

Controllability of second-order neutral functional differential inclusions in Banach spaces

Jong Yeoul Park, ${ }^{\text {a,* }}$ Young Chel Kwun, ${ }^{\text {b }}$ and Haeng Joo Lee ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Pusan National University, Pusan 609-735, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, Dong-A University, Pusan 604-714, Republic of Korea
Received 8 November 2001
Submitted by B.S. Mordukhovich

Abstract

In this paper, we prove the controllability of second-order neutral functional differential inclusions in Banach spaces. The result are obtained by using the theory of strongly continuous cosine families and a fixed point theorem for condensing maps due to Martelli. © 2003 Published by Elsevier Inc. Keywords: Neutral functional differential inclusions; Controllability; Fixed points

1. Introduction

In this paper, we study the controllability of second-order neutral functional differential inclusions in Banach spaces. More precisely, we consider the following form:

$$
\begin{align*}
& \frac{d}{d t}\left[y^{\prime}(t)-g\left(t, y_{t}\right)\right] \in A y(t)+B u(t)+F\left(t, y_{t}\right), \quad t \in J=[0, T], \tag{1}\\
& y_{0}=\phi, \quad y^{\prime}(0)=x_{0}, \tag{2}
\end{align*}
$$

where $F: J \times C\left(J_{0}, E\right) \rightarrow 2^{E}$ (here $J_{0}=[-r, 0]$) is a bounded, closed, convex multivalued map, $g: J \times C\left(J_{0}, E\right) \rightarrow E$ is given function, $\phi \in C\left(J_{0}, E\right), x_{0} \in E$, and A is the

[^0]0022-247X/\$ - see front matter © 2003 Published by Elsevier Inc.
doi:10.1016/S0022-247X(02)00503-6
infinitesimal generator of a strongly continuous cosine family $\{C(t): t \in R\}$ in a real Banach space X with the norm $|\cdot|$. Also, the control function $u(\cdot)$ is given in $L^{2}(J, U)$, a Banach space of admissible control functions with U as a Banach space. Finally, B is a bounded linear operator from U to E.

For any continuous function y defined on the interval $J_{1}=[-r, T]$ and any $t \in J$, we denote by y_{t} the element of $C\left(J_{0}, E\right)$ defined by

$$
y_{t}(\theta)=y(t+\theta), \quad \theta \in J_{0} .
$$

Here $y_{t}(\cdot)$ represents the history of the state from time $t-r$, up to the present time t.
Controllability of linear and nonlinear systems represented by ordinary differential equations in finite-dimensional space has been extensively studied. Several authors have extended the concept to infinite-dimensional systems in Banach spaces with bounded operators [1,13,15].

With the help of fixed point theorem several authors have investigated the problem of controllability of nonlinear systems in Banach spaces. Balachandran et al. [1] studied controllability for nonlinear integrodifferential systems in Banach spaces using the Schauder fixed point theorem. Benchohra and Ntouyas [3], using a fixed point theorem for condensing maps, proved controllability of second-order differential inclusions in Banach spaces with nonlocal conditions.

In many cases it is advantageous to treat the second-order abstract differential equations directly rather than to convert them into first-order systems. A useful tool for the study of abstract second-order equations is the theory of strongly continuous cosine families. Here we use of the basic ideas from cosine family theory [16,17].

Motivation for second-order neutral systems can be found in [3,8,12]. The purpose of this paper is to study the controllability of second-order neutral functional differential inclusions (1), (2) relying on a fixed point theorem for condensing maps due to Martelli [11].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multivalued analysis which are used throughout this paper.
$C(J, E)$ is the Banach space of continuous functions from J into E with the norm

$$
\|y\|_{\infty}:=\sup \{|y(t)|: t \in J\} .
$$

$B(E)$ denotes the Banach space of bounded linear operators from E into E. A measurable function $y: J \rightarrow E$ is Bochner integrable if and only if $|y|$ is Lebesgue integrable. (For properties of the Bochner integral see Yosida [18].)
$L^{1}(J, E)$ denotes the Banach space of continuous functions $y: J \rightarrow E$ which are Bochner integrable, normed by

$$
\|y\|_{L^{1}}=\int_{0}^{T}|y(t)| d t, \quad \text { for all } y \in L^{1}(J, E)
$$

