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$1. INTRODUCTION AKD RESULTS 

THE PAPER is concerned with certain numerical invariants which may be assigned to mani- 

folds. By a manifold we shall always understand a differentiable manifold of class C”. All 

imbeddings and immersions will be differentiable of class C”; we shall write M c Rnfk if 

M can be imbedded in R”‘k and M cc R”‘k if M can be immersed in R”fk. 

Definition 1.1. Let M be a closed n-manifold and let N,(M) be the least integer N such 

that there exists a covering of M by N open sets U,, . . . , U, for which Ui c Rnfk, i = 1, . . . , 

N. We shall call N,(M) the imbedding covering number of M in codimension k. 

Remark. N,(M) has the simple interpretation of being the least number of charts 

needed in order to define the differentiable structure of M. 

Definition 1.2. Let M be a closed n-manifold and let n,(M) be the least integer N such 

that there exists a covering of M by Nopen sets V,, . . . , V,” for which Vi K Rnfk, i = 1, , N. 

We shall call n,(M) the immersion covering number of M in codimension k. 

In this paper we shall be concerned only with properties of n,,(M) and N,(M). We 

shall prove 

THEOREM 1.3. Let M be an [:I-parailelizab~e closed n-manifold, n # 4. Then N,(M) = 2 

procided that one of the following conditions is satisfied. 

i) n is odd; 

ii) n = 4s and the index r(M) = 0 ; 

iii) n = 4s + 2 and the Arf-Kervaire invariant c(M) = 0 (for some framing of a neighbor- 

hood of the 2s + l-skeleton of M). 

Recall that a manifold M is k-parallelizable if the restriction of its tangent bundle to 

its k-skeleton is trivial. 

Remarks. a) The vanishing of s(M) in case ii) is necessary for N,(M) = 2 (see Proposi- 

tion 2.7); so is probably the vanishing of c(M) in case iii) although the author has been able 

to prove it only for n = 8s + 2 and M simply connected with wz(M) = O$ (see Proposition 

2.9). 

7 This work was partially sponsored by NSF Grant GP3685. 
: See footnote on next page. 
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b) In Theorem 1.3 we have N,(J1) = 2 under the same circumstances in which M is 

framed cobordant to a homotopy sphere (see [S]). The reason for this will become apparent 

in Section 5, containing the proof of 1.3, which is based on surgery. 

COROLLARY 1.4. Let :M be a closedstably parallelizable n-manifold, n # 4, and n # 8s + 6. 

Then N, (M) = 2.: 

For the proof of 1.4 it is enough to notice that under our assumptions the index r(M) 

or the Arf-Kervaire invariant c(M) vanish (for the latter see [4].) 

The other results of this paper concern the imbedding covering numbers of real pro- 

jective spaces P”. Although the author has been unable to determine them completely, 

the lower and upper bounds given in the following theorem are relatively close and some- 

times even coincide. 

THEOREM 1.5. Let n = 29 - 1, where r is odd. Then 

no(P”) = N,(P”) = max{r, 2) if q 5 3 (1.1) 
and 

s max(2, [&I + 1) if q 2 4 (1.2) 

where 

24 if q E O(4), 

k(q) = 2q - 1 if q E 1,2(4), 

24 + 1 if q c 3(4). 

The proof of 1.5 will be given in Section 6. Section 2 contains the statements and proofs 

of some more or less elementary facts concerning imbedding and immersion covering 

numbers. 

The author wishes to thank the referee for a number of valuable suggestions which 

helped to improve the exposition. 

$2. BASIC PROPERTIES OF COVERING KUMBERS 

PROPOSITION 2.1. n,(M) 5 N,(M) s N,,(M). 

The proof is trivial. 

PROPO~I~ON 2.2. N,(M) i n + 1 or more generally N,(M) S i 
[I 

+ 1 

if M is (k - 1)-connected. 

i The author hopes that the restriction n # 8s + 6 can be removed, at least partially, in view of some reCent 
unpublished work of W. Browder. 
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This follows from the fact [17] that any closed (k - I)-connected n-manifold can be 

covered by [I i + 1 balls. (See also Proposition 6.1.) 

