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INTRODUCTION

The aim of this paper is to present a global qualitative analysis for the
asymptotic behavior of the solutions of the nonlinear equation

d
[r(t)x"]) +q(1) f(x)=0, (%=E> (1)

where

{H) r,q:[0,+x)—R, f: R— R are continuous functions, r(¢)>0,
g(t)y>0 and u-f(u) >0 for u+#0.

When the function r does not have a continuous derivative, equation (1)
may be interpreted as the first order differential system:

o
vty

") (1)
y'=—q(1) f(x)
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for the vector (x, yv)=(x, rx'). For the linear equation
[r(t) x']) 4+ q(t) x=0, (2)

with the same assumptions, a similar investigation has already been com-
pleted by the authors in [ 8] based on the integral behavior in [0, + o¢) of
the functions 1/r and g¢.

For the nonlinear equation (1) partial results may be found in the
literature with additional assumptions on the function f, such as, for
instance, monotonicity, global superlinearity or sublinearity. It seems inter-
esting to study whether a situation similar to the one of the linear case is
still valid in the nonlinear case, ie., to study whether the existence of
solutions of given asymptotic behavior may be based again on the integrals
of the functions 1/r and ¢ in [0, 4+ o0).

The plan of the paper is the following: in Section 1 we present some
preliminary results and recall the global analysis of the linear case. In
Section 2 we give necessary and sufficient conditions for the existence of
solutions with given asymptotic behavior. In Sections 3 (resp. 4) sufficient
conditions for the existence of eventually bounded (resp. unbounded)
monotone solutions are presented. Finally in Section 5 we give a global
theorem and we compare our results with those in the linear case.

The obtained results will be compared with the ones in the literature in
the framework of the paper. We now just recall that a wide investigation
on the asymptotic behavior of solutions of (1) which are eventually
monotone has been presented in [7, 15, 16] for the case ¢ < 0. For further
investigations and for a comprehensive list of references concerning this
kind of problems the reader is referred to [4, 11, 13, 17, 18, 20, 22] and
to the surveys [23, 24].

1

A continuable solution of (1) is said to be oscillatory if there exists a
sequence {7.}, t, — +oc, such that x(z,)=0, and it is said to be non-
oscillatory otherwise. A continuable nonoscillatory solution is said to be
weakly oscillatory if x' changes sign for arbitrarily large values of ¢ (see,
e.g., [14]). As already has been done in [8], in the sequel we will use the
notations:

+ oc 1 + o
I,=f0 ;mds q:JO q(s)ds

[rq:J-0+ s ;'(_IT_). J'Or q(s) ds dr 1, = J'O+ * g(t) J;: ;(‘l:sj')‘ds dr
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Using the following implications:
L=+ =1,=+
I,=4w0 =1,=+x
I,<+xandl, <+ =I,<+occand ], < +x

we still can conclude that the mutual behavior of /., I, I,,. I, is com-
pletely described by the following six cases:

(C)) I,=I,=1,=1I,=+x
(Cy IL<+w IL=1,=1,=+x

(Cy) IL<+o, I, <+, I,=1,=4x

(Cy) L<+oc, I=I,=1,=+x

(Cy) IL<+w, L,<+ow, I,=I,=+x

(Ce) i<+, f,<to, I, <+, [,<+x.

The following Lemma will be useful for the study of the asymptotic
behavior of solutions of {1):

LemMa 1.1, Let x be a solution of (1) that has not arbitrarily large zeros.
Then x' cannot have arbitrarily large zeros.

Proof. For the proof see, eg., [10]. |

From the previous Lemma it follows that (1) cannot have weakly
oscillatory solutions. Let S denote the set of all nontrivial continuable solu-
tions of (1). As in the linear case, solutions in S may be a priori divided in
the following classes which are mutually disjoint:

®={X€S: 3{!/‘}, t, — + o0, ,\‘(tk)=0}

M;={xeS$S:3,20:x(t)x(1)>0forr=s,and lim |x(1)]= + oc}

= +x

Mj;={xeS 3 .20:x(r)x'(1)>0fort>r,and lim |x(¢)]=L,< +oo}

1= 4+

Mg={xeS:31,20:x(1) x'(1)<0fort>1r,and lim x(1)=/#0}

r— + o

My ={xeS: 3, 20:x(1)x'(t)<0fort>¢ and lim x(z)=0}.