Let $(X,\|\cdot\|)$ be a Banach space. A multivalued map $G: X \rightarrow 2^{X}$ is convex (closed) valued, if $G(x)$ is convex (closed) for all $x \in X . G$ is bounded on bounded sets if $G(D)=\bigcup_{x \in D} G(x)$ is bounded in X, for any bounded set D of X, i.e.,

$$
\sup _{x \in D}\{\sup \{\|y\|: y \in G(x)\}\}<\infty
$$

G is called upper semicontinuous on X, if for each $x_{0} \in X$, the set $G\left(x_{0}\right)$ is a nonempty closed subset of X, and if for each open set V of X containing $G\left(x_{0}\right)$, there exists an open neighborhood A of x_{0} such that $G(A) \subseteq V$.
G is said to be completely continuous if $G(D)$ is relatively compact for every bounded subset $D \subseteq X$. If the multivalued map G is completely continuous with nonempty compact values, then G is upper semicontinuous if and only if G has a closed graph, i.e.,

$$
x_{n} \rightarrow x_{*}, \quad y_{n} \rightarrow y_{*}, \quad y_{n} \in G x_{n} \quad \text { imply } \quad y_{*} \in G x_{*} .
$$

G has a fixed point if there is $x \in X$ such that $x \in G x$.
In the following, $B C C(X)$ denotes the set of all nonempty bounded closed and convex subsets of X.

A multivalued map $G: J \rightarrow B C C(X)$ is said to be measurable if for each $x \in X$, the distance between x and $G(t)$ is a measurable function on J. For more details on multivalued maps, see the books of Deimling [4] and Hu and Papageorgiou [9].

An upper semicontinuous map $G: X \rightarrow 2^{X}$ is said to be condensing if for any bounded subset $D \subseteq X$, with $\alpha(D) \neq 0$, we have

$$
\alpha(G(D))<\alpha(D)
$$

where α denotes the Kuratowski measure of noncompactness. For properties of the Kuratowski measure, we refer to Banas and Goebel [2].

We remark that a completely continuous multivalued map is the easiest example of a condensing map.

We say that the family $\{C(t): t \in R\}$ of operators in $B(E)$ is a strongly continuous cosine family if
(i) $C(0)=I$ (I is the identity operator in E),
(ii) $C(t+s)+C(t-s)=2 C(t) C(s)$ for all $s, t \in R$,
(iii) the map $t \rightarrow C(t) y$ is strongly continuous for each $y \in E$.

The strongly continuous sine family $\{S(t): t \in R\}$, associated to the given strongly continuous cosine family $\{C(t): t \in R\}$, is defined by

$$
S(t) y=\int_{0}^{t} C(s) y d s, \quad y \in E, t \in R
$$

The infinitesimal generator $A: E \rightarrow E$ of a cosine family $\{C(t): t \in R\}$ is defined by

$$
A y=\left.\frac{d^{2}}{d t^{2}} C(t) y\right|_{t=0}
$$

For more details on strongly continuous cosine and sine families, we refer the reader to the books of Goldstein [7] and to the papers of Fattorini [5,6] and of Travis and Webb [16,17].

Let us list the following hypotheses.
(H1) A is the infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, of bounded linear operators from X into itself.
(H2) $C(t), t>0$ is compact.
(H3) $F: J \times C\left(J_{0}, E\right) \rightarrow B C C(E) ;(t, u) \rightarrow F(t, u)$ is measurable with respect to t for each $u \in C\left(J_{0}, E\right)$, upper semicontinuous with respect to u for each $t \in J$, and for each fixed $u \in C\left(J_{0}, E\right)$, the set

$$
S_{F, u}=\left\{f \in L^{1}(J, E): f(t) \in F(t, u) \text { for a.e. } t \in J\right\}
$$

is nonempty.
(H4) The linear operator $W: L^{2}(J, U) \rightarrow E$, defined by

$$
W u=\int_{0}^{T} S(T-s) B u(s) d s
$$

induces a bounded invertible operators \widetilde{W} defined on $L^{2}(J, U) /$ ker W and there exist positive constants M_{1}, M_{2} such that $|\widetilde{W}| \leqslant M_{1}$ and $|B| \leqslant M_{2}$ (see [15]).
(H5) The function $g: J \times C\left(J_{0}, E\right) \rightarrow E$ is completely continuous and for any bounded set K in $C\left(J_{1}, E\right)$, the set $\left\{t \rightarrow g\left(t, y_{t}\right): y \in K\right\}$ is equicontinuous in $C(J, E)$.
(H6) There exist constants c_{1} and c_{2} such that

$$
|g(t, v)| \leqslant c_{1}\|v\|+c_{2}, \quad t \in J, v \in C\left(J_{0}, E\right)
$$