Let p : E -+ B be a fibre bundle over B. Following &arc [14], we shall say that the 

genus of p is 5 m if B can be covered by m open sets over which the bundle is trivial. Iff 

is the classifying map for the associated principal bundle, then genus p = cat f, where the 

category map f: B -+ Y is defined as the least cardinal number of a covering of B by 

open sets over which f is null-homotopic (see [2]). 

PROPOSITION 2.3. If M is a paralleli-_able closed mantfold, then n,(M) = 2 ; in all other 

cases n,(M) is equal to the genus of the tangent bundle of’ M. 

Proof Use the Hirsch-Poenaru theorem ([6], [12]) according to which a non-closed 

n-manifold can be immersed in R” if and only if it is parallelizable. 

Let H be any multiplicative (ordinary or extraordinary) cohomology theory and let 

I? be the corresponding reduced theory, i.e. R(X) = A(X, *), where * is the base-point. 

Let T(M) be the tangent bundle of A4 and let f : M --f BO(n) be the classifying map for 

T(M). Denote by 

f’ : A(BO(n)) -+ ii(M) 

the induced map in cohomology. 

PROPOSITION 2.4. Let vi E ti(BO(n)), i = 1, . . . , s - 1 and suppose that the product 

f*v,u... u f *us_ 1 # 0. Then no(M) 2 s. 

Proof. We apply 2.3 and the standard argument connecting cohomology length and 

category (see e.g. the proof of Proposition 1.10 in [2]). For CW-complexes it is valid for 

any reduced multiplicative cohomology theory. 

COROLLARY 2.5. Suppose wi, v . . . u wi, # 0, where wi, i = 1, . . . , n are the Stiefel- 

Whitney classes of M. Then n,(M) 2 s + 1. 

COROLLARY 2.6. Let [T] EI?~(M) correspond to the tangent bundle T(M), i.e. [T] is 

represented by T(M) - B”, where 8” is the trivial n-bundle. Then [T]’ # 0 imphes n,(M) 2 

Sf 1. 

Let M be a 2k-dimensional oriented manifold. The intersection pairing 

( ,) : H,(M, A) @ H,(M, A) -+ A (2.1) 

(where A is a commutative ring with unit) is symmetric if k is even and antisymmetric if k 

is odd. 

Suppose that k = 2s and that A = Q (the rationals). The signature of the quadratic 

form over Q defined by (2.1) is called the index of M and is denoted by r(M). Let r be the 

rank of the form and m the dimension of a maximal self-annihilating space; then r(M) = 

r-2m. 

PROPOSITION 2.7. Let the dimension of the closed mantfold M be a muItipIe of 4. Then 

N,(M) = 2 imphes r(M) = 0. 
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Before proceeding to the proof of 2.7, we shall deduce from it 

COROLLARY 2.8. There exist closed manifolds hl for which n,(M) # N,(M ). 

Proof of2.S. Kervaire and Milnor [9] have constructed examples of closed manifolds 

d%f4s which are almost parallelizable but have a nonzero index. By 2.7 such a manifold has 

N,(IM) I 3; being almost parallelizable means that M - pt is parallelizable so that by 2.3 

n,(M) 5 2. 

Proof of 2.7. Let 1\f = U v V, where U and V are open 4s-manifolds, U, V c R4’. By 

Lemma 2.11 below, we may assume that M = Au B, A c Cl, B c V, where A and Bare 

compact 4s-manifolds with common boundary C = A n B. Take the rationals as coefficient 

group and consider the subspace X c H,,(M) generated by the images of H,,(A ) and H,,(B). 

Let r be the rank of the intersection quadratic form (r is nothing else than the 2~~~ Betti 

number of M). In order to prove that s(lci) = 0 it is enough to show that X is a self- 

annihilating subspace ((X, X) = 0) of H,,(M) with m = dim X= i. 

a) (X, X) = 0. If x1 E Im H,,(A) and x2 E Im H,,(B) then (x,, x2) = 0 because we 

may represent x1 and x2 by cycles with disjoint carriers in A - C and B - C. On the other 

hand if say x, y E Im H,,(A) then (.\T, y) = 0 since A c R4’ and the intersection number of 

any two cycles in R4’ is zero; similarly for I, y E Im Hz,(B) we have (x, y) = 0. 