]

In other words if xe M ¥, then x is eventually either positive increasing
or negative decreasing and it is unbounded; if xe M}, then x is eventually
either positive increasing or negative decreasing and bounded. On the other
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hand solutions in M ; and M are always bounded because they are even-
tually either positive decreasing or negative increasing. Moreover solutions
in M, tend to zero when 1 —» + oc. Finally we set

MY=M}uM: M =MzuoM,;
The following crucial result was proved in [8] for the linear case:

THeorREM 1.1. (a) If (C,) holds, then every solution of (2) is either
oscillatory or of class M7,

(b) If (Cy) holds, then (2) is nonoscillutory. Moreover every solution
belongs to the class M™* and the set of bounded solutions is a subspace of
dimension one.

(c) If (C,) holds, then every solution of (2} is either oscillatory or of
class M .

(d) If (Cs) holds, then (2} is nonoscillatory. Moreover every solution
belongs to the class M~ and the set of solutions which tend to zero as
t — + oo is a subspace of dimension one.

(e) If (C,) holds, then (2) is nonoscillatory. Moreover all solutions are
bounded and there are solutions belonging to M, solutions belonging to
Mg and solutions belonging 1o M. Finally the set My Is a subspace of

dimension one.

We recall that in the linear case the Sturm Theorem ensures that if a
solution of (2) is oscillatory, then all solutions are oscillatory: hence
either O =S or O=J. Morcover a well-known result of Leighton (see,
e.g., [21, Chap. 2, Sect. 6]) states that, if (C,) holds, then O =S. In the
nonlinear case the Sturm Theorem fails: hence oscillatory solutions and
nonoscillatory solutions may coexist (see [ 10, 24]). However, in [1] it is
proved that if f verifies (H) and df/du>0, then even in the nonlinear
case assumption (C,) implies that all continuable solutions of {1) are
oscillatory. A generalization of such result is presented in the next section.

2

In this section we give necessary conditions for the existence of even-
tually monotone solutions of (1). Part of such results were proved in [10]
and will be only stated here. The following holds:

THeOREM 2.1. If I, = + o0, then M = 3. If, in addition,

(H,) lim inf|f(«)] >0

Ju| -+ + x

then M* = (.
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Proof. See [10]. }

The following example shows that assumption (H,) cannot be omitted.
Consider the equation

1
4t+4

X"+ fix}=0 tef0, + o)
where f(x)=1/x for x> 1 and satisfies condition (H). We have I, = + oc,
but such equation has the positive increasing unbounded function x(r)=
\/t + 1 as a solution.

For the existence of solutions of (1) in the class M~ the following holds:

THEOREM 22. If I, =+ o, then M~ ={J.
Proof. See [10]. |}

From the above mentioned results we obtain the following theorem on
the oscillation of solutions of (1). Such result generalizes the one in [1]
which was quoted above (see, also, [10]).

THEOREM 2.3. Let 1,=1,= + . If condition (H,) holds, then all the
continuable solutions of (1) are oscillatory.

