �
Theorem 9.3. The absolutely irreducible 2F-modules for groups G with F ∗(G) = Spin−

2n(q),
q = �a , n � 4, with an offender whose conjugates generate G are as given in Table 5.

Proof. By [5, Theorem 7.6] we may assume that G involves some proper outer automorphisms.
1. First let G = Spin−

2n(�
a).� be an extension of F ∗(G) by a field automorphism of odd or-

der �. Let V be a 2F-module for G and assume that V is induced from a module W for F ∗(G).
By Proposition 5.1 this implies that W is an F-module for Spin−

2n(�
a/�), hence by [5, Table 2]

up to twists W is the natural module. Here the usual argument shows that necessarily � � n/2,
giving Example 9.7.
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Now assume that V is not induced, hence restricts irreducibly to F ∗(G). Let P = U.L be
a proper parabolic subgroup of F ∗(G). If the unipotent radical U contains an offender, then
V is a 2F-module for F ∗(G). But by [5, Theorem 7.6] none of those is invariant under field
automorphisms. Thus, CV (U) is a 2F-module for the extension of the Levi subgroup L by the
field automorphism by [5, Proposition 2.4]. First let n = 4. Then we may choose L of type
SU4(q), and by Theorem 7.1 the only 2F-module invariant under field automorphisms is the
trivial one. The same conclusion holds for L of type GL3(q) by Theorem 6.1. Thus, by the
theorem of Smith and Timmesfeld [5, Theorem 3.1] we have that V is the trivial module. For
n � 5 we use induction, arguing with the Levi subgroups of type SO−

2n−2(q) and GLn−1(q), to
show that no examples arise.

2. Next consider the case that G = SO−
2n(2

a).2 is the extension by the graph-field automor-
phism of order 2. By virtually the same estimates as in the case of the graph automorphism of
SO+

2n(2
a) in Theorem 9.2 we arrive at the same four cases as there. The module with highest

weight λ1 + λ2 and the tensor product of the natural module are excluded by the same argu-
ments. The natural module is Example 9.9, while the spin module for a = 1 is Example 9.12.
The case a > 1 is ruled out by Lemma 8.2. �
9.3. The examples for Spin(±)

n (q), n � 7

Case 9.1. The orthogonal group SO(±)
n (q) acts as a bi-transvection group on its natural module,

hence we obtain an example with offender of order q .

Case 9.2. The spin module Zn for Spin2n+1(�
a) has highest weight λ1. Consider the maximal

parabolic subgroup of type Spin2n−1. The centralizer of its unipotent radical U is again the
spin module for Spin2n−1(�

a), hence has dimension 2n−1. But U is elementary abelian of rank
(2n − 1)a. Thus U is an offender on Zn if 2n − 2n−1 � 2(2n − 1), so for n � 5.

Case 9.3. For the half-spin modules V = Zn−1 of dimension 2n−1 of G = SO+
2n(q) let A be the

unipotent radical of the maximal parabolic subgroup with Levi complement of type SO+
2n−2(q).

Then the centralizer CV (A) is a half-spin module for SO+
2n−2(q), of dimension 2n−2, while A is

elementary abelian of order q2n−2, so we find an example whenever n � 6.

Case 9.4. The half-spin modules V = Zn−1 of dimension 2n−1 of G = SO−
n (q) are defined

over Fq2 . Let A be the unipotent radical of the maximal parabolic subgroup with Levi com-
plement of type SO−

2n−2(q). Then the centralizer CV (A) is a spin module for SO−
2n−2(q), of

dimension 2n−2, while A is elementary abelian of order q2n−2, so we find an example whenever
n � 5.

Case 9.5. Let G = SO2n+1(�
�a).�, the extension by the field automorphism σ of order �. Let

A′ be a maximal elementary abelian �-subgroup in the centralizer SO2n+1(�
a) of σ , of order

�a(n
2) and with centralizer of dimension n on the natural module Y2n+1. Then A := 〈A′, σ 〉 is an

offender on the induced module for � � (n − 1)/2 or (n, �, a) = (6,3,1).