b) Let Y = H,,(M) and let X*, Y* be the dual vector spaces of X and Y. The inter- 

section pairing induces the duality isomorphism D : Y = Y * such that (Dy)(z) = (y, z) 

x, 2 E Y. In order to prove that r = dim Y = 2 dim X it is enough to show the exactness 

of the sequence 
Di i* 

o-+x-I’*-+x*-0 

where i : X-t Y is the inclusion. The inclusion Im Di c Ker i* follows from a), while the 

inclusion Ker i* c Im Di is the consequence of the following remark: 

c) Let I : A4 c (M, B) and e : (A,C) --f (M, B) be inclusions and let y E Y be such that 

i*D_y = 0, i.e. Dy(x) = (_Y, x) = 0 for every x E X. Let ? = e; ‘I,(y); z is well defined since 

e, is an excision isomorphism. For an arbitrary X E H,,(A) whose image in X is x we have 

(z, 2) = (z, x) = 0, which implies by Lefschetz duality that z = 0. Thus I,(y) = 0, and by 

exactness of the homology sequence of the pair (M, B) and by the definition of X, we have 

y E Im i whence Dy E Im Di. 

Let us now consider the case of manifolds of dimension 8s i 2. We shall this time take 

in (2.1) A = Z, , so that the pairing is again symmetric. Let us first recall the definition of 

the Arf-Kervaire invariant as given by Brown [3]. There exists a secondary cohomology 

operation 

$ : H4Sf1(K, L) n Ker Sq4J n Ker Sq’Sq4’-’ 

3 Hssf2(K, L)/(Im Sq* + Im Sq’) (2.2) 

for any CW_pair (K, L). In the case of a simple connected closed (8s + 2)-manifold M 

admitting a spin structure (i.e. such that W*(M) = 0). $ is defined on all of H4”l and has 
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no indeterminacy in H”+‘. For any u E HA,+* (:M) define c(u) = $(Du)[;M], where Du 

is the dual cohomology class. We can always choose a symplectic basis of H,,+,(JI), i.e. 

a basis ui, , . , u,, cl, . . . , v,,, such that (ui, rj> = dij, (ui, uj) = (ri, cj> = 0. The Arf- 

Kervaire invariant c(;b1) is deiined as 

C(ltf) = ~ C(Uj)C(Vi). 
i=l 

(2.3) 

PROPOSITION 2.9. Let M be an (8s + 2)-dimensionai simply connected closedspin manifold 

wYtll N,(M) = 2. Then c(.M) = 0. 

The proof of 2.9 depends on Lemma 2.10 below. Let A c R*4f2 be a compact 8s + 2- 

dimensional manifold with boundary C. 

LEMMA 2.10. Under the above assumptions, the operation 

SqJS : Pf$4, C) k Pfl(A, C) 

is trivial. 

Proof: Let D = R8” ‘- Int A. It follows from the Mayer-Vietoris sequence of the 

triad (RBSf’, A, D) that the inclusion map induces a monomorphism H’(A) --t H’(C) 

for all i and that therefore the co-boundary 6 : H4”(C) -+ HLs+‘(A, C) is an epimorphism. 

Since 6Sq4’ = Sq”6, it suffices to prove the triviality of 

sq”s : P’(C) + P’(C). 

We may look upon C as imbedded in S *‘+‘; let DC be a deformation retract of S 8s+2 - C. 

It has been shown in [15] (see also [II] and [13], Ch. 3) that the action of SqAS on H”(C) 

corresponds by Alexander duality to the action of a stable cohomological operation 

x(&j”) : H’(X) -+ H”+ ‘(DC). 

But, it is well known that any element of even degree of the Steenrod algebra acts trivially 

on l-dimensional classes (see for instance [13], Ch. 1, Lemma 2.4); going back to C by 

Alexander duality, we obtain the desired result. 