Proof. The assertion follows immediately from Theorems 2.1 and 2.2. §

The reader is referred to [2 and 3] for the problem of continuability of
solutions. The following results give sufficient conditions in order that the
classes M, Mg are empty. Such results can be considered as particular
cases of recent ones proved in [6]. Moreover it is emphasized that while
the monotonicity of function f is required for the functional equation con-
sidered in [6], in this case such assumption is not necessary. The following
holds:

THEOREM 24, U1q1~= + oC, then M; — g

Proof. Let xe M}, such that x(¢)>0, x'(¢)>0 for t=¢, and let
x(+ox)=L,<+oc. From (1} it follows [r(¢) x'(¢)]' <0 for t = ¢,. Hence
(1) xX'(r) is positive decreasing for ¢>=r¢,. Let /. .=lim r(r) x'(1).
Clearly /, 2 0. Integrating (1) in (¢, + oc), > t,, we have

t— 4o

—r(t)yx'(1)= —JMC q(s) f(x(s))ds—1,
and therefore

X0z gls) fixis)) ds.

1
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Let m=min, _ ., 7.;.f(#). Then m >0, and from the above inequalities
we get

, moerro
r(f)ﬁ«(f)Z;(T)Jr g(s) ds.

Integrating again in [¢,, t] we obtain

3 1 o+
xX(tyzx(ty)+m J ;m J g(s) ds dt

=x(ty) +m f’ %t) J[ q(s)ydsdt+m ( ‘ % (]T)(JH- : q(s) dS)

t st ] [} +
:,\-(t(,)+mj q(r)J mdsdt+m (j mdr)“ q(.s")ds).

n

When 1 — + oo one has x(+o0)= + o, which is a contradiction. The
case x{(1) <0, xX'(1) <0 for =1, 1s treated in the same way. |
THeoreM 2.5. If I,,= + oo, then M g = (5.

Proof. Let xe M,; and let x(r} >0, x'(t)<Oforr=t,, x{(+c)=[.>0.
Define w(t)=r(t t)/x(t) and

. J(u)
m= min -,
we [l x(r)] U

Taking into account that m >0, for 1 >1,, we have

s WA () wi)
wi(t)y= ) qit) 0 < s

—mg(t) < —mg(1).

Integrating in [¢,, ] we obtain

hence

/

x'(t) wlty) m ! ,
W0 S o 1,19

Integrating again in [¢,, {] we obtain

X r1
log T(’) <w(10)f ——ds —n j q(s) ds dr;

\([0) iy r(s) f<1 ’(T) (i}
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since w(t,) <0, we get that log(x(7)/x(¢,) tends to — oo as t — + oc. Hence
x(+9)=0, which is a contradiction. If x(r) <0, x'(£)>0 for t>=1t,, a
similar argument holds. |

For the existence of unbounded solutions, the following holds:

THEOREM 2.6. If I, < 4o, then M T = .

Proof. Let xeM?* and let x(7)>0, x'(¢)>0, for t=¢,. From (1) it
follows that the function r(-) x'(-} is positive decreasing for > 1,. Hence

r(t) x'(t) <r(ty) x'(t,).

Integrating in [¢,, ¢] we have

t

1
)y < xlty) +rltg) X'(¢,) j T\) dy,

therefore x is a bounded solution, which 1s a contradiction. If x(¢) <0,
x'(ty <0 for t = t,, a similar argument holds. |

In this section we present sufficient conditions for the existence of even-
tually monotone and bounded solutions of (1), that is solutions belonging
to the classes Mz, M7, M, . In order to prove such results, we use a
topological tool and employ a result on continuity and compactness of
operators associated to boundary value problems in noncompact intervals
([5]; see also [ 7], pp. 22-23, for more details). The following holds:

THEOREM 3.1. If [, <+, My #Q.

Proof. We prove the existence of eventually positive decreasing solu-
tions of (1) which approach a nonzero limit as 7 — +oc. We observe that
in the same way the existence of eventually negative increasing solutions of
(1), which approach a nonzero limit as t > + o¢, can be obtained.

Let K=max, [, (;f(u) and ¢, such that

1

a+ 1 T
_ s)ds <.
KJ’ o) fm g(s)ds dt 5

Define Q= {ueC([ty, +oc), R): I<u(t)<1}, where C({t,. +x), R)
denotes the Fréchet space of continuous real functions defined on [¢,, +ac),
endowed with the topology of the uniform convergence on the compacts of
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[to. +00). For every ue let x,=Tu the unique solution, defined in
[y, +00), of the Cauchy problem:

[rity x' (1)) + g(t) flu(t))=0
x(ty)=1, xX'(ty) =0.

