
A
c

J
S
a

b

c

a

A
R
R
2
A
A

K
4
A
H
M

1

u
[
c
A
t
m
s
e
w
m
m
t

i
f

0
d

COR re.ac.uk

Provided
Sensors and Actuators B 152 (2011) 220–225

Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journa l homepage: www.e lsev ier .com/ locate /snb

hemin-based molecularly imprinted polymer (MIP) grafted onto a glassy
arbon electrode as a selective sensor for 4-aminophenol amperometric

osé de Ribamar Martins Netoa, Wilney de Jesus Rodrigues Santosb,c, Phabyanno Rodrigues Limab,c,
ônia Maria Carvalho Neiva Tanakaa, Auro Atsushi Tanakaa,c, Lauro Tatsuo Kubotab,c,∗

Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, 65085-580 São Luís, MA, Brazil
Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, SP, Brazil
Instituto Nacional de Ciência e Tecnologia de Bionalítica, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, SP, Brazil

r t i c l e i n f o

rticle history:
eceived 9 September 2010
eceived in revised form
5 November 2010
ccepted 3 December 2010
vailable online 16 December 2010

eywords:
-Aminophenol

a b s t r a c t

Molecular imprinting technology is becoming a versatile tool for the preparation of tailor-made molec-
ular recognition elements. This work investigates the performance of a hemin-modified molecularly
imprinted polymer (MIP) used as an amperometric sensor for the detection of 4-aminophenol (4-APh).
MIP particles were prepared by the precipitation polymerization method with hemin introduced as
the catalytic center to mimic the active site of peroxidase. 4-APh was used as the template molecule,
methacrylic acid (MAA) as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the
cross-linker and 2,2′-azobisisobutyronitrile (AIBN) as the initiator. The synthesized polymer particles
were characterized in terms of particle size, porosity and morphology. The amperometric sensor used

E Metadata, citation and similar papers at co

 by Elsevier - Publisher Connector 
mperometric sensor
emin
olecularly imprinted polymer

for 4-APh detection was prepared by modifying a glassy carbon electrode surface with the hemin-
based MIP. Under optimized operational conditions, a linear response was obtained in the range of
10.0–90.0 �mol L−1, with a sensitivity of 5.5 nA L �mol−1 and a detection limit of 3.0 �mol L−1. The sensor
showed good repeatability (RSD = 2.7% for n = 7). It exhibited to be very selective for 4-APh even in the
presence of structurally similar compounds (2-aminophenol, catechol, guaiachol, 2-cresol and chlorogua-
iachol). Recoveries in the range 93–111% were obtained using the sensor for the determinations of 4-APh
in tap and river water samples.
. Introduction

Micro-organisms, enzymes, receptors and antibodies are often
sed as molecular recognition materials in biosensor technology
1]. However, there are intrinsic difficulties in the practical appli-
ation of such devices, due to the instability of biomolecules.
s a result, considerable efforts has been done to overcome

hese problems and to a novel promising technology, namely the
olecular imprinting technique, which can be used to produce

ynthetic materials to mimic biological receptors [2]. The gen-
ral principle of molecular imprinting is based on procedures

here the functional and cross-linking monomers are copoly-
erized in the presence of a target analyte (the imprinting
olecule), which acts as a molecular template. The polymeriza-

ion process can be performed by reversible covalent bonding

∗ Corresponding author at: Instituto de Química, Universidade Estadual de Camp-
nas, Caixa Postal 6154, 13084-971 Campinas, SP, Brazil. Tel.: +55 19 3521 3127;
ax: +55 19 3521 3023.
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925-4005 © 2010 Elsevier B.V. 
oi:10.1016/j.snb.2010.12.010
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or non-covalent interactions between monomers and imprinting
molecules.