Case 9.6. Let G = SO+
2n(�

�a).�, the extension by the field automorphism σ of order �. Let A′ be

a maximal elementary abelian �-subgroup in the centralizer SO+
2n(�

a) of σ , of order �a(n
2) and

with centralizer of dimension n on the natural module Y2n. Then A := 〈A′, σ 〉 is an offender on
the induced module Y2n↑G

SO+
2n(��a)

for � � n/2.
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Case 9.7. Let G = SO−
2n(�

�a).�, � > 2, the extension by the field automorphism σ of order �. Let

A′ be a maximal elementary abelian �-subgroup in the centralizer SO−
2n(�

a) of σ , of order �a(n
2)

and with centralizer of dimension n on the natural module Y2n. Then A := 〈A′, σ 〉 is an offender
on the induced module for � � n/2.

Case 9.8. The half-spin modules for SO+
8 (��a) are images under the triality automorphism of

the natural module. Since this gives Example 9.6 for the extension with a field automorphism for
� = 2, the same is true for the half-spin modules.

Case 9.9. The graph automorphism of SO±
2n(2

a) of order 2 leaves the natural module Y2n invari-
ant. Let A be a maximal elementary abelian �-subgroup of GO±

6 (2a) � GO±
2n(2

a). Then A has
order 23a+1 and dimCY2n

(A) � 2n − 5, so this gives an example.

Case 9.10. Let G be the extension of SO+
8 (2) by the graph automorphism γ of order 2. The graph

automorphism interchanges the two half-spin modules of SO+
8 (2). Denote by V the induced

module for G. Let A be generated by γ together with the unipotent radical U of order 25 of
the maximal parabolic subgroup of Sp6(2) = CSO+

8 (2)(γ ) of type SO5(2). Then U centralizes a
4-dimensional spin module for SO5(2), so we get an example.

Case 9.11. Let G be the extension of SO+
2n(2

2a) by the graph-field automorphism σ of order 2.
Let A′ be a maximal elementary abelian �-subgroup in the centralizer SO2n−1(2a) of σ , of order

�a(n−1
2 ) and with centralizer of dimension n − 1 on the natural module Y2n. Then A := 〈A′, σ 〉 is

an offender on the induced module.

Case 9.12. This is obtained from Example 9.10 by exchanging the orthogonal group of plus type
with the one of minus type.

Case 9.13. Let G be the extension of SO+
2n(2

2a) by the group of graph-field automorphisms of
order 4. We get an example with A∩SO+

2n(2
2a) a maximal elementary abelian 2-subgroup in the

centralizer SO2n−1(2a) of the group of automorphisms, on the module induced from the natural
module.

10. Exceptional groups

Theorem 10.1. Let V be an absolutely irreducible 2F-module for a group G with F ∗(G) an
exceptional group of Lie type. Then G = F ∗(G) and V is as given in Table 6.

Proof. Let V be a 2F-module for G, where F ∗(G) is an exceptional group of Lie type. Let V0
denote a composition factor of V |F ∗(G). By [5, Theorem 8.1] we know that V0 is a 2F-module for
F ∗(G), hence contained in [5, Table 1]. More precisely, F ∗(G) is one of 2B2(22a+1), G2(�

a),
F4(�

a), E6(�
a), 2E6(�

a), E7(�
a), and V0 is a non-trivial irreducible representation of F ∗(G) of

minimal possible dimension.
1. Since Suzuki groups are defined over fields of even order but have no outer automorphisms

of even order, this case does not arise.
2. Now let F ∗(G) = G2(�

a), �a �= 2 (the group G2(2) = U3(3) was treated in [4, Proposi-
tion 4.3]). Only field automorphisms (of order �) matter, so G = G2(�

a).� with � | a. Then V
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Table 6
2F-modules for exceptional groups in defining characteristic

G d V f Conditions log� |A|
2B2(22a+1) 4 V0 2a + 1 a > 1 2a + 1
G2(�a) 7 − δ�,2 V0 a 3a