It is easy to see that x/(s) <0 for ¢>1,. Hence
X =(Tu)(t)<x(ty)=1 for t>1,.

From [r(t) x,(t)] = —q(t) f(u(1)) = — K (1), integrating twice in [¢,, ]
we get

! 1 T
x() =1 —KJ r_(;'w) J q(s) ds dr,

hence x,(+ o) > § and so T(2) < Q. The above quoted result in [5] gives
continuity and compactness for the operator 7 in 2. From Schauder-
Tychonov Theorem we have now the existence of a fixed point x for the
operator 7. Clearly x i1s an eventually positive decreasing solution of (1)
such that x(+oc) =/ with /. #0, hence M, # . |}

From this result and Theorem 2.5 one gets immediately the following:

THEOREM 3.2.  Assumption I,,= + oC is a necessary and sufficient condi-
tion for having M g = (.

We now prove the existence of solutions in M . The following holds:

TueOREM 3.3. If I, < 4+ o, then M # (.

Proof. Again we prove the existence of eventually positive increasing
bounded solutions. The case of eventually negative decreasing bounded
solutions can be treated in a similar way.

Let K=max, [, ,; f(u) and let £, be such that

1

Kjir q(r)fr %dsdtsi.

o

Define Q= {ue C([ty, +oc), R): 1 <u(r)<2}, and for every uef let
x, = Tu be the function given by

x,(ty=1+ f’ g(t) flu(t)) fr 1 ds dr + <jt La's><J+I q(s) flu(s)) ds).

i r(s) fy r(S)



CLASSES OF CONTINUABLE SOLUTIONS 411

Clearly x,(z)>1. Moreover one has

1 + % [ |
;(—;)ds dr+K£ q(z)'[mr_(;)ds dr

<1 +K£:m q(r)ﬂ r—(ls

x(=<1 +K£M q(7) f:

T

ds dr+Kj+‘X‘ q(t)f —l—dsdr

o FLS

+ x T 1
<1+21<J q(r)f —dsdr<2.

n FLS

Hence T(2) < Q. In order to prove continuity and compactness for the
operator T, we notice that from /,, < + <« we have I, < + 2. Hence

J‘+1 q(s) flu(s))ds < + ¢ Yue Q.

W

Continuity and compactness of 7 follow now easily from the quoted
result in [5]. Again, Schauder-Tychonov Theorem gives the existence of a
fixed point x for the operator 7, that is the existence of x € 2 such that

r © ] ] + x )
x=1 +f q(r)f(x(r))J. Tc)ds dr+<J- r(—‘)ds><f g(s) f{x(s)) ds>.
As

1+~ «
x’(x):m J, gl(s) flx(s))ds >0

we get ye M ™ and so, being 1 <x(1) <2, we obtain xeM};. ||

From this result and Theorem 2.4 one gets immediately the following:

THEOREM 3.4.  Assumption I, = + oc is a necessary and sufficient condi-
tion for having M 3 = .

For the existence of solutions in M, we just recall the following result
which was proved in [9]:

THEOREM 3.5. If I, < +cc, then My # (.

Remark 3.1. From Theorem 3.5 we get that M, = implies
1,,= +oc. However such condition is only necessary for having M, = &,
and results similar to the previous Theorems 3.2 and 3.4 do not hold, as
the equation with constant coefficients

x"4+ax +bx=0 (a, b>0, a® > 4b)

shows.
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Furthermore we emphasize that, for all the results previously stated in
this section, assumption u - f{u) > 0 for u # 0 is the only requirement for the
forcing term f. Assuming additional conditions on the nonlinearity, we
have the following result which still deals with the existence of solutions
in M.