Molecularly imprinted polymers (MIPs) have been success-
fully used in the solid phase extraction [3], biomimetic catalysis
[4], binding assays [5] and sensor applications [6–11]. They are
promising candidates for the replacement of biomolecules as the
recognition element in chemical sensors [12]. Various signal trans-
ducers, including field effect transistors [6] as well as fluorescence
[7], surface plasmon resonance [8], electrochemical [8–10] and
piezoelectric [11] detectors have been employed in construction
of MIP-based sensors. Nonetheless, despite an increased interest
in these devices, the literature remains sparse, especially concern-
ing electrochemical sensing. The integration of MIPs with sensor
technology may offer considerable potential for the development
of devices that offer significant advantages compared to the current
methodologies.

Open access under the Elsevier OA license. 
In this sense, MIPs were recently synthesized in our laboratory
for use as catalytic recognition centers [13–15] in the detection
of phenolic compounds of biological and environmental interests.
In order to improve the detection process, the preparation of an
amperometric sensor for 4-aminophenol detection employing a

https://core.ac.uk/display/82000525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.snb.2010.12.010
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employed polymerization method. The morphologies of the MIP
and NIP formed by the precipitation polymerization procedure are
shown in Fig. 1. It can be seen from the SEM micrographs that the
technique produced uniform microspherical particles, as a result
of the control of the separation point during the polymerization
J.d.R.M. Neto et al. / Sensors an

emin-based MIP grafted onto a glassy carbon (GC) electrode sur-
ace using Nafion® is proposed.

. Experimental

.1. Chemicals and solutions

4-Aminophenol (4-APh), iron protoporphyrin IX (hemin)
ethacrylic acid (MAA), trimethylolpropane trimethacrylate

TRIM) and 2,2′-azo-bis-iso-butyronitrile (AIBN) were purchased
rom Sigma–Aldrich (Steinheim, Germany). All other reagents were
f analytical grade and used without further purification.

All solutions were prepared using purified water (>18 M� cm)
n a Milli-Q system (Millipore Inc.). The pH values of the buffer solu-
ions were determined using a Corning Model 350 pH/Ion Analyser.

.2. Apparatus and procedure

Amperometric and cyclic voltammetric measurements were
erformed using a PGSTAT-30 potentiostat (Autolab Echo Chemie,
trecht, The Netherlands), controlled by GPES 4.9 software.

All experiments employed an electrochemical cell containing
.0 mL of electrolyte solution, with a Ag/AgCl (saturated KCl) refer-
nce electrode, a Pt wire auxiliary electrode and a modified glassy
arbon (∼3 mm diameter) working electrode. Oxygen was removed
rom the solution by purging with nitrogen gas.

The morphological characteristics of the MIPs were analyzed
y scanning electron microscopy (SEM), using a JEOL JSM-6360
V microscope. The pore parameters and the surface areas of the
IPs were measured with a Quantachrome Autosorb automated

as sorption instrument.

.3. Precipitation polymerization procedure

Molecularly imprinted polymers were prepared by ther-
al radical polymerization [16]. 4 mmol of MAA, 4 mmol of

ross-linker (TRIM) and 0.02 mmol of hemin were dissolved in
mixed solvent composed of dimethylsulfoxide (DMSO) and

cetonitrile. 57.5 �mol of 4-APh (template) and 0.127 g of 2,2′-
zobisisobutyronitrile initiator were added to the solution. To avoid
he undesirable presence of oxygen, the solution was degassed by
onication for 10 min followed by purging nitrogen for 10 min. The
eakers containing the solutions were then sealed with multiple

ayers of Parafilm®, and placed in a water bath at 60 ◦C for thermal
olymerization. After 9 h of polymerization, the MIP particles were
ollected on a nylon filter (0.27 �m pore size) and washed with
ethanol and acetic acid (9:1, v/v) to remove the template.
A non-molecularly imprinted polymer (NIP) was also prepared

y following the same procedures but without adding the 4-APh
emplate.
.4. Electrochemical sensor preparation

