
a

l

sions
families

ntial

ed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 285 (2003) 37–49

www.elsevier.com/locate/jma

Controllability of second-order neutral functiona
differential inclusions in Banach spaces

Jong Yeoul Park,a,∗ Young Chel Kwun,b and Haeng Joo Leea

a Department of Mathematics, Pusan National University, Pusan 609-735, Republic of Korea
b Department of Mathematics, Dong-A University, Pusan 604-714, Republic of Korea

Received 8 November 2001

Submitted by B.S. Mordukhovich

Abstract

In this paper, we prove the controllability of second-order neutral functional differential inclu
in Banach spaces. The result are obtained by using the theory of strongly continuous cosine
and a fixed point theorem for condensing maps due to Martelli.
 2003 Published by Elsevier Inc.
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1. Introduction

In this paper, we study the controllability of second-order neutral functional differe
inclusions in Banach spaces. More precisely, we consider the following form:

d

dt

[
y ′(t) − g(t, yt )

] ∈ Ay(t) + Bu(t) + F(t, yt ), t ∈ J = [0, T ], (1)

y0 = φ, y ′(0) = x0, (2)

whereF :J ×C(J0,E) → 2E (hereJ0 = [−r,0]) is a bounded, closed, convex multivalu
map, g :J × C(J0,E) → E is given function,φ ∈ C(J0,E), x0 ∈ E, and A is the
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infinitesimal generator of a strongly continuous cosine family{C(t): t ∈ R} in a real
Banach spaceX with the norm| · |. Also, the control functionu(·) is given inL2(J,U),
a Banach space of admissible control functions withU as a Banach space. Finally,B is a
bounded linear operator fromU to E.

For any continuous functiony defined on the intervalJ1 = [−r, T ] and anyt ∈ J , we
denote byyt the element ofC(J0,E) defined by

yt (θ) = y(t + θ), θ ∈ J0.

Hereyt (·) represents the history of the state from timet − r, up to the present timet .
Controllability of linear and nonlinear systems represented by ordinary differe

equations in finite-dimensional space has been extensively studied. Several autho
extended the concept to infinite-dimensional systems in Banach spaces with bo
operators [1,13,15].

With the help of fixed point theorem several authors have investigated the probl
controllability of nonlinear systems in Banach spaces. Balachandran et al. [1] s
controllability for nonlinear integrodifferential systems in Banach spaces using
Schauder fixed point theorem. Benchohra and Ntouyas [3], using a fixed point theor
condensing maps, proved controllability of second-order differential inclusions in Ba
spaces with nonlocal conditions.

In many cases it is advantageous to treat the second-order abstract differential eq
directly rather than to convert them into first-order systems. A useful tool for the stu
abstract second-order equations is the theory of strongly continuous cosine families
we use of the basic ideas from cosine family theory [16,17].

Motivation for second-order neutral systems can be found in [3,8,12]. The pu
of this paper is to study the controllability of second-order neutral functional diffe
tial inclusions (1), (2) relying on a fixed point theorem for condensing maps du
Martelli [11].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from m
valued analysis which are used throughout this paper.

C(J,E) is the Banach space of continuous functions fromJ into E with the norm

‖y‖∞ := sup
{∣∣y(t)∣∣: t ∈ J

}
.

B(E) denotes the Banach space of bounded linear operators fromE into E. A meas-
urable functiony :J → E is Bochner integrable if and only if|y| is Lebesgue integrable
(For properties of the Bochner integral see Yosida [18].)

L1(J,E) denotes the Banach space of continuous functionsy :J → E which are
Bochner integrable, normed by

‖y‖L1 =
T∫ ∣∣y(t)∣∣dt, for all y ∈ L1(J,E).
0
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Let (X,‖ · ‖) be a Banach space. A multivalued mapG :X → 2X is convex (closed
valued, if G(x) is convex (closed) for allx ∈ X. G is bounded on bounded sets
G(D) =⋃

x∈D G(x) is bounded inX, for any bounded setD of X, i.e.,

sup
x∈D

{
sup
{‖y‖: y ∈ G(x)

}}
< ∞.

G is called upper semicontinuous onX, if for eachx0 ∈ X, the setG(x0) is a nonempty
closed subset ofX, and if for each open setV of X containingG(x0), there exists an ope
neighborhoodA of x0 such thatG(A) ⊆ V .

