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ABSTRACT The tumor suppressor protein, p53, and the oncoprotein, Akt, are involved in a cross talk that could be at the core
of a cell’s control machinery for switching between survival and death. This cross talk is a combination of reciprocally
antagonistic pathways emanating from p53 and Akt, and also involves another tumor suppressor gene, PTEN, and another
oncogene, Mdm2; such a connected network of cancer-relevant genes must be significant and demands a critical study. The
p53-Akt network is shown in this report to possess the potential to exhibit bistability, a phenomenon in which two stable steady
states of the system coexist for a fixed set of control parameter values. A hierarchy of qualitative networks and abstract kinetic
models are analyzed and simulated on a computer to demonstrate the robustness of the bistable behavior, which, as argued in
this study, is a likely candidate mechanism for a cellular survival-death switch. The analysis applies to cells that are neither p53-
null nor Akt-null. The models presented here offer experimental predictions on the identity of control parameters of apoptotic
thresholds and on network perturbations (including DNA damage and Akt inhibition) that are sufficient to generate switching
between pro-survival and pro-death cellular states.

INTRODUCTION

The tumor suppressor protein p53 is often referred to as the

‘‘guardian of the genome’’ because of its key role in in-

ducing cells to die when, for example, their DNA is irrep-

arably damaged. This role is implemented by promoting the

cell death program, called apoptosis, through mechanisms

that can be both dependent and independent of p53’s tran-

scriptional activity. At least half of known human cancers is

associated with p53 gene mutations, and the majority of the

remaining half involves malfunctions of the pathways reg-

ulating the protein’s activities (for reviews, see (1–4)). In

both mutated and wild-type cases, p53 is prevented from

causing apoptosis of cancer cells.

The serine-threonine kinase Akt, on the other hand, pro-

motes cell survival by inhibiting pro-apoptotic proteins (such

as Bad and Caspase-9) through phosphorylation (for

reviews, see (5–7)). Thus, p53 and Akt influence the process

of apoptosis in opposite ways. Recent results summarized in

the next section indicate that there are cross talks between

p53 and Akt involving gene transcription as well as post-

translational protein and membrane lipid modifications. In

this study, we investigate the cross talk that is characterized

as a positive feedback loop between p53 and Akt. This loop,

which also involves PTEN and Mdm2, can also be described

as a mutual antagonism between an oncoprotein, Akt, and a

tumor suppressor protein, p53 (8,9). The functional classi-

fication of PTEN as a tumor-suppressor protein (10–12) and

Mdm2 as an oncoprotein (13,14) further underlines the sig-

nificance of studying the p53-Akt cross talk. Our goal in this

article is to analyze the regulatory network linking p53 and

Akt to gain insight on the control system of a cell’s decision

to survive or die. We will show that such a p53-Akt cell

survival-death switch can be sharp and robust.

There are many reported experimental observations sug-

gesting the possible existence of a cell survival-death switch

involving p53 and Akt (e.g., see (9,15,16)). Experimentally,

demonstrating the sharpness of such a switch would be

difficult using a population of cells. The predictions of the

models we analyze below are relevant at the single-cell level,

and therefore experiments such as those carried out by Nair

et al. (15)—in which single-cell decisions between apoptosis

and survival were shown—would be required to validate our

models’ predictions. Interestingly, Nair et al.’s (15) results

suggest a bistable behavior of the system. Bistability means

the coexistence of two stable steady states with one unstable

state in between (17). Ultimately, our interest in understand-

ing the control of a survival-death switch is linked to the goal

of selectively inducing cancer cells to die while keeping

normal cells alive; the intricacies of this selective control are

expected to be understood by detailed studies of functional

networks orchestrating these cellular decisions. The analysis

of the p53-Akt network presented here aims to contribute to

this goal.

Admittedly, the p53-Akt network analyzed in this report is

merely a part of a more elaborate control system deciding

between cell survival and death. Furthermore, our results

would apply only to cells that are not null for either p53 or

Akt. The analysis we provide, however, could shed light on

the essential control principles and parameters of the switch.

A special feature of our method of analysis is the ability of
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generating valid conclusions on steady-state stability based

on network structure alone, and despite the lack of quantita-

tive data. Model predictions that can be verified experimen-

tally are discussed, including apoptotic thresholds and network

perturbations due to DNA damage and Akt inhibition.