(H7) $\|F(t, u)\|:=\sup \{|v|: v \in F(t, u)\} \leqslant p(t) \Psi(\|u\|)$ for almost all $t \in J$ and all $u \in$ $C\left(J_{0}, E\right)$, where $p \in L^{1}\left(J, R_{+}\right)$and $\Psi: R_{+} \rightarrow(0, \infty)$ is continuous and increasing with

$$
\int_{0}^{T} m(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Psi(s)}
$$

where $c=M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M T^{2} M_{0}, m(t)=\max \left\{M c_{1}\right.$, $M T p(t)\}, M=\sup \{|C(t)|: t \in J\}, M_{0}=M_{1} M_{2}\left[\left\|x_{1}\right\|+M\|\phi\|+M T\left[\left|y_{0}\right|+\right.\right.$ $\left.\left.c_{1}\|\phi\|+2 c_{2}\right]+M c_{1} \int_{0}^{T}\left\|y_{s}\right\| d s+M T \int_{0}^{T} p(s) \Psi\left(\left\|y_{s}\right\|\right) d s\right]$.

Remark 2.1. (i) If $\operatorname{dim} E<\infty$, then for each $u \in C\left(J_{0}, E\right), S_{F, u} \neq \emptyset$ (see Lasota and Opial [10]).
(ii) $S_{F, u}$ is nonempty if and only if the function $Y: J \rightarrow R$ defined by

$$
Y(t):=\inf \{|v|: v \in F(t, u)\}
$$

belongs to $L^{1}(J, R)$ (see Papageorgiou [14]).
In order to define the concept of mild solution for (1), (2), by comparison with abstract Cauchy problem

$$
\begin{aligned}
& y^{\prime \prime}(t)=A y(t)+h(t), \\
& y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
\end{aligned}
$$

whose properties are well known [16,17], we associate problem (1), (2) to the integral equation

$$
\begin{align*}
y(t)= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\int_{0}^{t} S(t-s) B u(s) d s+\int_{0}^{t} S(t-s) f(s) d s, \quad t \in J, \tag{3}
\end{align*}
$$

where

$$
f \in S_{F, y}=\left\{f \in L^{1}(J, E): f(t) \in F\left(t, y_{t}\right) \text { for a.e. } t \in J\right\} .
$$

Definition 2.1. A function $y:(-r, T) \rightarrow E, T>0$ is called a mild solution of the problem (1), (2) if $y(t)=\phi(t), t \in[-r, 0]$, and there exists a $v \in L^{1}(J, E)$ such that $v(t) \in F\left(t, y_{t}\right)$ a.e. on J, and the integral equation (3) is satisfied.

Definition 2.2. The problem (1), (2) is said to be controllable on the interval J if, for every $\phi \in C\left(J_{0}, E\right)$ with $\phi(0) \in D(A), x_{0} \in E$, and $x_{1} \in E$, there exists a control $u \in L^{2}(J, U)$ such that the mild solution $y(\cdot)$ of (1), (2) satisfies $y(T)=x_{1}$.

The following lemmas are crucial in the proof of our main theorem.
Lemma 2.1 [10]. Let I be a compact real interval and X be a Banach space. Let F be a multivalued map satisfying (H3) and let Γ be a linear continuous mapping from $L^{1}(I, X)$ to $C(I, X)$. Then the operator

$$
\Gamma \circ S_{F}: C(I, X) \rightarrow B C C(C(I, X)), \quad y \rightarrow\left(\Gamma \circ S_{F}\right)(y):=\Gamma\left(S_{F, y}\right)
$$

is a closed graph operator in $C(I, X) \times C(I, X)$.
Lemma 2.2 [11]. Let X be a Banach space and $N: X \rightarrow B C C(X)$ be a condensing map. If the set

$$
\Omega:=\{y \in X: \lambda y \in N y \text { for some } \lambda>1\}
$$

is bounded, then N has a fixed point.