20 mg of the hemin-based MIP were dispersed in 1 mL of
ethanol, under sonication for 20 min. 10 �L drops of the suspen-

ion with 10 �L of Nafion® solution were then transferred onto the
lean glassy carbon electrode surfaces, and dried at room temper-
ture. Nafion® was used as a selected binder to improve the MIP
xation, based on its chemical, mechanical and thermal stability,
s well as cation selectivity and high conductivity.
uators B 152 (2011) 220–225 221

3. Results and discussion

3.1. Preparation and characterization of the hemin-based
molecularly imprinted polymer

MIP was synthesized using a larger amount of solution than
that used in the traditional polymerization [14], with hemin as the
catalytic center to mimic the active site of peroxidase. The pro-
cedure was possible due to the unique structural features of the
hemin molecule, as well as the controlled interactions between the
functional monomer (MAA) and the template (4-APh). The most
commonly used functional monomer is usually MAA, which can
form hydrogen bonds with the template molecules prior to the
polymerization. The resulting specific and precisely located inter-
actions provided the selectivity of the MIP. The cross-linker TRIM,
which possesses three allyl groups, produces the porous struc-
ture of polymers much more efficiently than does ethylene glycol
dimethacrylate (EDMA), which possesses two allyl groups. It has
also been shown that imprinted polymers prepared using the tri-
functional crosslinker have higher load capacity [17]. In addition,
a mixed solvent consisting of DMSO and acetonitrile (7:1, v/v) was
chosen as the reaction medium and porogen, avoiding the hydro-
gen bonding interference of a polar solvent (such as acetone) while
increasing the porosity of the polymers.

The physical configurations of MIPs vary according to the
Fig. 1. Scanning electron micrographs (40,000×) of the 4-APh-imprinted polymer
synthesized for precipitation methods: (A) MIP and (B) NIP.
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Fig. 3. Amperometric responses of 4-APh obtained with (a) GC electrode, (b) a GC
ig. 2. Cyclic voltammograms obtained uing the GC electrode modified with hemin-
IP, in (a) the absence of H2O2, (b) the presence of 200 �mol L−1 H2O2, (c) the

resence of 10 �mol L−1 4-APh, and (d) 20 �mol L−1 4-APh. Electrolyte: 0.05 mol L−1

RIS buffer solution (pH 7.0). Scan rate: 0.01 V s−1.

chieved using a dilute monomer solution. The MIP and NIP par-
icles produced in this study were uniform microspheres, which
ossessed higher surface areas and more complementary sites than
articles produced by bulk polymerization. The pore size distribu-
ions and surface areas measured using the BET method showed
hat surface area (2.3 m2 g−1) and porosity (0.01 cm3 g−1) of NIP
ere much smaller than the corresponding values obtained for MIP

12.7 m2 g−1 and 2.34 cm3 g−1, respectively).

.2. Electrochemical behavior of the hemin-MIP modified
lectrode

Assays were performed to evaluate the catalytic activity of the
odified glassy carbon electrode during 4-APh detection. Fig. 2

hows the electrochemical behavior in TRIS buffer solution (pH
.0), which was similar to those observed with enzyme modi-
ed electrode by cyclic voltammetry, using a cathodic scan, with
initial = 0.5 V and E� = −0.25 V, in (a) the absence or (b) the presence
f 200 �mol L−1 of peroxide, and in the presence of 10 �mol L−1 (c)
r 20 �mol L−1 (d) of 4-APh. An increase of the reduction current
as observed after adding peroxide (Fig. 2b), with a decrease of the

nodic current, suggesting that hemin catalyzed peroxide reduc-
ion in the same way as peroxidase-based biosensors. After adding
-APh to the solution (Fig. 2c and d), a significant new increase
ccurred at a potential of −0.07 V (vs. Ag/AgCl), as is found for
eroxidase-based biosensors, where the electron transfer is medi-
ted by the phenolic compounds. This behavior suggests that the
emin-based MIP acts as an efficient electrocatalyst, with an action
imilar to that of peroxidase.