EXPERIMENTAL BASES OF THE P53-AKT
MODEL NETWORKS

The complexity of p53 regulation is depicted in a recent

review by Harris and Levine (8), which focuses on the many

positive and negative feedback loops in the regulatory net-

works. Two of these loops are shown in Fig. 1. One is the

important negative feedback loop between Mdm2 and p53.

Mdm2 inhibits p53 using at least two mechanisms, namely,

by ubiquitination of p53 leading to proteosomal degradation,

and by blocking a transactivation domain of p53 (11 and 12).

On the other hand, expression of the mdm2 gene is induced

by p53. This negative feedback loop between p53 and Mdm2

has been cited as a reason for the observed oscillations in p53

activity (18 and 19). Although interesting, we do not explore

these oscillations in this report.

The link between p53 and Akt involves PIP3 (phospha-

tidyl inositol-3,4,5-trisphosphate) and PTEN (phosphatase

and tensin homolog) as shown in Fig. 1. PIP3 is required for

the recruitment of Akt to the plasma membrane where Akt

gets phosphorylated and activated. One way by which p53 in-

hibits production of PIP3 indirectly is by inducing the ex-

pression of the lipid phosphatase PTEN (reviewed in Harris

and Levine (8)). Another way is by repressing the catalytic

subunit of PI3K (phosphatidylinositol 3-kinase), the enzyme

that catalyzes the formation of PIP3 (16). Akt phosphory-

lates Mdm2 (arrow from Akt to Mdm2 in Fig. 1), causing

the latter to translocate to the nucleus where it inhibits p53

(20).

As shown in Fig. 1, a positive feedback loop (p53-Akt-

Mdm2-p53) and a negative loop (p53-Mdm2-p53) are

coupled via the Mdm2-p53 interaction. Mayo and Donner

(12) suggested an interesting interpretation of this coupling

based on a report that the p53-induced transcriptional ac-

tivation of Mdm2 precedes that of PTEN (21). According to

this interpretation, the p53-Mdm2 negative feedback loop

autoregulates the increase in p53 and delays p53-induced

apoptosis to allow cells with DNA that are not irreversibly

damaged or mutated to survive. A subsequent p53-induced

expression of PTEN triggers the p53-PTEN ‘‘amplification

loop’’, which then suppresses the cell survival machinery;

it is then suggested that this suppression is obligate for

p53 apoptotic activity (12).

METHODS

The major steps in extracting model networks and their analyses are as

follows. The literature was reviewed to integrate experimental information

available on p53 and Akt pathways (see preceding section). Many of the

interactions or steps in the pathways can be described as ‘‘qualitative’’ in the

sense that no definitive mechanism or kinetic expressions and parameters

have been measured; nevertheless, they contain information on how a

molecular species affect the activity of a particular molecule or the rate of a

reaction. Thus, the first step in the modeling process is to establish the

connectivity (topology) of the qualitative network (to be referred to as qNET

below), which contains ‘‘arrows’’ and ‘‘hammerheads’’ to indicate

‘‘activatory’’ and ‘‘inhibitory’’ interactions, respectively. Examples of

qNETs are given in Fig. 2. A brief summary of qNET analysis is given in the

appendix of the article by Aguda and Algar (22), where it was shown that

only cycles in a qNET graph determine local stability of a given steady state.

This is the motivation why the qNET models in Fig. 2 are only those that

contain cycles that are destabilizing (i.e., they could generate unstable steady

states). It is these destabilizing cycles that are taken as prime candidates for

switching dynamics in the network; in other words, instability of a steady

state means that its perturbation leads to switching to another state.

The second step in the modeling process is to use available mechanistic

information and encode them into abstract kinetic models. These models

are referred to as ‘‘abstract’’ in the sense that the essential qualitative

dynamics are captured by simple mathematical functions. For example, the

qualitative information that ‘‘DNA damage stabilizes p53’’ can be translated

as ‘‘d[p53]/dt ¼ (synthesis rate) � (decay rate)/(1 1 [DNAdamage])’’. The

functional form of the second term on the right-hand side of this equation

represents the idea that if the level of DNA damage increases, then the rate of

p53 decay decreases. Details of the abstract kinetic models are given in the

Appendix.