3. Main result

Now, we are able to state and prove our main theorem.
Theorem 3.1. Assume that hypotheses (H1)-(H7) are satisfied. Then the system (1), (2) is controllable on J.

Proof. Using (H4), for an arbitrary function $y(\cdot)$, we define the control

$$
\begin{aligned}
u_{y}(t)=\tilde{W}^{-1}[& x_{1}-C(T) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right] \\
& \left.-\int_{0}^{T} C(T-s) g\left(s, y_{s}\right) d s-\int_{0}^{T} S(T-s) f(s) d s\right](t)
\end{aligned}
$$

where $f \in S_{F, y}=\left\{f \in L^{1}(J, E): f(t) \in F\left(t, y_{t}\right)\right.$ for a.e. $\left.t \in J\right\}$.
Now we shall show that, when using this control, the operator $N: C\left(J_{1}, E\right) \rightarrow 2^{C\left(J_{1}, E\right)}$ defined by

$$
N y=\left\{\begin{array}{l}
h \in C\left(J_{1}, E\right): h(t) \\
=\left\{\begin{array}{l}
\phi(t), \quad \text { if } t \in J_{0}, \\
C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
\quad+\int_{0}^{t} S(t-s) B u_{y}(s) d s+\int_{0}^{t} S(t-s) f(s) d s, \quad \text { if } t \in J,
\end{array}\right.
\end{array}\right.
$$

has a fixed point. This fixed point is then a solution of the problem (1), (2).
Clearly, $x_{1} \in(N y)(T)$.
We shall show that N is completely continuous with bounded closed convex values and it is upper semicontinuous. The proof will be given in several steps.

Step 1. $N y$ is convex for each $y \in C\left(J_{1}, E\right)$.
Indeed, if h_{1}, h_{2} belong to $N y$, then there exist $f_{1}, f_{2} \in S_{F, y}$ such that for each $t \in J$, we have

$$
\begin{aligned}
h_{i}(t)= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\int_{0}^{t} S(t-s) B u_{y}(s) d s+\int_{0}^{t} S(t-s) f_{i}(s) d s, \quad i=1,2 .
\end{aligned}
$$

Let $0 \leqslant \alpha \leqslant 1$. Then for each $t \in J$, we have

$$
\begin{aligned}
\left(\alpha h_{1}\right. & \left.+(1-\alpha) h_{2}\right)(t) \\
= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\int_{0}^{t} S(t-s) B u_{y}(s) d s+\int_{0}^{t} S(t-s)\left[\alpha f_{1}(s)+(1-\alpha) f_{2}(s)\right] d s .
\end{aligned}
$$

Since $S_{F, y}$ is convex (because F has convex values), then

$$
\alpha h_{1}+(1-\alpha) h_{2} \in N y
$$

completing the proof of Step 1.

Step 2. $\quad N$ maps bounded sets into bounded sets in $C\left(J_{1}, E\right)$.
Indeed, it is enough to show that there exists a positive constant ℓ such that for each $h \in N y, y \in B_{q}=\left\{y \in C\left(J_{1}, E\right):\|y\|_{\infty} \leqslant q\right\}$, one has $\|h\|_{\infty} \leqslant \ell$. If $h \in N y$, then there exists $f \in S_{F, y}$ such that for each $t \in J$ we have

$$
\begin{aligned}
h(t)= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\int_{0}^{t} S(t-s) B u_{y}(s) d s+\int_{0}^{t} S(t-s) f(s) d s .
\end{aligned}
$$

By (H4), (H6), and (H7), we have that, for each $t \in J$,

$$
\begin{aligned}
|h(t)| \leqslant & |C(t) \phi(0)|+\left|S(t)\left[x_{0}-g(0, \phi)\right]\right|+\left|\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s\right| \\
& +\left|\int_{0}^{t} S(t-s) B u_{y}(s) d s\right|+\left|\int_{0}^{t} S(t-s) f(s) d s\right| \\
\leqslant & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M c_{1} \int_{0}^{t}\left\|y_{s}\right\| d s \\
& +M T^{2} M_{0}+M T \sup _{y \in[0, q]} \Psi(y)\left(\int_{0}^{t} p(s) d s\right) .
\end{aligned}
$$