G is said to be completely continuous ifG(D) is relatively compact for every bounde
subsetD ⊆ X. If the multivalued mapG is completely continuous with nonempty compa
values, thenG is upper semicontinuous if and only ifG has a closed graph, i.e.,

xn → x∗, yn → y∗, yn ∈ Gxn imply y∗ ∈ Gx∗.

G has a fixed point if there isx ∈ X such thatx ∈ Gx.
In the following,BCC(X) denotes the set of all nonempty bounded closed and co

subsets ofX.
A multivalued mapG :J → BCC(X) is said to be measurable if for eachx ∈ X,

the distance betweenx and G(t) is a measurable function onJ . For more details on
multivalued maps, see the books of Deimling [4] and Hu and Papageorgiou [9].

An upper semicontinuous mapG :X → 2X is said to be condensing if for any bound
subsetD ⊆ X, with α(D) �= 0, we have

α
(
G(D)

)
< α(D),

where α denotes the Kuratowski measure of noncompactness. For properties
Kuratowski measure, we refer to Banas and Goebel [2].

We remark that a completely continuous multivalued map is the easiest examp
condensing map.

We say that the family{C(t): t ∈ R} of operators inB(E) is a strongly continuou
cosine family if

(i) C(0) = I (I is the identity operator inE),
(ii) C(t + s) + C(t − s) = 2C(t)C(s) for all s, t ∈ R,
(iii) the mapt → C(t)y is strongly continuous for eachy ∈ E.

The strongly continuous sine family{S(t): t ∈ R}, associated to the given strong
continuous cosine family{C(t): t ∈ R}, is defined by

S(t)y =
t∫

0

C(s)y ds, y ∈ E, t ∈ R.

The infinitesimal generatorA :E → E of a cosine family{C(t): t ∈ R} is defined by

Ay = d2

2
C(t)y

∣∣∣∣ .

dt t=0
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For more details on strongly continuous cosine and sine families, we refer the reade
books of Goldstein [7] and to the papers of Fattorini [5,6] and of Travis and Webb [16

Let us list the following hypotheses.

(H1) A is the infinitesimal generator of a strongly continuous cosine familyC(t), t ∈ R,
of bounded linear operators fromX into itself.

(H2) C(t), t > 0 is compact.
(H3) F :J × C(J0,E) → BCC(E); (t, u) → F(t, u) is measurable with respect tot for

eachu ∈ C(J0,E), upper semicontinuous with respect tou for eacht ∈ J , and for
each fixedu ∈ C(J0,E), the set

SF,u = {
f ∈ L1(J,E): f (t) ∈ F(t, u) for a.e.t ∈ J

}
is nonempty.

(H4) The linear operatorW :L2(J,U) → E, defined by

Wu =
T∫

0

S(T − s)Bu(s) ds,

induces a bounded invertible operatorsW̃ defined onL2(J,U)/kerW and there exis
positive constantsM1,M2 such that|W̃ | � M1 and|B| � M2 (see [15]).

(H5) The functiong :J × C(J0,E) → E is completely continuous and for any bound
setK in C(J1,E), the set{t → g(t, yt ): y ∈ K} is equicontinuous inC(J,E).

(H6) There exist constantsc1 andc2 such that∣∣g(t, v)∣∣� c1‖v‖ + c2, t ∈ J, v ∈ C(J0,E).

(H7) ‖F(t, u)‖ := sup{|v|: v ∈ F(t, u)} � p(t)Ψ (‖u‖) for almost allt ∈ J and allu ∈
C(J0,E), wherep ∈ L1(J,R+) andΨ :R+ → (0,∞) is continuous and increasin
with

T∫
0

m(s) ds <

∞∫
c

ds

s + Ψ (s)
,

where c = M‖φ‖ + MT [|x0| + c1‖φ‖ + 2c2] + MT 2M0, m(t) = max{Mc1,

MTp(t)}, M = sup{|C(t)|: t ∈ J }, M0 = M1M2[‖x1‖ + M‖φ‖ + MT [|y0| +
c1‖φ‖ + 2c2] + Mc1

∫ T

0 ‖ys‖ds + MT
∫ T

0 p(s)Ψ (‖ys‖) ds].