One of the key questions asked in this work is how robust the switching

mechanisms predicted by the models are. The approach used to answer this

question is to consider the hierarchy of models shown in Fig. 2, starting from

the simplest interaction between p53 and Akt (mutual antagonism) to

networks with increasing mechanistic details. As shown in Fig. 2, each

qNET model is associated with an abstract kinetic model. The dynamics of

these abstract kinetic models are represented by deterministic ordinary

differential equations. The differential equations are integrated using a

modified Rosenbrock formula of order 2, which is implemented in the

MATLAB (The MathWorks, Natick, MA) platform (version 6.5, Release

13). To determine the steady states of the kinetic models, the right-hand sides

of the differential equations are all set to zero and the corresponding systems

of nonlinear algebraic equations were solved numerically using Maple

(version 7.0). The steady states as functions of certain parameters are referred

to as steady-state bifurcation diagrams (shown in the right-most column of

Fig. 2). The local stability of the steady states is determined using standard

linear stability analysis, which involves determining the eigenvalues of the

associated Jacobian matrices. In addition, the sensitivity of the system’s

FIGURE 1 Various positive and negative feedback loops involving the

p53-Mdm2 regulatory network. Interactions are shown as arrows (to mean

‘‘activate’’) and hammerheads (to mean ‘‘inhibit’’), and these are not

necessarily direct. See text for more details.
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behavior to perturbations of parameters was investigated, first, by a brute-force

method of varying parameters and, secondly, by mapping phase diagrams in

parameter space. Different regions in these diagrams represent different

numbers of steady states. The Appendix gives all the dynamical equations and

parameters used in the models. The SupplementaryMaterial describes in more

detail our comprehensive exploration of biologically reasonable ranges of

parameter values that led to the choice of model parameters.

RESULTS AND DISCUSSION

Hierarchy of models and robustness of bistability

Several models of increasing degree of mechanistic details

have been analyzed to demonstrate the robustness of the

switching behavior expected from the positive feedback loop

between p53 and Akt. The simplest of these models is Model

Q1 in Fig. 2. This model predicts a situation where either p53

is ‘‘on’’ and Akt is ‘‘off’’ or vice versa, depending on which

protein happens to have the upper hand. As shown in Fig. 1,

p53 antagonizes Akt by inhibiting the production of PIP3

either by inducing expression of PTEN or inhibiting PI3K;

these two ways of inhibiting PIP3 can be represented by two

abstract kinetic models: one is shown in the first row and

second column of Fig. 2, where p53 directly inhibits the

formation of active Akt* (corresponding to the inhibition of

PI3K); the other means of inhibiting PIP3 (not shown)

corresponds to p53’s transcriptional induction of PTEN,

which deactivates Akt*. We found that simulations using

both PIP3-inhibition models generate similar steady-state

bifurcation diagrams; the diagram shown in the first row

and last column of Fig. 2 is for the first case. The parameters

used for the simulation of Model Q1 are provided in the

Appendix. Note that the parameter being varied (the abscissa)

is the total Akt protein level (Akttot). Akttot can be assumed

constant within the timescale of the phosphorylation and

dephosphorylation processes involved in the activation of

Akt; these processes occur relatively faster than the transcrip-

tional, translational, and degradation processes involving the

Akt protein. This assumption is also supported by experimen-

tal data that show the amount of Akttot remaining relatively

constant after irradiation or treatment with chemotherapeutic

drugs even when the amount of active Akt* decreased dras-

tically (9,23).

The kinetic equations for Model Q1 are given below as

examples of the differential equations used to describe the

FIGURE 2 A hierarchy of models

used to illustrate the robustness of the

bistable behavior of the p53-Akt net-

work. First column shows the qualita-

tive network of the models, second

column gives corresponding abstract

kinetic models, and the last column dis-

plays the steady states of p53 (shaded

curve) and of active Akt* (solid) as

functions of a control parameter (total

Akt, Akttot). Details of the abstract ki-

netic models are given in the Appendix.
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behavior of the model networks (equations for the other

models are given in the Appendix):

d½p53�=dt ¼ v0 � v2 (1)

d½Akt��=dt ¼ v1 � vm1; (2)

where v0 ¼ k0 (a constant), v1 ¼ k1[Akt]/[(j1 1 [Akt])(1 1
[p53])], vm1 ¼ k�1[Akt*]/(jm1 1 [Akt*]), v2 ¼ k2[Akt*]
[p53]/(jm2 1 p53) 1 kd[p53], and [Akt] ¼ [Akttot] � [Akt*].

The rate (v0) of synthesis and activation of p53 is assumed

to have a constant value of k0. The rate (v1) of activation of

Akt to Akt* is assumed to have a Michaelis-Menten type

expression and is inversely proportional to [p53] to account

for the inhibition of this step by p53. The rate (vm1) of

deactivation of Akt* is of the Michaelis-Menten type. The

rate (v2) of p53 decay includes both Akt-dependent and

Akt-independent degradation.