Then for each $h \in N\left(B_{q}\right)$ we have

$$
\begin{aligned}
\|h\|_{\infty} \leqslant & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M c_{1} \int_{0}^{T}\left\|y_{s}\right\| d s \\
& +M T^{2} M_{0}+M T \sup _{y \in[0, q]} \Psi(y)\left(\int_{0}^{T} p(s) d s\right):=\ell
\end{aligned}
$$

Step 3. N maps bounded sets into equicontinuous sets of $C\left(J_{1}, E\right)$.
Let $t_{1}, t_{2} \in J, 0<t_{1}<t_{2}$ and $B_{q}=\left\{y \in C\left(J_{1}, E\right):\|y\|_{\infty} \leqslant q\right\}$ be a bounded set of $C\left(J_{1}, E\right)$. For each $y \in B_{q}$ and $h \in N y$, there exists $f \in S_{F, y}$ such that

$$
h(t)=C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s
$$

$$
+\int_{0}^{t} S(t-s) B u_{y}(s) d s+\int_{0}^{t} S(t-s) f(s) d s, \quad t \in J
$$

Thus,

$$
\begin{aligned}
& \left|h\left(t_{2}\right)-h\left(t_{1}\right)\right| \\
& \leqslant\left|\left[C\left(t_{2}\right)-C\left(t_{1}\right)\right] \phi(0)\right|+\left|\left[S\left(t_{2}\right)-S\left(t_{1}\right)\right]\left[x_{0}-g(0, \phi)\right]\right| \\
& +\left|\int_{0}^{t_{2}}\left[C\left(t_{2}-s\right)-C\left(t_{1}-s\right)\right] g\left(s, y_{s}\right) d s\right| \\
& +\left|\int_{t_{1}}^{t_{2}} C\left(t_{1}-s\right) g\left(s, y_{s}\right) d s\right| \\
& +\mid \int_{0}^{t_{2}}\left[S\left(t_{2}-s\right)-S\left(t_{1}-s\right)\right] B \widetilde{W}^{-1}\left[x_{1}-C(T) \phi(0)\right. \\
& -S(T)\left[x_{0}-g(0, \phi)\right]-\int_{0}^{T} C(T-\tau) g\left(\tau, y_{\tau}\right) d \tau \\
& \left.-\int_{0}^{T} S(T-\tau) f(\tau) d \tau\right](s) d s \mid \\
& +\mid \int_{t_{1}}^{t_{2}} S\left(t_{1}-s\right) B \tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right]\right. \\
& \left.-\int_{0}^{T} C(T-\tau) g\left(\tau, y_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f(\tau) d \tau\right](s) d s \mid \\
& +\left|\int_{0}^{t_{2}}\left[S\left(t_{2}-s\right)-S\left(t_{1}-s\right)\right] f(s) d s\right|+\left|\int_{t_{1}}^{t_{2}} S\left(t_{1}-s\right) f(s) d s\right| \\
& \leqslant\left|C\left(t_{2}\right)-C\left(t_{1}\right)\right|\|\phi\|+\left|S\left(t_{2}\right)-S\left(t_{1}\right)\right|\left[\left|x_{0}\right|+c_{1}\|\phi\|+c_{2}\right] \\
& +\int_{0}^{t_{2}}\left|C\left(t_{2}-s\right)-C\left(t_{1}-s\right)\right|\left[c_{1}\left\|y_{s}\right\|+c_{2}\right] d s \\
& +\int_{t_{1}}^{t_{2}}\left|C\left(t_{1}-s\right)\right|\left[c_{1}\left\|y_{s}\right\|+c_{2}\right] d s
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{t_{2}}\left|S\left(t_{2}-s\right)-S\left(t_{1}-s\right)\right| M_{1} M_{2}\left[\left|x_{1}\right|+M\|\phi\|\right. \\
& +M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+c_{2}\right] \\
& \left.+M \int_{0}^{T}\left[c_{1}\left\|y_{\tau}\right\|+c_{2}\right] d \tau+M T \int_{0}^{T}\|f(\tau)\| d \tau\right] d s \\
& +\int_{t_{1}}^{t_{2}}\left|S\left(t_{1}-s\right)\right| M_{1} M_{2}\left[\left|x_{1}\right|+M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+c_{2}\right]\right. \\
& \left.+M \int_{0}^{T}\left[c_{1}\left\|y_{\tau}\right\|+c_{2}\right] d \tau+M T \int_{0}^{T}\|f(\tau)\| d \tau\right] d s \\
& +\int_{0}^{t_{2}}\left|S\left(t_{2}-s\right)-S\left(t_{1}-s\right)\right|\|f(s)\| d s+\int_{t_{1}}^{t_{2}}\left|S\left(t_{1}-s\right)\right|\|f(s)\| d s
\end{aligned}
$$