THEOREM 3.6. Let I, < + oc. If f is nondecreasing and such that
+ oC + % ]
H') " —“d d < Cf,
(Hy) | q0f (j g s) <+
then M, # .
Proof. Let t, be such that

Jﬁv q(t) f <£+% ;?lgds) dr<1

T

and define Q= {ue C([¢,, + ), R): 0<u(z)<f,+°° (1/r(s)) ds}. For every
ue 2, let T be the operator T: 2 — C([t,, + o¢)) given by

+o ] T
f\'u=(TM)(t)=J‘ ) j g(s) flu(s)) ds dt

Taking into account that f is nondecreasing, we have

+x

+ 1 T +i ]
.\,,:J’ TT) J-m qls) flu(s)) ds d‘cgJ[ E—) q(s) f(uls)) ds dt

SLM( %1’) J.’: - q(s)f(fﬂhx‘ r(—lg—)d()) ds dr

K}

ptoc . +x ] +x ] +ow ]
=<Jm q(s)j(L r—(?)~)c19>ds><£ r(—f;d‘r)SJI ;(-T-—)dr.

Since x,(7)>0, we obtain that 7(Q)< . The compactness and the
continuity of the operator T in Q follows easily once again from the above
mentioned result in [5]. Hence there exists x € Q such that x = T'x. Clearly
x is an eventually positive decreasing solution of (1) which tends to zero
as t— + oc. The proof is now complete. |

Remark 32. We observe that in the linear case assumption (H,)
becomes /,, < +o0. However, (H,) may be satisfied with I,,= +00.
Consider, for instance, the equation

[(14+1)*x'] + x?sgn x=0;
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here (H,) is satisfied and /, < + o0, I, =1, =1I,,= + . From Theorem 3.6
such an equation has solutions in the class My . The same result does not
hold for the corresponding linear equation

[(1+0)*x'] +x=0 (3)

which oscillates, as can be seen using, for example, the following argument.
One compares (3) with the “dual” equation

2x=0; (4)

it is easy to see that (4) oscillates being the classical Euler equation with
y=1 (see, e.g., [21]). From the duality principle (see, e.g., [8; 19, p. 474}),
(3) and (4) have the same oscillatory behavior.

Remark 3.3. Theorem 3.6 is still valid if we have, instead of (H,), the
following assumption

+ +‘x1
) [ (=] S )b -

Indeed in this case, with a similar argument, we get the existence of even-
tually negative increasing solutions of (1) which tend to zero as ¢t — + oc.

Remark 34. If f is a Lipschitz function, ie. |f(u)]<K|u|, and
I, < +=x, I, <+, then assumptions (H,)-(H,/) hold, since

+x = | + 4o ]
L q(r)f<Jr md@)drsKL q(r)L a0

+ o 1 T
=Kf0 Tr) L q(s)dsdr < + oc.

In this section we consider the problem of existence of eventually mono-
tone and unbounded solutions of (1). Hence we deal with the class M.
We notice that in this case, as in the case of the existence of solutions

in the class M, some other assumption of integral type, concerning the
forcing term f and the functions r, g, will be necessary. The following holds:

505118 2-14
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THEOREM 4.1. Let f be nondecreasing and such that
+ T —
H ——ds | d 3
(Hj) h ii\Qo ) qv T< 4+
If I,=+cc, then MY # (.
Proof. Let t, such that
+ oo 1 1
I, a7 ([ e

and define Q= {ue C([1y, +c), R): 0<u(r)<[i (1/r(s))ds}. For every
u e Q consider the problem

[r(2) X' ()] + q(1) flu(1)) =
x(15)=0 (5)

t 1 1
*to) = %a C m,u&v )

From variation of constants formula, the unique solution of (5)

given by
+ o r 1 g
e o))

t 1
I% li% q(s) flu( &:&er sl\&&h

Let T be the operator which associates to every u € Q the unique solution
x, of (5). We have

t _ + oo T s
win=| Qﬁ J; %KC ﬂs%v de [ ato) flute) ﬁ d

1]