The steady-state bifurcation diagram for Model Q1 is

shown in the first row and last column of Fig. 2. The solid

curve shows how the steady states of Akt* change with

increasing [Akttot]. The shaded curve corresponds to p53

steady states. Generally, as steady-state [Akt*] increases, the

steady-state [p53] decreases, and vice versa, as expected. A

nonintuitive feature, however, is the existence of a range of

[Akttot], where three steady states of Akt* and of p53 coexist.

This range is referred to as the bistable range. For either p53

or Akt*, the middle steady states in the bistable range

represents unstable ones, whereas the other two outer states

are stable. What is the biological significance of the existence

of a bistable range for [Akttot]? The presence of a bistable

range defines threshold points for the control parameter

[Akttot] (corresponding the left and right knees of the curves)

where irrevocable decisions are made. Note that between

these two knees (i.e., within the bistable range) is a range of

parameter values where perturbations that are sufficient to

cross the middle unstable state will switch the system from

one stable steady state to the other.

Model Q2 in Fig. 2 includes an important ingredient in the

p53 regulatory network, namely, Mdm2. The qNET diagram

for this model is identical to the one suggested by Gottlieb

et al. (9). A linear stability analysis of this qNET shows that

it is always unstable (one eigenvalue of the Jacobian matrix

has a positive real part), and that this instability is of the

‘‘saddle point’’ type and could therefore exhibit a switching

behavior (note that Model Q1 is also of the saddle point

type.). Also, one can show that the instability is due only to

the positive three-cycle composed of the sequence p53-Akt-

Mdm2-p53. The negative two-cycle between p53 and Mdm2

is not a source of instability (it is marginally stable, i.e., of

the ‘‘neutral’’ kind). An abstract kinetic model implementa-

tion of Model Q2 is shown in Fig. 2. The kinetic equations

and parameters are given in the Appendix. The steady-state

bifurcation diagram is shown in the last column of the second

row of Fig. 2. This diagram proves that there can also be a

range of [Akttot] where bistability occurs; thus, the bistable

property of the death-survival switch is robust against the

additional participants (Mdm2 and Mdm2*) and interactions

in the network.

Finally, we consider Model Q3 in Fig. 2, which is a more

detailed network involving PTEN and PIP3. In the corre-

sponding abstract kinetic model, the p53-dependent tran-

scription of Mdm2 (rate v5 in the Appendix) and the

phosphorylation of Mdm2 by Akt* (rate v6 in the Appendix)
causing Mdm2 to translocate to the nucleus are taken into

account; furthermore, shuttling ofMdm2 out of the nucleus is

represented by rate vm6 in the Appendix. Note that PIP2 and

PIP3 are involved in cyclic phosphorylation-dephosphoryl-

ation processes. As shown by the steady-state bifurcation

diagram for Model Q3 (Fig. 2), a bistable range of [Akttot]

exists, showing once again the robustness of this property.

In the Supplementary Material, we demonstrate the ro-

bustness or conservation of the bistability phenomenon as

the model is simplified sequentially from Model Q3, to

Model Q2, and finally to Model Q1. The method of pa-

rameter sensitivity analysis is brute force and involves

varying the values of those parameters that have not been

measured directly in experiments. Parameter values in Model

Q3 that give rise to bistability are handed down to identical

steps found in Model Q2, and parameters in the latter model

that correspond to a group of steps in Model Q3 are made to

vary to show that bistability is conserved. A similar demon-

stration was carried out when Model Q2 was simplified to

Model Q1. Details can be found in the Appendix and Sup-

plementary Material.

To show the extent of bistable regions in parameter space,

phase diagrams can be plotted to illustrate how different

parameter values lead to either bistability or monostability.

Examples of such phase diagrams are given in Figs. 3, A–C.
The curves shown in Fig. 3 delineate, on the k1-k2 param-

eter plane, regions of bistability (three steady states) from

regions of monostability (one steady state), for three values

of km3.

Simulation of DNA damage

We have investigated the effects of DNA damage using all

the models given in Fig. 2 and found their responses to be

qualitatively similar; hence, the following discussion only

refers to results using Model Q1. As mentioned previously,

DNA damage is incorporated in the equation for d[p53]/dt in
Eq. 1 by dividing the rate of decay (v2) by (11 [DNAdamage])

to simulate the observation that p53 stabilization is associ-

ated with increased DNA damage. A set of simulations for

various levels of DNA damage is shown in Fig. 4. We also

have carried out simulations that account for the possibility

that the rate of p53 synthesis and activation (v0 in Eq. 1) in-

creases with increasing DNA damage; the results are qual-

itatively equivalent to those of Fig. 4 and are not reported

here.