As $t_{2} \rightarrow t_{1}$ the right-hand side of the above inequality tends to zero. The equicontinuities for the cases $t_{1}<t_{2} \leqslant 0$ and $t_{1} \leqslant 0 \leqslant t_{2}$ are obvious. As a consequence of Step 2, Step 3, and (H5) together with the Ascoli-Arzela theorem, we can conclude that N is completely continuous, and therefore, a condensing map.

Step 4. N has a closed graph.
Let $y_{n} \rightarrow y_{*}, h_{n} \in N y_{n}$, and $h_{n} \rightarrow h_{*}$. We shall prove that $h_{*} \in N y_{*} . h_{n} \in N y_{n}$ means that there exists $f_{n} \in S_{F, y_{n}}$ such that

$$
\begin{aligned}
h_{n}(t)= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{n s}\right) d s \\
& +\int_{0}^{t} S(t-s) B u_{y_{n}}(s) d s+\int_{0}^{t} S(t-s) f_{n}(s) d s, \quad t \in J
\end{aligned}
$$

where

$$
\begin{aligned}
u_{y_{n}}(t)=\widetilde{W}^{-1}[& x_{1}-C(T) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right] \\
& \left.-\int_{0}^{T} C(T-s) g\left(s, y_{n s}\right) d s-\int_{0}^{T} S(T-s) f_{n}(s) d s\right](t) .
\end{aligned}
$$

We must prove that there exists $f_{*} \in S_{F, y_{*}}$ such that

$$
\begin{aligned}
h_{*}(t)= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{* s}\right) d s \\
& +\int_{0}^{t} S(t-s) B u_{y_{*}}(s) d s+\int_{0}^{t} S(t-s) f_{*}(s) d s, \quad t \in J
\end{aligned}
$$

where

$$
\begin{aligned}
u_{y_{*}}(t)=\widetilde{W}^{-1}[& x_{1}-C(T) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right] \\
& \left.-\int_{0}^{T} C(T-s) g\left(s, y_{* s}\right) d s-\int_{0}^{T} S(T-s) f_{*}(s) d s\right](t)
\end{aligned}
$$

Set

$$
\begin{gathered}
\bar{u}_{y_{n}}(t)=\tilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right]\right. \\
\left.\quad-\int_{0}^{T} C(T-s) g\left(s, y_{n s}\right) d s\right](t)
\end{gathered}
$$

Since g, \widetilde{W}^{-1} are continuous, then

$$
\bar{u}_{y_{n}}(t) \rightarrow \bar{u}_{y_{*}}(t), \quad \text { for } t \in J
$$

Clearly, we have that

$$
\begin{aligned}
& \|\left(h_{n}-C(t) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right]\right. \\
& \left.\quad-\int_{0}^{T} C(T-s) g\left(s, y_{n s}\right) d s-\int_{0}^{t} S(t-s) B \bar{u}_{y_{n}}(s) d s\right) \\
& \quad-\left(h_{*}-C(t) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right]\right. \\
& \left.\quad-\int_{0}^{T} C(T-s) g\left(s, y_{* s}\right) d s-\int_{0}^{t} S(t-s) B \bar{u}_{y_{*}}(s) d s\right) \|_{\infty} \rightarrow 0,
\end{aligned}
$$

as $n \rightarrow \infty$.
Consider the linear continuous operator

$$
\begin{aligned}
& \Gamma: L^{1}(J, E) \rightarrow C(J, E) \\
& f \rightarrow \Gamma(f)(t)=\int_{0}^{t} S(t-s)\left[f(s)-B \widetilde{W}^{-1}\left(\int_{0}^{T} S(T-\tau) f(\tau) d \tau\right)(s)\right] d s
\end{aligned}
$$