F4(2a) 26 V0 a 10a

F4(3a) 25 V0 a 8a

E6(�a) 27 V0 a 16a

is the induction to G of the d := 7 − δ�,2-dimensional module V0 for F ∗(G). On this, the field
automorphism has centralizer dimension d . The �-rank of G2(�

a) is at most 4a by [5, Table 13].
Thus we find � = 2, hence d = 6. But in this case the �-rank is only 3a. Moreover inner �-
elements have at most 4-dimensional centralizer on V0. This forces a = 2, so F ∗(G) = G2(4),
and A ∩ F ∗(G) has order 8. But subgroups of order 8 have at most a 3-dimensional centralizer
on V0, hence no example arises.

3. For F ∗(G) = F4(�
a), V0 is a 25- or 26-dimensional module, invariant under neither the

field automorphisms nor the graph automorphism in characteristic 2. The standard estimate leads
to a contradiction here.

4. Now let G = E6(�
a)sc.� involve a field automorphism of order �. For the non-invariant 27-

dimensional module V0 of F ∗(G) the standard estimate forces � = 2. The commutator space of
non-trivial �-elements on V0 is at least 6-dimensional, and at least 10-dimensional for all but long
root elements by [9, Table 5]. On the other hand, the maximal order of an �-subgroup consisting
only of long root elements is �5a by [5, Table 5]. This gives a contradiction. The case of graph
and graph-field automorphisms was already ruled out in the proof of [5, Lemma 8.10].

5. For F ∗(G) = 2E6(q)sc and F ∗(G) = E7(q)sc only field automorphisms arise. The modules
of smallest possible dimension 27, respectively 56 are not invariant under field automorphisms,
and the standard estimate allows us to conclude that no 2F-modules arise. �

11. Cubic action

In this section we determine which of the examples (G,V ), where G is a group of Lie type
and V is a 2F-module for G in its defining characteristic, have cubic action, that is, there exists
an elementary abelian �-subgroup 1 �= A � G such that[[[V,A],A]

,A
] = 0 and

∣∣V/CV (A)
∣∣ � |A|2. (6)

We call these the 2F-modules with cubic offender. In the case where V is a 2F-module for G not a
group of Lie type in its defining characteristic, this classification was already achieved in [4, §6].

Theorem 11.1. Let V be an absolutely irreducible 2F-module for a finite group G such that
F ∗(G) is quasi-simple. Then there exists a non-trivial elementary abelian offender A acting
cubically on V .

Proof. If F ∗(G) is not of Lie type in the same characteristic as V , then this was already proved
in [4, Theorems 6.2, 6.4, 6.6].

For groups of Lie type in their defining characteristic we use the classification of 2F-modules
in [5, Table 1] and results of the previous sections. We start with some general observations. If
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V is in fact an F-module for G, then by Thompson’s replacement lemma there exists an offender
which actually acts quadratically. Thus the result is proved for such modules. Secondly, if A acts
quadratically on V and on W , then it acts cubically on V ⊗ W , hence also on ∧2(V ) and on
Σ2(V ).

We look at the remaining cases in detail. We start with the quasi-simple case, i.e., G = F ∗(G).
For G = SLn(q) the only remaining example is Case 6.5. Here clearly the offending subgroup A

actually acts quadratically on ∧3(Y6). All examples for the unitary groups are already F-modules
except for the natural module of SU3(q). But in dimension 3 all A act cubically. For symplectic
and orthogonal groups, only the spin modules remain. Here the offender A given in the examples
is the unipotent radical of a parabolic subgroup P of orthogonal type. The spin module Zn splits
into a sum of two spin modules Zn−1 for the Levi subgroup, one of which is the centralizer
CZn(A) of A, and A acts trivially on Zn/CZn(A). Thus we actually have quadratic action.