As shown in Fig. 4, as the extent of DNA damage in-

creases, the middle curve of unstable steady states shifts
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down and lengthens in range. This downshift may be inter-

preted as the tendency to favor apoptosis over survival

because of a lowered threshold for switching to the upper

p53 stable states. The increase in the range of the bistable

region is significant as we now explain. One can envisage a

scenario in which DNA damage leads to a sudden increase in

p53 with a concomitant decrease in Akt; for example, using

curve 1 in Fig. 4, the system finds itself in the upper stable

steady-state branch of the curve. But sustained growth factor

signaling would be expected to upregulate Akt (e.g., via the

Ras-PI3K pathway), causing a decrease in p53 activity down

to the right ‘‘knee’’ of the curve where it discontinuously

drops down to very low values, thereby entrenching the sur-

vival of the cell. If the DNA damage level increases (curves
2–3), the position of the right knee extends to the right cor-

responding to increasing Akttot threshold levels for shutting

off p53. Curve 4 demonstrates that there may be a level of

DNA damage at which the Akttot threshold extends to prac-

tically infinity, which is the situation for an unsalvageable

cell (assuming that all points on the upper branch lead to

apoptosis) or, alternatively, a cell that is primed for apoptosis;

however, even for such primed cells, the model predicts that

there could be certain finite perturbations that cross the middle

unstable curve and shut off p53.

Another interesting prediction could be made regarding

the reverse of the scenario mentioned in the previous para-

graph: the model predicts that there are finite perturbations

that could switch the system from the low to the high p53

steady state. The kinetic models in Fig. 2 offer predictions on

how such a finite perturbation can be implemented. Fig. 5

shows a simulation of the effect of an inhibitor that binds

Akt* and effectively reduces the rate of p53 degradation.

The simulations in Fig. 5 show that there is a sharp threshold

value of the inhibitor of Akt* that enables the system to

switch to a higher p53 steady state. This could explain ob-

servations (23) that treatment of leukemia cells (HL60) with

inhibitors of Akt restored their sensitivity toward chemo-

therapeutic drugs. Similarly, since PI3K inhibitors indirectly

inhibit Akt activation, various cell lines such as acute myeloid

leukemia cells (24), HTLV-1-transformed cells (25), and

Ewing’s Sarcoma family of tumors (26) have been shown to

restore their sensitivity toward chemotherapeutic drugs after

incubation with PI3K inhibitors.

Predictions on apoptotic thresholds

Admittedly, there are several downstream events from p53

and Akt that are somehow integrated to give a net decision

FIGURE 3 Phase diagrams are generated for Model Q1 to map bistable

and monostable regions in parameter space. The parameters used are k1
(phosphorylation rate of Akt), k2 (Mdm2-dependent degradation rate of p53)

and km3 (dephosphorylation rate of Akt* induced by p53). For each plot, km3

is fixed, whereas both k1 and k2 are varied. The curves represent the

boundaries between bistable (circled No. 3) and monostable (circled No. 1)
regions. The values of the other parameters (besides km3, k1, and k2) are

given in the Appendix.

FIGURE 4 Steady states of p53 as a function of Akttot for various extents

of DNA damage. Model Q1 was used in the computer simulations. See text

for details. Extent of DNA damage (arbitrary units) for curves 1–4 are 0,

0.01, 0.02, and 0.1, respectively.
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whether or not to activate the executioner caspases that trigger

apoptosis. For example, Akt inhibits Bad and caspase-9,

whereas p53 induces the expression of Bax, various caspases,

etc. (8); these proteins themselves involve complex regula-

tion. However, for modeling purposes, we will assume that

there exists a minimum p53 activity, called p*, and a maxi-

mum total amount of Akt, called k*, whose combination

would ultimately lead to apoptosis. Because of the p53-Akt

cross talk, the steady-state bifurcation curves in Fig. 2 would

provide the relationship between k* and p*. We refer to

(k*, p*) as the ‘‘apoptosis threshold’’ that leads to apoptosis.
Again, as our models do not consider pathways downstream

of either p53 or Akt, one may expect that the p53-Akt

threshold does not necessarily correspond to points on the

upper stable branch of p53 steady states or to points on the

middle branch of unstable steady states. One can envisage

experiments in which the initial conditions for [p53] and

[Akttot] are varied and then observe whether these conditions

ultimately lead to apoptosis. The predictions of our models

for such experiments are shown in Fig. 6. For various p53-

Akt threshold values indicated by the solid circle on the

steady-state curve, the shaded regions represent initial con-

ditions leading to apoptosis.