From Lemma 2.1, it follows that $\Gamma \circ S_{F}$ is a closed graph operator. Moreover, we have that

$$
\begin{aligned}
& h_{n}(t)-C(t) \phi(0)-S(t)\left[x_{0}-g(0, \phi)\right] \\
& \quad-\int_{0}^{t} C(t-s) g\left(s, y_{n s}\right) d s-\int_{0}^{t} S(t-s) B \bar{u}_{y_{n}}(s) d s \in \Gamma\left(S_{F, y_{n}}\right) .
\end{aligned}
$$

Since $y_{n} \rightarrow y_{*}$, it follows from Lemma 2.1 that

$$
\begin{aligned}
h_{*}(t) & -C(t) \phi(0)-S(t)\left[x_{0}-g(0, \phi)\right] \\
& -\int_{0}^{T} C(t-s) g\left(s, y_{* s}\right) d s-\int_{0}^{t} S(t-s) B \bar{u}_{y_{*}}(s) d s \\
= & \int_{0}^{t} S(t-s)\left[f_{*}(s)-B \widetilde{W}^{-1}\left(\int_{0}^{T} S(T-\tau) f_{*}(\tau) d \tau\right)(s)\right] d s
\end{aligned}
$$

for some $f_{*} \in S_{F, y_{*}}$.
Therefore N is a completely continuous multivalued map, upper semicontinuous with convex closed values. In order to prove that N has a fixed point, we need one more step.

Step 5. The set

$$
\Omega:=\left\{y \in C\left(J_{1}, E\right): \lambda y \in N y, \text { for some } \lambda>1\right\}
$$

is bounded.
Let $y \in \Omega$. Then $\lambda y \in N y$ for some $\lambda>1$. Thus, there exists $f \in S_{F, y}$ such that

$$
\begin{aligned}
y(t)= & \lambda^{-1} C(t) \phi(0)+\lambda^{-1} S(t)\left[x_{0}-g(0, \phi)\right]+\lambda^{-1} \int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\lambda^{-1} \int_{0}^{t} S(t-s) B \widetilde{W}^{-1}\left[x_{1}-C(T) \phi(0)-S(T)\left[x_{0}-g(0, \phi)\right]\right. \\
& \left.-\int_{0}^{T} C(T-\tau) g\left(\tau, y_{\tau}\right) d \tau-\int_{0}^{T} S(T-\tau) f(\tau) d \tau\right](s) d s \\
& +\lambda^{-1} \int_{0}^{t} S(t-s) f(s) d s, \quad t \in J
\end{aligned}
$$

This implies by (H4), (H6), and (H7) that for each $t \in J$, we have

$$
\begin{aligned}
|y(t)| \leqslant & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right] \\
& +M c_{1} \int_{0}^{t}\left\|y_{s}\right\| d s+M T^{2} M_{0}+M T \int_{0}^{t} p(s) \Psi\left(\left\|y_{s}\right\|\right) d s
\end{aligned}
$$

We consider the function μ defined by

$$
\mu(t)=\sup \{|y(s)|:-r \leqslant s \leqslant t\}, \quad t \in J .
$$

Let $t^{*} \in[-r, t]$ be such that $\mu(t)=\left|y\left(t^{*}\right)\right|$. If $t^{*} \in J$, by the previous inequality we have for $t \in J$

$$
\begin{aligned}
\mu(t) \leqslant & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right] \\
& +M c_{1} \int_{0}^{t^{*}}\left\|y_{s}\right\| d s+M T^{2} M_{0}+M T \int_{0}^{t^{*}} p(s) \Psi\left(\left\|y_{s}\right\|\right) d s \\
\leqslant & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right] \\
& +M c_{1} \int_{0}^{t} \mu(s) d s+M T^{2} M_{0}+M T \int_{0}^{t} p(s) \Psi(\mu(s)) d s .
\end{aligned}
$$