The 2F-modules for exceptional G are listed in Table 6. The offending subgroup for the Suzuki
group 2B2(22a+1) has 2-dimensional centralizer on the natural 4-dimensional module, hence acts
cubically. For G2(�

a), � �= 3, consider the centralizer C of type A2 of an element of order 3. The
(7 − δ�,2)-dimensional module restricts as Y3 ⊕Y ∗

3 ⊕ 1 to C when � > 2, respectively as Y3 ⊕Y ∗
3

when � = 2 (the constituents are the eigenspaces for the element of order 3). The unipotent rad-
ical of a maximal parabolic subgroup of C has order q2 and thus clearly acts cubically and has
centralizer dimension at least 3 − δ�,2, so is an offender. In characteristic 3 G2(3a) contains bi-
transvections on the module of dimension 7, see for example [9, Table 1], which gives a quadratic
offender.

The 26-dimensional module for F4(2a) is the heart of the exterior square of the natural
module for Sp8(2

a), on which there exists a cubic offender by what we said above. For the 25-
dimensional module V (λ1) for F4(3a), the offender A exhibited above in proving Theorem 3.1
is cubic: for the elements of A are products of root elements for E7-roots with α4-coefficient at
least 2, while the elements of the 26-dimensional module having V (λ1) as quotient are products
of root elements with α4-coefficient ranging from 0 to 4. Finally, each of the 27-dimensional
modules for E6(�

a) may be treated by a similar easy argument: let V be the unipotent radical
of the E6-parabolic of E7(q), and let A be the product of the root subgroups of E6(q) with α1-
coefficient equal to 1; since the elements of V are products of root elements with α1-coefficient
ranging from 0 to 2, it follows as before that A is a cubic offender.

It remains to consider 2F-modules V for groups G �= F ∗(G) with F ∗(G) of Lie type, in the
same characteristic as V . By our classification, the restriction V |F ∗(G) again only contains 2F-
modules for F ∗(G), so we are done by the previous part if V |F ∗(G) is irreducible. Furthermore, if
(G : F ∗(G)) = � and V = IndG

F ∗(G)W is induced but defined over a proper subfield (of index �),
then a cubic offender on W inside F ∗(G) trivially is a cubic offender on V . Hence finally assume
that V is induced and defined over the same field. For Examples 6.8, 6.10 and 6.12 a maximal
elementary abelian subgroup does the job, as well as for Example 7.4. No cases for symplectic
groups remain. For Examples 9.10 and 9.12 the unipotent radical of an end-node parabolic of
orthogonal type is a quadratic offender, and for Example 9.13 we may again choose a maximal
elementary abelian subgroup. This completes the proof of the theorem. �

Note that, in general, we cannot expect to find an offender A acting cubically such that
G = 〈AG〉. Counterexamples are given by induced natural modules for groups of Lie type ex-
tended by field automorphisms. Here no non-trivial outer �-element acts cubically, for � large
enough.
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12. F-modules

In this section we determine the F-modules for groups G such that F ∗(G) is quasi-simple and
thus prove Theorem 4. The result for F-modules for quasi-simple groups is in [5, Theorem B].
We reproduce this in Table 7.

We now consider the cases where N := F ∗(G) is quasi-simple and V is an F-module (ab-
solutely irreducible) with an offender A whose conjugates generate G and that properly con-
tains N .

We note that in particular, V is necessarily a 2F-module. So we only need consider those G

that are not themselves quasi-simple and we go through them one at a time. If the characteristic
� is odd, it follows immediately from this that F ∗(G) is a classical group and V is the natural
module for G. It also follows that if F ∗(G) is a Chevalley group in defining characteristic, then
it must be a classical group.

Let A be an offender whose conjugates generate G. Let B := A ∩ N .

12.1. Alternating, sporadic and cross characteristic cases

In this subsection, we consider modules in characteristic � = 2 for sporadic and alternating
groups and for Chevalley groups in odd characteristic.

Case 1. G = Sn and V the heart of the permutation module. Since the module is defined over
the prime field and G contains transvections, this is an example.

Case 2. G = 3.S6 and d = 6. Any outer involution has a 3-dimensional centralizer (since the
module is induced). In particular, B �= 1. It follows that CV (A) has dimension at most 2. Since
|A| � 8, this is not an example.