If the apoptotic threshold (solid circle) is between kL and

kR, then the shaded areas are qualitatively the same for cases

b–d. For cases c and d in Fig. 6, where the threshold is found
either in the middle or lower branch of steady states, any

initial condition above the middle unstable branch will be

repelled to the higher steady-state branch of p53. An in-

teresting conclusion is that any threshold located within the

middle branch will always give the identical shaded area

shown in case c; the apoptotic threshold for p53 in this case

will increase for increasing Akttot because of the positive

slope of the middle branch of the curve. This could explain

observations such as those reported by Hovelmann et al. (27)

that apoptotic thresholds increase with Akt. For case b,
where the threshold is on the uppermost branch of steady

states, not all points of the middle branch are apoptotic

threshold points. Case b can be distinguished experimentally

from cases c and d by the possibility of switching to a higher
p53 steady state in case b without causing apoptosis. Outside
the bistable regions (cases a and e), the apoptotic threshold

would apparently depend only on Akttot and not on p53.

CONCLUDING REMARKS

The most significant among the experimental predictions of

our models is the existence of the robust phenomenon of

bistability in the p53-Akt network; the shaded areas in the

FIGURE 5 Perturbation of the p53-Akt network (Model Q1) using an

inhibitor X that binds active Akt*. Various levels of X were used (see inset)

to illustrate a discontinuous response of the system from a low to a high

steady state of p53, as a consequence of the bistability. Added to the kinetic

steps in Model Q1 are the binding reaction between X and Akt* and the

dissociation reaction of the (Akt*-X) complex with rates vb ¼ kb[X][Akt*]

and v�b ¼ k�b[Akt*-X], respectively. The initial concentration for each

species in the model is set to its steady-state value corresponding to the cell

survival state. The parameters values are: kb ¼ 1, k�b ¼ 0.1, and others

are identical to those of Model Q1. Initial conditions are: p53 ¼ 0.248,

Akt* ¼ 0.0973, Akttot ¼ 0.1

FIGURE 6 Possible sets of initial conditions (shaded

areas) of total Akt and of p53 that lead to apoptosis for

various apoptotic thresholds indicated by the solid circle

with coordinates (k*, p*). Cases b–d give rise to quali-

tatively similar shaded areas that indicate the existence

of bistability.
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diagrams of cases b–d of Fig. 6, if shown experimentally,

would provide evidence for a bistable range. There are

several reasons why bistability is an important property of a

cellular switch between death and survival. First, if there

were no bistability, this putative switch will be at the mercy

of random concentration fluctuations inside the cell. Second,

a bistable region ensures a range of parameters within which

the switch can be regulated, perhaps by finite (nonrandom)

external perturbations or by signals from other pathways that

impinge on the p53-Akt core network considered here.

Third, the apoptotic threshold no longer depends only on p53

but also on Akt as a consequence of the positive feedback

loop between these proteins. Thus, according to our models,

it is meaningless to specify a p53 apoptotic threshold without

mentioning an associated threshold value for Akt.

The middle unstable curve of steady states within the

bistable range usually sets the threshold between death and

survival (except case b in Fig. 6). Note that the middle

unstable p53 steady-state branch increases as Akttot increases;

in other words, within the bistable range, for a fixed value of

Akttot and for a cell that is alive and has not been exposed to

stress, our results predict that there is a p53 threshold con-

centration (the middle unstable p53 steady state) above which

apoptosis is possible. Outside the bistable range and for Akttot
greater than the maximum limit (kR) of the bistable range (and
for apoptotic thresholds corresponding to cases a–d in Fig. 6),
the cell is resistant to apoptosis; for Akttot less than the mini-

mum of the bistable range (kL), our results show that the

system always goes to the high p53 steady state that is primed

for apoptosis (meaning that if the corresponding p53 steady

state has not reached the actual threshold to trigger apoptosis,

the system will only need a little bit more decrease in Akttot to

tip the system over to apoptosis).