+w ﬁ_ l’zw&,

w% % ﬁ ﬁa a0 f Q o %v $|ﬁ i:%h m@iv%v i ds

101
+= | ——ds
2 4y 1(s)

1% s % QE\@ Ju@%&%w ﬁa%
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Moreover
x,l(t)=£:)ris)[£:xq(r)f(ﬁmd(o fq(r flu(t)) d‘[}
1001
+§ J-mr—(s—)ds
] +x L | 11
<fr—(;—)j q(r)f(jm;(-{)—)do>dzds+— fmﬁs—)ds

VAN

1 1 1 |
EJ,(,;(T)dS_}_E Jln;(s—)=j ;—(?)ds.

10

Hence 7(£2) < Q. The compactness and the continuity of the operator T
in 2 follow easily once again from the above mentioned result in [5].
Hence there exists x € 2 such that x = Tx.

Let us prove that xe M 7. We have

+ oo 5 1 t 1
r(t) x'(t)=Jm q(s)f(Jm ;(—H—)d9> ds—J‘m q(s) f(x(s)) ds+§

+ t 1
>L mmﬂﬂmnm—jmnfuunw+5

0 L0}

=f” q(s) f(x(s)) ds +%> 0.

Integrating in [7,, /] we obtain

s=]' r—(ls—;““ o 1([ 540 ) e[ a0e) fxte e | s
2-f r(s

>jmr(s)“+“ g(0) fixten de— [ g

—J L r(s) J,+

0

(1) flx(1)) dt] ds+2 o7 (S)d

1
q(7) flx(t )drds+2 G )ds/ J*_}

and so x(+ o0)= +oc. The proof is now complete. |

Remark 4.1. We observe that in the linear case assumption (H,)
becomes I, < +co. Therefore Theorem 4.1 extends to Eq. (1) a previous
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result given in [ 8] for the linear equation (2). However, in our case, (H;)
may be satisfied with /,, = + cc. Consider, for instance, the equation

[e 'X'] +4e f(x)=0,

where f(u) =\/; for u large enough; here (H;) is satisfied and 7, = +oc.
From the previous result such equation has solutions in the class M . As
can easily be seen, the same result does not hold for the corresponding
linear equation

[e7'x']) +4e 'x=0

which oscillates.

Remark 42. Theorem 4.1 is still valid if we have, instead of (H,), the
following assumption

+ oC [ |
(H;) L q(r)f<—f0;®ds>dr>—m.

Indeed in this case, with a similar argument, we get the existence of even-
tually negative decreasing and unbounded solutions of (1).

Remark 43. If f is a Lipschitz function, ie, |f(u)]<K|u|, and
I, < + oo, then assumptions (H;)-(H,) hold, since

+ r ] + o ]
J'O q(r)f(fo;@cw)drsKJ‘O q(r)J‘omf)df)dr<+oo.

From Theorems 2.1-4.1 and from Remark 4.2 we get the following:

THEOREM 4.2. Let [ be nondecreasing and assumptions (H;)—-(H,.) hold.
If I, < + oC, then assumption I, < + oC is a necessary and sufficient condition
Sfor having M* = (.

Proof. The assertion follows easily taking into account that assumption
(H,) holds since f is nondecreasing. |

5

We recall again that in case (C,), if f satisfies assumption (H,), then as a
consequence of Theorem 2.3 all continuable solutions of (1) are oscillatory.
For the other cases (C,), ..., (Cg), as was done for the linear equation in [8],
all the previous results can be summarized in the following way:
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THEOREM 5.1. (a) If (C,) holds, then every continuable solution of (1)
is oscillatory or belongs to the class M }. If moreover f is nondecreasing and
assumption (H;) or (Hy) holds, then the class M7 is not empty.

(b) If (Cs) holds, then every nonoscillatory solution of (1) belongs to
the class M ™ and there exist solutions in M 3. If moreover f is nondecreasing
and assumption (Hs) or (H) holds, then the class M7 is not empty.