The performance of MIP as a recognizer for 4-APh was evaluated
n amperometric experiments performed at −100 mV vs. Ag/AgCl in
.05 mol L−1 TRIS buffer solution (pH 7.0) containing 100 �mol L−1

f H2O2. These experiments were performed using the GC elecrode
1) alone (Fig. 3a), (2) modified with Nafion® (Fig. 3b), (3) modi-
ed with Nafion® and NIP (Fig. 3c), and (4) modified with Nafion®

nd MIP (Fig. 3d). It can be seen that practically no responses
ere detected with the unmodified (Fig. 3a) or Nafion®-modified

Fig. 3b) GC electrodes, although a small response was observed
ith the NIP electrode (Fig. 3c) for the first addition. The low sig-
al for the NIP electrode can be attributed to the lack of molecular

ecognition since NIP does not possess the cavities that would pro-
ide selective active sites. Fig. 3d shows that the GC electrode
odified with MIP provided good reduction currents, indicating

hat MIP behaves as a catalyst in a similar way as a peroxidase
ystem.
electrode covered with a Nafion® membrane; (c) a GC electrode modified with NIP
and covered with Nafion® membrane and (d) a GC electrode modified with MIP
and covered with Nafion® membrane. Electrolyte: 0.05 mol L−1 TRIS buffer (pH 7.0)
containing 100 �mol L−1 of H2O2. Applied potential:–0.1 V vs. Ag/AgCl.

3.3. Influence of hydrogen peroxide

Hydrogen peroxide plays a key role in the catalytic action of
peroxidase enzymes, with high concentrations inhibiting cataly-
sis [18]. Amperometric curves recorded in the absence (Fig. 4A(a))
or presence (Fig. 4A(b)) of 50 �mol L−1 hydrogen peroxide, with
successive additions of 4-APh into the electrochemical cell con-
taining phosphate buffer (0.1 mol L−1, pH 7.0) clearly showed the
important role of hydrogen peroxide in the catalytic process.

Fig. 4B shows the dependence of the sensor response on the
H2O2 concentration in the range 10–200 �mol L−1, using a fixed
amount of 4-APh in solution. The current increased with the H2O2
concentration, and eached a maximum at 100 �mol L−1. This con-
centration was chosen for subsequent expriments, based both on
these results and on the fact that higher concentrations result in
lower stability of peroxidase systems as well as electrodes [19].

A possible mechanism for the sensor response is illustrated
in Fig. 5. This mechanism is similar to those proposed for deter-
mination of phenolic compounds using biomimetic catalysts of
dopamine �-monooxygenase, peroxidase and tyrosinase enzymes
[20–22], where the most important stage for phenolic quantifica-
tion is the electrochemical reduction of quinone species on the
electrode surface, recycling the substrate, and consequently result-
ing in signal amplification and reduction of the detection potential
of the phenolic compound.

3.4. Optimization of the parameters for the amperometric
detection of 4-aminophenol

The sensor response was influenced by the applied potential,
as shown in Fig. 6A. The optimum sensor response was obtained
at −100 mV vs. Ag/AgCl. This value is similar to the reduction
potential of 1,2-quinone to catechol [23], which also reinforces the
notion that the phenolic compound was electrochemically regener-
ated and produced a pseudo-bioelectrocatalytic amplification cycle
[24,25], as shown schematically in Fig. 5.

The influence of pH on the sensor response was examined using
experiments carried out in 0.1 mol L−1 phosphate buffer solution,

with the pH varying from 6.0 to 8.0. The best result was obtained
at pH 7.0 (Fig. 6B).