Case 3. G = S7, d = 8. Any outer involution has a 4-dimensional centralizer and CV (A) has
dimension at most 3. However, |A| � 16, so this is not an example.

Case 4. U3(2).2 = G2(2), d = 6. This is an example (as for G2(2a) in general—see Table 7).

Table 7
F-modules for quasi-simple groups

G d V � f Conditions

SLn(�a) n Yn � a

SLn(�a)
(n
2
) ∧2(Yn) � a n � 4

SUn(�a) n Yn � 2a n � 4
Sp2n(�a) 2n Y2n � a

Spin(±)
n (�a) n Yn � a n � 6

Spin7(�a) 8 Z3 � a

Spin+
2n

(�a) 2n−1 Zn−1 � a n = 4,5
G2(2a) 6 M(λ2) 2 a

A2n 2n − 2 2 1
3.A6 3 2 2
A7 4 2 1
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Case 5. G = 31.U4(3).22 with d = 6 over F4. The 2-rank of G equals 5. Explicit computation
shows that elementary abelian subgroups A of order 16 containing outer involutions centralize
at most a 3-dimensional subspace, and subgroups of order 4 centralize at most a 4-dimensional
subspace. Hence this is not an F-module.

Case 6. G = 31.U4(3).(22)122 with d = 12. Then the centralizer of some outer involution in A

has a 6-dimensional centralizer. Thus, |A| = 26 and CV (A) = CV (x), which is easily seen not to
be the case.

Case 7. G = M12 : 2, d = 10. There is only one class of outer involutions and its fixed space is
5-dimensional. The 2-rank of the centralizer of an outer involution is 4. So this is not an example.

Case 8. G = M22 : 2, d = 10. There are two classes of outer involutions. If x is an involution
of class 2B, then the fixed space has dimension 7. One computes directly that any elementary
abelian subgroup of order 4 containing x has fixed space of dimension at most 5 and any ele-
mentary abelian subgroup of rank 3 containing x has a fixed space of dimension at most 4 and
so there is no example (as the 2-rank of G is 5).

If x is in class 2C, then the fixed space of x is 5-dimensional. Any rank 2 subgroup containing
x has fixed space of dimension at most 4 and so there is no example (as the 2-rank of G is 5).

12.2. Classical groups

In this subsection, we consider modules in defining characteristic � for classical groups.

Linear groups:
1. Natural module (field, graph, graph-field, graph and field automorphisms).
(a) G = SLn(�

�a).�, n � 2, the extension by a field automorphism of order �, on the mod-
ule V = YG

n induced from the natural module for F ∗(G) over the field Fq with q := �a . Then

CN(x) = SLn(q) and for n even, |B| � qn2/4 and for n odd, |B| � q(n2−1)/4 (see [5, Proposi-
tion 3.10]).

Suppose that n is even. So a necessary condition for V to be an F-module is that an2/4 +
an/2 + 1 � a�n, that is, � � (n + 2)/4 + 1/an. This is satisfied if and only if � � (n + 2)/4.
Conversely, if � � (n + 2)/4, we choose B to be of maximal order (i.e. of rank an2/4) and then
CV (A) has dimension an/2 and so an2/4 + an/2 + 1 � a�n.

Similarly, for n odd, we see that this is an example for � � (n + 2)/4 + 1/an + 1/4n. This is
satisfied when � � (n + 2)/4, as well as when n = 5, � = 2, a = 1.

(b) G = SLn(2a).2, n � 3, the extension with the graph automorphism γ , on the module
V = YG

n induced from the natural module. First suppose that n = 2m is even. Then we can
choose γ so that CN(γ ) = Sp2m(2a). Let B be the subgroup of CN(γ ) acting trivially on a
maximal totally isotropic subspace. So the rank of B is am(m+ 1)/2 (see [5, Proposition 3.12]).
Thus, we obtain the condition am(m + 1)/2 + am + 1 � 4am, that is, m � 5, hence n � 10.