(c) If (C,) holds, then every continuable solution of (1) is oscillatory
or in the class My . If moreover f is nondecreasing and assumption (H,) or
(H,) holds, then the class M is not empty.

(d)  If (Cs) holds, then every nonoscillatory solution of (1) belongs to
the class M ~. Moreover both classes M 5 and M are not empty.

(e} If (C,) holds, then every nonoscillatory solution of (1) is bounded.
Moreover none of the classes Mz, M5, M} is empty.

Proof. Claim (a) comes from Theorems 2.2, 24, 41 and Remark 4.2.
Claim (b) comes from Theorems 2.2, 3.3, 4.1 and Remark 4.2. Claim (c)
comes from Theorems 2.1, 2.5, 2.6, 3.6 and Remark 3.3. Claim (d) comes
from Theorems 2.1, 2.6, 3.1, 3.5. Claim (e) comes from Theorems 2.6, 3.1,
33,35 1

Under rather mild assumptions on the forcing term f, the problem of
existence of solutions of (1) belonging to the classes M ~, M* is indeed
similar to the corresponding linear case, as shown by a comparison
between Theorem 1.1 and 5.1. On the other hand, as Sturm Theorem fails
in the nonlinear case, the existence of a single nonoscillatory solution does
not ensure, in general, that every solution is nonoscillatory. In this light, it
is exhibited in Tables I and 11 a summary which is valid for the linear case
and the nonlinear one respectively (where necessary, it is assumed that f
satisfies the assumptions (H,), (H,), (H,), (H3), (Hy) required in the
previous theorems). We stress the fact that, as was already mentioned in
[8] for Table I, the results obtained in Table II are mutually exclusive and
exhaustive, as is easily checked.

Finally from Theorem 5.1 the following results, which generalize to the
nonlinear case previous results in [ 12, p. 354; 19], easily follow:

THEOREM 5.2. Let f be nondecreasing and suppose that assumption (H,)
or (H3) holds. If I,= +oc and all the solutions of (1) are bounded, then
every continuable solution of (1) is oscillatory.

THEOREM 5.3. Let f be nondecreasing and suppose that assumption (H,)
or (Hy.)} holds. Then the assumption I, < + oc is a necessary and sufficient
condition for having that all the continuable nonoscillatory solutions of (1)
are bounded.
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TABLE 1

[r() ¥ (0] +qt) x(£) =0

I,=1=+0o |
C T §=0
(Cy) ‘:1,4,=1,q=+”f._ = | 1
I<+o, I,=+0o] M- =
(C) T I =2
I,=1,=+x Mz =0
c.) I<+x I=+uw | - M =3 0=¢
! Iy<+ow, I,=+m| S=MiUM! . M} #3@ M:+Q
L=+, I,<+x| _
M, = =
(C.) { felmtw | = Ma=@ M=
) IL=+x, I <+x | M= 0=0
<>
? Ly=+00, 1, <+ S=M; UM, M;#3 M, #Q
) Iq<+cc,l,<+0c_ - M= O=g
i I,<+m, I, <+ My+Q3 My#@ Mp+J
TABLE 1I
[r(e) x (0] +q() fix(1))=0
L=I=+w |
C SO §=0
(Cy) I:[‘"=qu:+%_ < [ ]
(C) Iq<+oo,1,=+w‘ o [M =@ Mi—-g@ M'#3]
2 I=1,=+x = B = ps
(Cy) Lstmb=vx | Misp Mo -2
: I,<+cw, I,=+w 5 . -
o IL=+%.I<+x] (Ming Mivg M'=g]
<> = =
* l,=l,=+w 5 o
(Cs) Lmtodi<ta | M M=)
? I,=+ow [,<+x B 0 B
I<+w, <+ | M; 3 My +3
(Cs) J had + 4
<t Ly, < 4o Mg+ M:I=0
Note. When it is necessary, we assume that f satisfies the assumptions (H,), i=1,2,3.
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