Five different 0.1 mol L−1 buffer solutions (HEPES, phos-
phate, TRIS, PIPES and Mcllvaine) were then tested, with best
response (data not shown) obtained using the Tris buffer. Fur-
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Fig. 4. (A) Signals obtained with the proposed amperometric sensor (a) in the
absence and (b) in the presence of 50 �mol L−1 of H2O2. Applied potential: −0.1 V vs.
Ag/AgCl. Electrolyte: 0.1 mol L−1 phosphate buffer (pH 7.0). (B) Dependence of H2O2

concentration on the current variation (�i) using the proposed sensor. Electrolyte:
0.1 mol L−1 phosphate buffer (pH 7.0) containing 30 �mol L−1 of 4-APh. Applied
potential: −0.1 V vs. Ag/AgCl.

Fig. 5. Proposed mechanism for 4-APh detection using the proposed sensor. The
molecularly imprinted polymer (MIP) with hemin is represented by Hemin-MIPred

is the reduced MIP, Hemin-MIPox is the oxidized MIP, and 4-APhred and 4-APhox are
the reduced and oxidized phenol species, respectively.
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Fig. 6. (A) Influence of the applied potential on the sensor response. Measurements
were carried out in 0.1 mol L−1 phosphate buffer (pH 7.0) containing 30 �mol L−1 of

)(1)
4-APh and 50 �mol L−1 of H2O2. (B) Response profiles for the sensor in phosphate
buffer solutions at different pHs. Electrolyte: 0.1 mol L−1 phosphate buffer contain-
ing 30 �mol L−1 of 4-APh and 100 �mol L−1 of H2O2. Applied potential: −0.1 V vs.
Ag/AgCl.

ther expriments resulted in an optimized TRIS concentration of
0.05 mol L−1.

3.5. Sensor characteristics

Under optimized conditions, the proposed sensor showed a lin-
ear response in the range 9.8–79.4 �mol L−1 (Fig. 7), described by
the following equation:

�i(nA) = −1.40 (±0.37) + 5.50 (±0.06) [4-APh] (r = 0.9995, n = 8

The detection and quantification limits, calculated according to
IUPAC recommendations [26], were 3.0 and 10.0 �mol L−1, respec-
tively. The response time of the sensor, considering the time
required to reach 100% signal, was approximately 1 s. Compared
with other sensors and biosensors for phenol described in the lit-
erature [27–29], the proposed sensor provided a lower detection
limit, with similar sensitivity and linear range. The sensitivity to
phenol was at last thirteen times greater than that obtained using

solid electrodes [30].

The stability of the MIP sensor was determined by amperometric
measurements in 0.05 mol L−1 TRIS buffer solution (pH 7.0) with
successive aditions of 4-APh (equivalent to 30 �mol L−1) into the
electrochemical cell and recording the current (�i) associated with
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Table 1
4-APh recovery data for water samples using the proposed sensor.

Samples 4-APh added
(�mol L−1)

4-APh founda

(�mol L−1)
Recoveryb (%)

Tap water – <QL –
1 10.0 9.30 (±0.06) 93 (±7)
2 12.0 13.4 (±0.09) 111 (±3)
River water – <QL –
1 10.0 9.70 (±0.02) 97 (±5)
2 12.0 12.6 (±0.05) 105 (±2)
ig. 7. (A) Typical analytical curve and (B) amperometric measurements for 4-APh
etection uing the proposed sensor in 0.05 mol L−1 TRIS buffer solution (pH 7.0)
ontaining 100 �mol L−1 of H2O2. Applied potential: −0.1 V vs. Ag/AgCl.

he sensor response to the analyte. There was no significant change
n the response after 80 measurements. The sensor showed good
eproducibility, with a relative standard deviation (RSD) of 2.7%
btained for ten determinations of 50 �mol L−1 4-APh. A RSD lower
han 5% was obtained for the responses obtained using a series
f five sensors, prepared in the same manner and tested in TRIS
uffer solution (pH 7.0) containing 50 �mol L−1 4-APh. This good
eproducibility reflects the ability of the catalytic sites and polymer
avities to recognize 4-APh.