Remark 2.1. (i) If dim E < ∞, then for eachu ∈ C(J0,E), SF,u �= ∅ (see Lasota an
Opial [10]).

(ii) SF,u is nonempty if and only if the functionY :J → R defined by

Y (t) := inf
{|v|: v ∈ F(t, u)

}
belongs toL1(J,R) (see Papageorgiou [14]).

In order to define the concept of mild solution for (1), (2), by comparison with abs
Cauchy problem
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tegral

.

y ′′(t) = Ay(t) + h(t),

y(0) = y0, y ′(0) = y1

whose properties are well known [16,17], we associate problem (1), (2) to the in
equation

y(t) = C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+
t∫

0

C(t − s)g(s, ys) ds

+
t∫

0

S(t − s)Bu(s) ds +
t∫

0

S(t − s)f (s) ds, t ∈ J, (3)

where

f ∈ SF,y = {
f ∈ L1(J,E): f (t) ∈ F(t, yt ) for a.e.t ∈ J

}
.

Definition 2.1. A function y : (−r, T ) → E, T > 0 is called a mild solution of the
problem (1), (2) ify(t) = φ(t), t ∈ [−r,0], and there exists av ∈ L1(J,E) such that
v(t) ∈ F(t, yt ) a.e. onJ , and the integral equation(3) is satisfied.

Definition 2.2. The problem (1), (2) is said to be controllable on the intervalJ if, for every
φ ∈ C(J0,E) with φ(0) ∈ D(A), x0 ∈ E, andx1 ∈ E, there exists a controlu ∈ L2(J,U)

such that the mild solutiony(·) of (1), (2) satisfiesy(T ) = x1.

The following lemmas are crucial in the proof of our main theorem.

Lemma 2.1 [10]. Let I be a compact real interval andX be a Banach space. LetF be a
multivalued map satisfying(H3) and letΓ be a linear continuous mapping fromL1(I,X)

to C(I,X). Then the operator

Γ ◦ SF :C(I,X) → BCC
(
C(I,X)

)
, y → (Γ ◦ SF )(y) := Γ (SF,y )

is a closed graph operator inC(I,X) × C(I,X).

Lemma 2.2 [11]. Let X be a Banach space andN :X → BCC(X) be a condensing map
If the set

Ω := {y ∈ X: λy ∈ Ny for someλ > 1}
is bounded, thenN has a fixed point.

3. Main result

Now, we are able to state and prove our main theorem.

Theorem 3.1. Assume that hypotheses(H1)–(H7)are satisfied. Then the system(1), (2) is
controllable onJ .
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and
Proof. Using (H4), for an arbitrary functiony(·), we define the control

uy(t) = W̃−1

[
x1 − C(T )φ(0) − S(T )

[
x0 − g(0, φ)

]
−

T∫
0

C(T − s)g(s, ys) ds −
T∫

0

S(T − s)f (s) ds

]
(t),

wheref ∈ SF,y = {f ∈ L1(J,E): f (t) ∈ F(t, yt ) for a.e.t ∈ J }.
Now we shall show that, when using this control, the operatorN :C(J1,E) → 2C(J1,E)

defined by

Ny =


h ∈ C(J1,E): h(t)

=


φ(t), if t ∈ J0,

C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+ ∫ t

0 C(t − s)g(s, ys) ds

+ ∫ t

0 S(t − s)Buy(s) ds + ∫ t

0 S(t − s)f (s) ds, if t ∈ J,

has a fixed point. This fixed point is then a solution of the problem (1), (2).
Clearly,x1 ∈ (Ny)(T ).
We shall show thatN is completely continuous with bounded closed convex values

it is upper semicontinuous. The proof will be given in several steps.

Step 1. Ny is convex for eachy ∈ C(J1,E).
Indeed, ifh1, h2 belong toNy, then there existf1, f2 ∈ SF,y such that for eacht ∈ J ,

we have

hi(t) = C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+
t∫

0

C(t − s)g(s, ys) ds

+
t∫

0

S(t − s)Buy(s) ds +
t∫

0

S(t − s)fi(s) ds, i = 1,2.