If $t^{*} \in J_{0}$, then $\mu(t) \leqslant\|\phi\|$ and the previous inequality holds.
Let us take the right-hand side of the above inequality as $v(t)$. Then, we have

$$
\begin{aligned}
& c=v(0)=M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M T^{2} M_{0} \\
& \mu(t) \leqslant v(t) \\
& v^{\prime}(t)=M c_{1} \mu(t)+M T p(t) \Psi(\mu(t)), \quad t \in J .
\end{aligned}
$$

Using the nondecreasing character of Ψ, we get

$$
v^{\prime}(t) \leqslant M c_{1} v(t)+M T p(t) \Psi(v(t)) \leqslant m(t)[v(t)+\Psi(v(t))], \quad t \in J .
$$

This implies that for each $t \in J$ that

$$
\int_{v(0)}^{v(t)} \frac{d s}{s+\Psi(s)} \leqslant \int_{0}^{T} m(s) d s<\int_{v(0)}^{\infty} \frac{d s}{s+\Psi(s)}
$$

This inequality implies that there exists a constant L such that $v(t) \leqslant L, t \in J$, and hence $\mu(t) \leqslant L, t \in J$. Since for every $t \in J,\left\|y_{t}\right\| \leqslant \mu(t)$, we have

$$
\|y\|_{\infty}:=\sup \{|y(t)|:-r \leqslant t \leqslant T\} \leqslant L
$$

where L depends only on T and on the function p and Ψ. This shows that Ω is bounded.
Set $X:=C\left(J_{1}, E\right)$. As a consequence of Lemma 2.2 , we deduce that N has a fixed point and thus the system (1), (2) is controllable on J.

References

[1] K. Balachandran, P. Balasubramaniam, J.P. Dauer, Controllability of nonlinear integrodifferential systems in Banach space, J. Optim. Theory Appl. 84 (1995) 83-91.
[2] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.
[3] M. Benchohra, S.K. Ntouyas, Controllability of second order differential inclusions in Banach spaces with nonlocal conditions, J. Optim. Theory Appl. 107 (2000) 559-571.
[4] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.
[5] O. Fattorini, Ordinary differential equations in linear topological spaces I, J. Differential Equations 5 (1968) 72-105.
[6] O. Fattorini, Ordinary differential equations in linear topological spaces II, J. Differential Equations 6 (1969) 50-70.
[7] J.K. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.
[8] E. Hernandez, H.R. Henriquez, Existence results for partial neutral functional integrodifferential equations with unbounded delay, J. Math. Anal. Appl. 221 (1998) 452-475.
[9] S. Hu, N. Papageorgiou, Handbook of Multivalued Analysis, Kluwer, Dordrecht, 1997.
[10] A. Lasota, Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math., Astronom. Phys. 13 (1965) 781-786.
[11] M. Martelli, A Rothe type theorem for noncompact acyclic-valued map, Boll. Un. Mat. Ital. 4 (1975) 70-76.
[12] S.K. Ntouyas, Global existence for neutral functional integrodifferential equations, Nonlinear Anal. 30 (1997) 2133-2142.
[13] K. Naito, On controllability for a nonlinear Volterra equation, Nonlinear Anal. 18 (1992) 99-108.
[14] N. Papageorgiou, Boundary value problems for evolution inclusions, Comm. Math. Univ. Carolin. 29 (1988) 355-363.
[15] M.D. Quinn, N. Carmichael, An approach to nonlinear control problems using fixed point methods, degree theory, and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984/1985) 197-219.
[16] C.C. Travis, G.F. Webb, Second-order differential equations in Banach spaces, in: Proceedings of the International Symposium on Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978, pp. 331-361.
[17] C.C. Travis, G.F. Webb, Cosine families and abstract nonlinear second-order differential equations, Acta Math. Hungar. 32 (1978) 75-96.
[18] K. Yosida, Functional Analysis, 6th ed., Springer, Berlin, 1980.

[^0]: * Corresponding author.

 E-mail addresses: jyepark@pusan.ac.kr (J.Y. Park), yckwun@daunet.donga.ac.kr (Y.C. Kwun), leehj@pusan.ac.kr (H.J. Lee).