.6. Selectivity of the MIP-sensor

After removing the template molecules by extraction, a molecu-
arly imprinted polymer is expected to present a high selectivity for
he imprinted molecules. To confirm that the sensor was selective
o 4-APh, the sensor response was investigated using phenolic com-
ounds possesing analogous structures, as potential interferents.
he reduction current increased sharply after adding 20.0 �mol L−1

-APh (Fig. 8). Further sequential additions of 20.0 �mol L−1 2-APh,

0.0 �mol L−1 catechol, 20.0 �mol L−1 guaiachol, 20.0 �mol L−1 2-
resol and 20.0 �mol L−1 chloroguaiachol into the electrolyte did
ot show any response in the amperogram. A further addition of
0.0 �mol L−1 4-APh sharply increased the reduction current again.

1000 200 300 400 500 600
-0.07

-0.06
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-0.04

Clog2-CreGUACA
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Time/sec

I/
A
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ig. 8. Current vs. time profiles for successive additions of (a, c) 20 �mol L−1 4-APh,
b) 20 �mol L−1 2-APh, 20 �mol L−1 catechol, 20 �mol L−1 guaiacol, 20 �mol L−1 2-
resol and 20 �mol L−1 chloroguaiacol, in a 0.05 mol L−1 TRIS buffer solution (pH
.0) containing 100 �mol L−1 of H2O2. Working electrode: hemin-based MIP sensor.
pplied potential: −0.1 V vs. Ag/AgCl.

[

[
[
[

a The results are expressed as mean value ± SD based on 3 replicates. Confidence
interval of 95%. LQ, limit of quantification.

b Recovery obtained from spiked samples.

Hence, at concentrations tested, the interferents did not affect the
steady state current of 4-APh. The high selectivty of the sensor is
due to the specific recognition sites, which reflect the template in
terms of size, shape and arrangement of the functional group.

3.7. Application of the sensor

The hemin-based MIP sensor was tested by determination of
4-APh in two tap water and two river water samples. Prior to
the analyses, the river water samples were filtered under vacuum
through 0.45 �m cellulose acetate membranes. The accuracy of the
method was evaluated by performing recovery tests after spiking
the samples, as shown in Table 1. The recovery values obtained
were in the range of 93–111%, which demonstrates the viability in
using the modified electrode as a highly selective amperometric
sensor for 4-APh in these matrices.

4. Conclusions

A new approach using a molecularly imprinted polymer for
the amperometric detection of 4-aminophenol was investigated. A
hemin-based MIP was used as an active catalytic site to mimic per-
oxidase enzymes for the determination of 4-APh. The sensor was
highly selective and the preparation procedures were simple, fast
and reproducible. Compared to peroxidase-based biosensors, the
amperometric electrode modified with hemin-based MIP is more
selective and stable showing a great potential for practical use.
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in chemistry at Federal University of Alagoas, UFAL, Brazil, in 2003. He received
his MSc degree in physical chemistry from the Federal University of Alagoas, UFAL,
Brazil, in 2006, and his PhD degree in analytical chemistry from the UNICAMP in
2009. Currently he is teacher of chemistry at Federal Institute of Education, Sci-
ence and Technology of Roraima, IFRR, Brazil. His research work has been mainly
focused on the design of new electrochemical sensors, biosensors and bioanalytical
methods.

Sônia Maria Carvalho Neiva Tanaka was born in Teresina (PI), Brazil. She graduated
in industrial chemistry at Federal University of Maranhão, UFMA, Brazil. She received
her MS and PhD degree in physical chemistry from Institute of Chemistry of São
Carlos, State University of São Paulo, USP, Brazil. Currently she is teacher of chemistry
at Federal University of Maranhão, UFMA, Brazil.

Auro Atsushi Tanaka was born in Pariquera-Açu (SP), Brazil. He graduated in chem-
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