Let 0� α � 1. Then for eacht ∈ J , we have(
αh1 + (1− α)h2

)
(t)

= C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+
t∫

0

C(t − s)g(s, ys) ds

+
t∫

0

S(t − s)Buy(s) ds +
t∫

0

S(t − s)
[
αf1(s) + (1− α)f2(s)

]
ds.

SinceSF,y is convex (becauseF has convex values), then

αh1 + (1− α)h2 ∈ Ny

completing the proof of Step 1.
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Step 2. N maps bounded sets into bounded sets inC(J1,E).
Indeed, it is enough to show that there exists a positive constant4 such that for each

h ∈ Ny, y ∈ Bq = {y ∈ C(J1,E): ‖y‖∞ � q}, one has‖h‖∞ � 4. If h ∈ Ny, then there
existsf ∈ SF,y such that for eacht ∈ J we have

h(t) = C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+
t∫

0

C(t − s)g(s, ys) ds

+
t∫

0

S(t − s)Buy(s) ds +
t∫

0

S(t − s)f (s) ds.

By (H4), (H6), and (H7), we have that, for eacht ∈ J ,

∣∣h(t)∣∣� ∣∣C(t)φ(0)
∣∣+ ∣∣S(t)

[
x0 − g(0, φ)

]∣∣+ ∣∣∣∣∣
t∫

0

C(t − s)g(s, ys) ds

∣∣∣∣∣
+
∣∣∣∣∣

t∫
0

S(t − s)Buy(s) ds

∣∣∣∣∣+
∣∣∣∣∣

t∫
0

S(t − s)f (s) ds

∣∣∣∣∣
� M‖φ‖ + MT

[|x0| + c1‖φ‖ + 2c2
]+ Mc1

t∫
0

‖ys‖ds

+ MT 2M0 + MT sup
y∈[0,q]

Ψ (y)

( t∫
0

p(s) ds

)
.

Then for eachh ∈ N(Bq) we have

‖h‖∞ � M‖φ‖ + MT
[|x0| + c1‖φ‖ + 2c2

]+ Mc1

T∫
0

‖ys‖ds

+ MT 2M0 + MT sup
y∈[0,q]

Ψ (y)

( T∫
0

p(s) ds

)
:= 4.

Step 3. N maps bounded sets into equicontinuous sets ofC(J1,E).
Let t1, t2 ∈ J , 0 < t1 < t2 andBq = {y ∈ C(J1,E): ‖y‖∞ � q} be a bounded set o

C(J1,E). For eachy ∈ Bq andh ∈ Ny, there existsf ∈ SF,y such that

h(t) = C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+
t∫
C(t − s)g(s, ys) ds
0
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+
t∫

0

S(t − s)Buy(s) ds +
t∫

0

S(t − s)f (s) ds, t ∈ J.

Thus,∣∣h(t2) − h(t1)
∣∣

�
∣∣[C(t2) − C(t1)

]
φ(0)

∣∣+ ∣∣[S(t2) − S(t1)
][

x0 − g(0, φ)
]∣∣

+
∣∣∣∣∣

t2∫
0

[
C(t2 − s) − C(t1 − s)

]
g(s, ys) ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
t1

C(t1 − s)g(s, ys ) ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
0

[
S(t2 − s) − S(t1 − s)

]
BW̃−1

[
x1 − C(T )φ(0)

− S(T )
[
x0 − g(0, φ)

]−
T∫

0

C(T − τ )g(τ, yτ ) dτ

−
T∫

0

S(T − τ )f (τ ) dτ

]
(s) ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
t1

S(t1 − s)BW̃−1

[
x1 − C(T )φ(0) − S(T )

[
x0 − g(0, φ)

]

−
T∫

0

C(T − τ )g(τ, yτ ) dτ −
T∫

0

S(T − τ )f (τ ) dτ

]
(s) ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
0

[
S(t2 − s) − S(t1 − s)

]
f (s) ds

∣∣∣∣∣+
∣∣∣∣∣

t2∫
t1

S(t1 − s)f (s) ds

∣∣∣∣∣
�
∣∣C(t2) − C(t1)

∣∣‖φ‖ + ∣∣S(t2) − S(t1)
∣∣[|x0| + c1‖φ‖ + c2

]
+

t2∫
0

∣∣C(t2 − s) − C(t1 − s)
∣∣[c1‖ys‖ + c2

]
ds

+
t2∫ ∣∣C(t1 − s)