Now suppose that n = 2m + 1 is odd. Here CN(γ ) is an orthogonal group SO2m+1(2a). Let
B be the subgroup of CN(γ ) trivial on a totally singular subspace of dimension m + 1 in the
natural module (and also the dual). Then B contains an elementary abelian subgroup of rank
m(m+ 1)a/2. Set A = 〈B,γ 〉. Then CV (A) has dimension m+ 1. So A is an offender if n � 11.

(c) G = SLn(22a).2, n � 3, the extension by a graph-field automorphism γ on the module
V = YG

n induced from the natural module. Set q := 2a , so V has dimension 2n over Fq . The
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centralizer CN(γ ) is a unitary group SUn(q). If n is even, this has a maximal elementary abelian
�-subgroup B of order qn2/4 with centralizer dimension n/2 (see [5, Proposition 3.11]). We arrive
at n � 14 for this to yield an offender.

If n is odd, there exists such B of order q(n−1)2/4. This leads to the condition n � 17.
(d) G = SLn(2a).22, n � 3, on V = YG

n with Yn the natural module. Here, the centralizer of a
field and a graph automorphism is at most a symplectic group Sp�n/2�(q) with q = 2a . Using the
bounds for �-ranks and centralizer dimensions in [5, Proposition 3.12] we arrive at n � 26 when
n is even, respectively n � 29 when n is odd.

2. G = SLn(22a).2, the extension by the field automorphism, on V := Yn ⊗ Y
(a)
n , for n = 2,

a � 2, or n = 3, a = 1.
(a) G = SL2(4).2, so n = 2, a = 1. This is S5 on the heart of the permutation module, so an

example.
(b) G = SL2(16).2, so n = 2, a = 2. The centralizer of an outer involution in F ∗(G) is

SL2(4) = A5, whence |A| � 8. It follows that this is not an F-module.
(c) G = SL3(4).2, so n = 3, a = 1. Here, V is defined over F2 and has dimension 9. If γ is

an outer involution, then its centralizer in G is SL3(2) × 〈γ 〉. Moreover, CV (γ ) has dimension 6
and has two non-trivial composition factors for SL3(2), whence this is not an F-module.

3. G = SL4(2a).2 the extension with a graph automorphism acting on ∧2(Y4), the outer square
of the natural module. This is SO+

6 (q) in its natural representation, where q = 2a . The centralizer
of a graph automorphism is a 5-dimensional orthogonal group. If q = 2, this is also S8 on the
heart of the permutation module, hence an example with A of order 2 generated by a transvection.
If q > 2, the bounds for the 2-rank of subgroups with given centralizer in [5, Proposition 3.14]
show that it is not an F-module for G.

4. G = SL4(4).22 with V = ∧2(Y4) ⊕ ∧2(Y
(1)
4 ). Here A must contain a field automorphism

γ of order 2. Then CG(γ ) = S8 × 〈γ 〉 and CV (γ ) has dimension 6. Since the 2-rank of S8 is 4,
this is not an F-module.

Unitary groups:
1. G = SUn(�

�a).�, extension by a field automorphism γ , acting on the module YG
n induced

from the natural module over Fq2 , q := �a , with � odd. Then CN(γ ) = SUn(q) and for n even,
|B| � qn2/4 while for n odd, |B| � q(n−1)2/4+1 (see [5, Proposition 3.10]).

Suppose that n is even. So a necessary condition for V to be an F-module is that an2/4 +
an/2 + 1 � 2a�n or � � (n + 2)/8 + 1/2an. This is satisfied if and only if � � (n + 2)/8.

Similarly, for n odd, we see that this is an example for � � n/8 + 3/8n + 5/8an. This is
satisfied when � � (n − 1)/8.

2. G = SUn(2a).2, extension by a graph-field automorphism, acting on the module YG
n in-

duced from the natural module over F2a . Here the centralizer of an outer automorphism is
contained in a symplectic group. The bounds for �-ranks in [5, Proposition 3.12] lead to the
condition n � 10 for n even, respectively n � 13 or (n, a) = (11,1) for n odd.