The models we considered here ignored other known

details of the regulation of the activities of p53 and Akt. The

models can be extended by considering how the parameters

are linked to other pathways. The rate parameters k0 and kd
(found in all three models in this article) are the links of the

p53-Akt network to various growth factor signaling path-

ways and DNA damage signal transduction pathways (see

Harris and Levine (8) for a recent review). As a specific

example, Ras signaling induces activation of the p38 MAP

kinase, which, in turn, contributes to p53 activation and

stabilization (i.e., Ras signaling affects both k0 and kd). The
ATM kinase, which is activated in response to DNA damage,

phosphorylates both p53 (causing activation and stabiliza-

tion) and Mdm2 (leading to loss of enzyme activity and

degradation) (28); this p53 phosphorylation is equivalent to

either an increase in k0 and/or a decrease in kd, whereas the
Mdm2 phosphorylation corresponds to a decrease in k2
(Mdm2-dependent degradation of p53, via Akt indirectly).

An interesting future study (outside the scope of this article)

will also include the downstream pathways from p53 (e.g.,

the caspase cascade that triggers apoptosis) and from Akt

(e.g., the inhibition of pro-apoptotic proteins such as Bad and

Caspase-9). Modeling of the thresholds of apoptosis has

recently been reported (29–31), but none considered cross

talk between p53 and Akt.

APPENDIX

The dynamical equations and parameter values for Model Q3, Q2, and Q1

are given here. Below, [Akts] and [Mdm2s] are identical to [Akt*] and

[Mdm2*], respectively, in the text. The symbol ^ means exponentiation.

Model Q3

The rate expressions, differential equations, and parameter values (Table 1)

are given below.

v0 ¼ k0

v1 ¼ k13½PIP3�3½Akt�=ðj1 1 ½Akt�Þ
vm1 ¼ km13½Akts�=ðjm1 1 ½Akts�Þ
v2 ¼ k23½Mdm2s�3½p53�=ðj2 1 ½p53�Þ
v3 ¼ k33½p53�̂ n1=ðj3 n̂1 1 ½p53�̂ n1Þ
v4 ¼ k43½PIP2�=ðj4 1 ½PIP2�Þ
vm4 ¼ km43½PTEN�3½PIP3�=ðjm4 1 ½PIP3�Þ
v5 ¼ k53½p53�̂ n2=ðj5 n̂2 1 ½p53�̂ n2Þ
v6 ¼ k63½Akts�3½Mdm2�=ðj6 1 ½Mdm2�Þ
vm6 ¼ km63½Mdm2s�=ðjm6 1 ½Mdm2s�Þ

d½p53�=dt ¼ v0 � v2 � kd3½p53�
d½Akts�=dt ¼ v1 � vm1

d½PIP3�=dt ¼ v4 � vm4

d½PTEN�=dt ¼ pPTEN1 v3 � dPTEN � ½PTEN�
d½Mdm2s�=dt ¼ v6 � vm6 � dMdm2s3½Mdm2s�
d½Mdm2�=dt ¼ pMdm21v5�v61 vm6� dMdm23½Mdm2�

½Akttot� ¼ ½Akt�1 ½Akts�
½PIPtot� ¼ ½PIP2�1 ½PIP3�:

Model Q2

The rate expressions, differential equations, and parameter values (Table 2)

are given below.

v0 ¼ k0

v1 ¼ k13½Akt�=ðj11½Akt�Þ
vm1 ¼ km13½Akts�=ðjm11½Akts�Þ
v2 ¼ k23½Mdm2s�3½p53�=ðj21½p53�Þ
vm3 ¼ km33½p53�3½Akts�=ðjm31½Akts�Þ
v4 ¼ k43½Mdm2�3½Akts�ðj41½Mdm2�Þ
vm4 ¼ km43½Mdm2s�=ðjm41½Mdm2s�Þ
v5 ¼ k53½p53�̂ n=ðj5 n̂1½p53�̂ nÞ
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d½p53�=dt ¼ v0 2 v2 2 kd � ½p53�
d½Akts�=dt ¼ v1 2 vm1 2 vm3

d½Mdm2s�dt ¼ v4 2 vm4 2 dMdm2s � ½Mdm2s�

d½Mdm2�dt ¼ pMdm21 v5 2 v4 1 vm4 2 dMdm2 � ½Mdm2�
½Akttot� ¼ ½Akt�1½AKTs�:

The step associated with this kinetic parameter is a simplification of the

steps labeled v3, vm4, and v1 in Model Q3. This parameter is assigned arbitrary

values (but is varied in the sensitivity analysis described in the Supplementary

Material).