∣∣[c1‖ys‖ + c2
]
ds
t1
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uities
p 3,
+
t2∫

0

∣∣S(t2 − s) − S(t1 − s)
∣∣M1M2

[
|x1| + M‖φ‖

+ MT
[|x0| + c1‖φ‖ + c2

]
+ M

T∫
0

[
c1‖yτ‖ + c2

]
dτ + MT

T∫
0

∥∥f (τ)
∥∥dτ

]
ds

+
t2∫

t1

∣∣S(t1 − s)
∣∣M1M2

[
|x1| + M‖φ‖ + MT

[|x0| + c1‖φ‖ + c2
]

+ M

T∫
0

[
c1‖yτ‖ + c2

]
dτ + MT

T∫
0

∥∥f (τ)
∥∥dτ

]
ds

+
t2∫

0

∣∣S(t2 − s) − S(t1 − s)
∣∣∥∥f (s)

∥∥ds +
t2∫

t1

∣∣S(t1 − s)
∣∣∥∥f (s)

∥∥ds.

As t2 → t1 the right-hand side of the above inequality tends to zero. The equicontin
for the casest1 < t2 � 0 andt1 � 0 � t2 are obvious. As a consequence of Step 2, Ste
and (H5) together with the Ascoli–Arzela theorem, we can conclude thatN is completely
continuous, and therefore, a condensing map.

Step 4. N has a closed graph.
Let yn → y∗, hn ∈ Nyn, andhn → h∗. We shall prove thath∗ ∈ Ny∗. hn ∈ Nyn means

that there existsfn ∈ SF,yn such that

hn(t) = C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+
t∫

0

C(t − s)g(s, yns ) ds

+
t∫

0

S(t − s)Buyn(s) ds +
t∫

0

S(t − s)fn(s) ds, t ∈ J,

where

uyn(t) = W̃−1

[
x1 − C(T )φ(0) − S(T )

[
x0 − g(0, φ)

]
−

T∫
0

C(T − s)g(s, yns) ds −
T∫

0

S(T − s)fn(s) ds

]
(t).

We must prove that there existsf∗ ∈ SF,y∗ such that
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h∗(t) = C(t)φ(0) + S(t)
[
x0 − g(0, φ)

]+
t∫

0

C(t − s)g(s, y∗s ) ds

+
t∫

0

S(t − s)Buy∗(s) ds +
t∫

0

S(t − s)f∗(s) ds, t ∈ J,

where

uy∗(t) = W̃−1

[
x1 − C(T )φ(0) − S(T )

[
x0 − g(0, φ)

]
−

T∫
0

C(T − s)g(s, y∗s ) ds −
T∫

0

S(T − s)f∗(s) ds
]
(t).

Set

ūyn(t) = W̃−1

[
x1 − C(T )φ(0) − S(T )

[
x0 − g(0, φ)

]
−

T∫
0

C(T − s)g(s, yns) ds

]
(t).

Sinceg, W̃−1 are continuous, then

ūyn(t) → ūy∗(t), for t ∈ J.

Clearly, we have that∥∥∥∥∥
(
hn − C(t)φ(0) − S(T )

[
x0 − g(0, φ)

]

−
T∫

0

C(T − s)g(s, yns) ds −
t∫

0

S(t − s)Būyn(s) ds

)

−
(
h∗ − C(t)φ(0) − S(T )

[
x0 − g(0, φ)

]

−
T∫

0

C(T − s)g(s, y∗s ) ds −
t∫

0

S(t − s)Būy∗(s) ds

)∥∥∥∥∥∞
→ 0,

asn → ∞.
Consider the linear continuous operator

Γ :L1(J,E) → C(J,E),

f → Γ (f )(t) =
t∫
S(t − s)

[
f (s) − BW̃−1

( T∫
S(T − τ )f (τ ) dτ

)
(s)

]
ds.
0 0
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that

with
.

From Lemma 2.1, it follows thatΓ ◦SF is a closed graph operator. Moreover, we have

hn(t) − C(t)φ(0) − S(t)
[
x0 − g(0, φ)

]
−

t∫
0

C(t − s)g(s, yns ) ds −
t∫

0

S(t − s)Būyn(s) ds ∈ Γ (SF,yn).