3. G = SU4(2a).2 acting as SO−
6 (2a) on its natural module. As in the SO+

6 case, this is an
example when a = 1 and not an example for a > 1, by application of [5, Proposition 3.14].

Symplectic groups:
1. G = Sp2n(�

�a).�, extension by a field automorphism, acting on the module YG
2n induced

from the natural module over F�a . Here the maximal centralizer of an outer �-element is
Sp2n(�

a). The bounds in [5, Proposition 3.12] show that we get an example if and only if
� � (n + 3)/4.
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Table 8
F-modules for groups G with F ∗(G) �= G quasi-simple

G d V f Conditions Type

Sn n − 1 nat. 1 5 � n ≡ 1 (mod 2)

Sn n − 2 nat. 1 6 � n ≡ 0 (mod 2)

U3(3).2 6 1

SLn(��a).� �n Yn↑G a � � (n + 2)/4 f

or (n, �, a) = (5,2,1) f

SLn(2a).2 2n Yn↑G a n � 10, n �= 11 g

or (n, a) = (11,1) g

SL4(2).2 6 ∧2(Y4) 1 g

SLn(22a).2 2n Yn↑G 2a n � 14, n �= 15 gf

SLn(22a).22 4n Yn↑G a n � 26, n �= 27 f,g

SUn(��a).� �n Yn↑G 2a n even, 2 �= � � (n + 2)/8 f

or n odd, 2 �= � � (n − 1)/8 f

SUn(2a).2 2n Yn↑G a n � 10, n �= 11 gf

or (n, a) = (11,1) gf

SU4(2).2 6 ∧2(Y4) 1 gf

Sp2n(��a).� 2n� Y2n↑G a � � (n + 3)/4 f

Spin2n+1(��a).� (2n + 1)� Y2n+1↑G a � � n/4 f

Spin+
2n

(��a).� 2n� Y2n↑G a � � (n + 1)/4 f

Spin−
2n

(��a).� 2n� Y2n↑G a 2 �= � � (n + 1)/4 f

Spin±
2n

(2a).2 2n Y2n a n � 5 or (n, a) = (4,1) g

Spin+
2n

(22a).2 4n Y2n↑G a n � 7 gf

Spin+
2n

(22a).22 4n Y2n ⊕ Y
(a)
2n

a n � 9 f,g

2. G = Sp6(4).2 with V being induced from the 8-dimensional spin module. Let γ ∈ A be
an outer involution. Then CV (γ ) has dimension 8 and CG(γ ) = Sp6(2) × 〈γ 〉. So |A| > 2 and
CV (A) has dimension at most 6. Since |A| � 16, this is not an example.

Orthogonal groups in dimension at least 7:
1. Natural module with field, graph, field-graph or field and graph automorphism.
(a) G = SO2n+1(�

�a).�, extension by the field automorphism, on the module induced from the
natural module. The standard estimate using [5, Proposition 3.14] gives the condition � � n/4.

(b) G = SO±
2n(�

�a).�, extension by the field automorphism, on the module induced from the
natural module. The standard estimate gives the condition � � (n + 1)/4.

(c) G = SO±
2n(2

a).2, extension by the graph automorphism of order 2, on the natural module.
The standard estimate gives the condition that either a = 1 or n � 5.

(d) G = SO+
2n(2

2a).2, extension by the graph-field automorphism of order 2, on the module
induced from the natural module. Here we arrive at n � 7.

(e) G = SO+
2n(2

2a).22, extension by the graph and field automorphisms, on V = Y2n ⊕ Y
(a)
2n .

Here we get n � 9.
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2. G = Spin+
8 (22a).2, extension by a field automorphism and V the module induced from the

spin module of dimension 8, defined over the field of size 22a . This is the image under triality of
case 1(b) above, hence not an example for � = 2.

3. G = Spin±
8 (2).2 with V the module induced from the spin module. It follows that |A| � 27

and CV (A) has dimension less than 8, so this is not an example.
This concludes the proof of Theorem 4.
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