Model Q1

The rate expressions, differential equations, and parameter values (Table 3)

are given below.

v0 ¼ k0

v1 ¼ k13½Akt�=ðj11½Akt�Þ
vm1 ¼ km13½Akts�=ðjm11½Akts�Þ
v2 ¼ k23½Akts� � ½p53�=ðj21½p53�Þ
vm3 ¼ km33½p53�3½Akts�=ðjm31½Akts�Þ

d½p53�=dt ¼ v02v22kd3½p53�
d½Akts�=dt ¼ v1 2 vm1 2 vm3

½Akttot� ¼ ½Akt�1½Akts�:

The value of k2 in Model Q1 cannot be inferred or inherited directly from

its value from either Model Q3 or Q2, since the step corresponding to this

parameter is an abstraction of the pathway between p53 and Akt by removing

Mdm2. This parameter is assigned arbitrary values (but is varied in the

sensitivity analysis described in the Supplementary Material).

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.

This study was supported by the Agency for Science, Technology and

Research (A*STAR) of Singapore. K.B.W. is a recipient of an A*STAR

graduate scholarship.

TABLE 1 The 28 parameters used in the model simulations

for Model Q3; for details on the choice of model parameters,

see Supplementary Material

Rate constant Units Value Range References

k0 mM/min 0.1 0.005–0.2 32

kd min�1 0.05 0.02–0.2, 0.05 32, 20, 18

k1 min�1 20 20 39

j1 mM 0.1 0.1 39

km1 mM/min 0.2 0.0000297–2.92 34, 37

jm1 mM 0.1 0.1 39

k2 min�1 0.055 0.0184–0.092 32

j2 mM 0.1 0.03–0.3 32

pPTEN mM/min 0.001 Unknown

dPTEN min�1 0.0054 0.0025–0.0083 42

k3 mM/min 0.006 0.006 21

j3 mM 2 .1 21

k4 mM/min 0.15 0.15 37

j4 mM 0.1 0.1 39

km4 min�1 73 42.1, 73 6 4.4 39, 40

jm4 mM 0.5 0.1–1 39, 42, 44

pMdm2 mM/min 0.018 ;0.018 32

dMdm2 min�1 0.015 0.0028, 0.0347 32, 18

dMdm2s min�1 0.015 0.0028, 0.0347 32, 18

k5 mM/min 0.024 0.024 32

j5 mM 1 ;1 32

k6 min�1 10 0.42–64.8 33–37, 39

j6 mM 0.3 0.00357–146 33–37, 39

km6 mM/min 0.2 0.0000297–2.92 34, 37

jm6 mM 0.1 0.00238–2.23 34–37, 39

n1 3 3 43

n2 3 3 43

[PIP]tot mM 1 Arbitrary

TABLE 2 The 20 parameters used in the model simulations

for Model Q2; for details on the choice of model parameters,

see Supplementary Material

Rate constant Units Value Remarks

k0 mM/min 0.1 As in Model Q3

kd min�1 0.05 As in Model Q3

k1 mM/min 0.15 Corresponds to k4 of Model Q3

j1 mM 0.1 As in Model Q3

km1 mM/min 0.2 As in Model Q3

jm1 mM 0.1 As in Model Q3

k2 min�1 0.055 As in Model Q3

j2 mM 0.1 As in Model Q3

km3 min�1 7.05 Arbitrary

jm3 mM 2 Similar to j3 in Model Q3

pMdm2 mM/min 0.018 As in Model Q3

dMdm2 min�1 0.015 As in Model Q3

dMdm2s min�1 0.015 As in Model Q3

k4 min�1 10 As in Model Q3

j4 mM 0.3 As in Model Q3

km4 mM/min 0.2 As in Model Q3

jm4 mM 0.1 As in Model Q3

k5 mM/min 0.024 As in Model Q3

j5 mM 1 As in Model Q3

n 3 As in Model Q3

TABLE 3 The 10 parameters used in the model simulations

for Model Q1; for details on the choice of model parameters,

see Supplementary Material

Rate constant Units Value Remarks

k0 mM/min 0.1 As in Model Q3

kd min�1 0.05 As in Model Q3

k1 mM/min 0.6 0.15 in Model Q2

j1 mM 0.1 As in Model Q3

km1 mM/min 0.2 As in Model Q3

jm1 mM 0.1 As in Model Q3

k2 min�1 0.4 Arbitrary

j2 mM 0.1 As in Model Q3

km3 min�1 7.05 As in Model Q2

jm3 mM 2 As in Model Q2
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