Sinceyn → y∗, it follows from Lemma 2.1 that

h∗(t) − C(t)φ(0) − S(t)
[
x0 − g(0, φ)

]
−

T∫
0

C(t − s)g(s, y∗s ) ds −
t∫

0

S(t − s)Būy∗(s) ds

=
t∫

0

S(t − s)

[
f∗(s) − BW̃−1

( T∫
0

S(T − τ )f∗(τ ) dτ
)
(s)

]
ds

for somef∗ ∈ SF,y∗ .
ThereforeN is a completely continuous multivalued map, upper semicontinuous

convex closed values. In order to prove thatN has a fixed point, we need one more step

Step 5. The set

Ω := {
y ∈ C(J1,E): λy ∈ Ny, for someλ > 1

}
is bounded.

Let y ∈ Ω . Thenλy ∈ Ny for someλ > 1. Thus, there existsf ∈ SF,y such that

y(t) = λ−1C(t)φ(0) + λ−1S(t)
[
x0 − g(0, φ)

]+ λ−1

t∫
0

C(t − s)g(s, ys) ds

+ λ−1

t∫
0

S(t − s)BW̃−1

[
x1 − C(T )φ(0) − S(T )

[
x0 − g(0, φ)

]

−
T∫

0

C(T − τ )g(τ, yτ ) dτ −
T∫

0

S(T − τ )f (τ ) dτ

]
(s) ds

+ λ−1

t∫
0

S(t − s)f (s) ds, t ∈ J.

This implies by (H4), (H6), and (H7) that for eacht ∈ J , we have



48 J.Y. Park et al. / J. Math. Anal. Appl. 285 (2003) 37–49

e

∣∣y(t)∣∣� M‖φ‖ + MT
[|x0| + c1‖φ‖ + 2c2

]
+ Mc1

t∫
0

‖ys‖ds + MT 2M0 + MT

t∫
0

p(s)Ψ
(‖ys‖

)
ds.

We consider the functionµ defined by

µ(t) = sup
{∣∣y(s)∣∣: −r � s � t

}
, t ∈ J.

Let t∗ ∈ [−r, t] be such thatµ(t) = |y(t∗)|. If t∗ ∈ J , by the previous inequality we hav
for t ∈ J

µ(t) � M‖φ‖ + MT
[|x0| + c1‖φ‖ + 2c2

]
+ Mc1

t∗∫
0

‖ys‖ds + MT 2M0 + MT

t∗∫
0

p(s)Ψ
(‖ys‖

)
ds

� M‖φ‖ + MT
[|x0| + c1‖φ‖ + 2c2

]
+ Mc1

t∫
0

µ(s) ds + MT 2M0 + MT

t∫
0

p(s)Ψ
(
µ(s)

)
ds.

If t∗ ∈ J0, thenµ(t) � ‖φ‖ and the previous inequality holds.
Let us take the right-hand side of the above inequality asv(t). Then, we have

c = v(0) = M‖φ‖ + MT
[|x0| + c1‖φ‖ + 2c2

]+ MT 2M0,

µ(t) � v(t),

v′(t) = Mc1µ(t) + MTp(t)Ψ
(
µ(t)

)
, t ∈ J.

Using the nondecreasing character ofΨ , we get

v′(t) � Mc1v(t) + MTp(t)Ψ
(
v(t)

)
� m(t)

[
v(t) + Ψ

(
v(t)

)]
, t ∈ J.

This implies that for eacht ∈ J that

v(t)∫
v(0)

ds

s + Ψ (s)
�

T∫
0

m(s) ds <

∞∫
v(0)

ds

s + Ψ (s)
.

This inequality implies that there exists a constantL such thatv(t) � L, t ∈ J , and hence
µ(t) � L, t ∈ J . Since for everyt ∈ J , ‖yt‖ � µ(t), we have

‖y‖∞ := sup
{∣∣y(t)∣∣: −r � t � T

}
� L,

whereL depends only onT and on the functionp andΨ . This shows thatΩ is bounded.
SetX := C(J1,E). As a consequence of Lemma 2.2, we deduce thatN has a fixed

point and thus the system (1), (2) is controllable onJ . ✷
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