Proof of2.9. Let us assume that M = A u 3, where A and B are (8s + 2)-manifolds 

with common boundary C = A n B (see Lemma 2.11 below) and A c R*‘+’ and B c R*‘+‘_ 

If we denote by X the subspace of H,,+ 1 (M; Z2) generated by the images of H4sf ,(A) and 

H,,+,(B), the argument used to prove 2.7 (which is independent of the characteristic of the 

coefficient field), shows that X is a maximal selfannihilating subspace. A standard argument 

allows us to choose a symplectic basis ui, . . . , u,, vl, . . . , v, of Hdsfl(M) such that the 

elements zl,, . . . , u, form some basis of X. Let us assume that u E Im H,,+,(A) (the case 

II E Im H4r+l(B) is similar). Then by duality Du E H4S+‘(M) lies in the image of 

H “+‘(M, B) M HJSC’(A, C) i.e. Du = l*(w), w E H 4S+1(M, B). By Lemma 2.10, Sq4+w = 0; 

on the other hand Sq2.Sq4’-‘(w) = 0, since the fundamental class of the imbedded manifold 

pair (A, C) is spherical. According to (2.2), It/(w) = 0, again by the sphericity of the 

fundamental class. Since $(w) = Z*$(D ) u , we have c(u) = 0. Thus $ vanishes on all elements 

~1,...,4n; this means by (2.3) that c(M)= 0. 
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LEMMA 2.11. Let M be a closed n-manifold covered by two open subsets U, and U, . 

T/Zen there exist two compact manifolds A c Ul, Bc U2 with common boundary C = A n B 

such that M = Au B. 

Proof. Let K,=M-iJ2, K2=M-Ul; then K,nK,=12( and K, and Kz are 

compact. Define a differentiable function i : M+ I (where I is the unit interval) with 

E.(K,) = 0 and E-(K2) = 1. According to Sard’s theorem, there exists a regular value a E I 

of i. such that 0 <a < 1. Then A = J.-‘([O, a]) c U,, B = ].-‘([a, 11) c U2 and C = i.-‘(a) 

have the required properties. 

fj3. GEOMETRIC LEMMAS 

Throughout this section we shall use the terminology and some of the notation of [lo], 

which will be our main reference. 

Construct a Morse functionf : M-P R and a gradient like field 5 forf’( [ IO], p. 20). Let 

us introduce the following notations; A, = f-‘(( - co, a]), B, = f-‘([a, a’)), C, = f-‘(a). 

We shall callfk-almost nice iffis self indexing, except that the values off‘in critical points 

of index k may be any numbers between k - 1 and k + 1. 

For a fixed 0 < i i: n consider the“cobordism”,(A, n B,, C,, C,,), i - 1 < II < i < b < 

i + 1. In A, n B, the function/-has only nondegenerated critical points P,, . . . , P, of index 

i and f(Pj) = i, j = 1, . . . , m. The union of all trajectories of t in A, n B, which start on 

C, and end at Pj forms a differentiably imbedded i-disk; following [lo] we shall call it the 

left-hand disk of Pi and denote it by D”,(Pj), or, if no confusion can arise, by DL(Pj). 

Similarly, the union of all trajectories of i: which end on Cb and which tend for t --f - co to 

Pj forms the right-hand disk D,(Pj). 

LEMMA 3.1. Let a be a non-critical level such that A, contains only points of index 5 i. 

Then A, has the homotopy type of an i-dimensional CW-complex. 

Proof. We apply the usual argument of Morse theory. 

LE;M~~u 3.2. Let A, be as above and let K be a CW-complex of dimension <n - i. Then 

any map p : K-r A,, can be deformed rel q-‘(C,) into a map K-t C, . 

Proof. The union of all trajectories of < which end in critical points lying in A, forms an 

i-dimensional complex L c A,. Since dim K + i < n, by a general position argument we 

can deform p rel cp-‘(C,) into a map $ such that q(K) n L = @. Through any point 

x E $(K) passes a unique trajectory of r, which ends in C, and all we have to do is to push $ 

into C, along these trajectories. 

Unless we specify the contrary the following assumptions will be made from now on: 

II = 2k, p 5 k - 1, M” is k-parallelizable and f is k-almost nice. If k < b < k + 1, this means, 

according to Lemma 3.1, that we may define a framing of the stable tangent bundle over 

A By Lemma 3.2 any map SP -+ IV can be deformed into a map ‘p,, : Sp --f C, . where 

a *i b is a fixed non-critical level k - 1 < a < k + 1, and since 2p + 1 2 2k - 1 = dim C,,, 

we may assume that ‘p,, is an imbedding. By referring again to a general position argument, 

we may assume also that all trajectories of 5 which start or end in some neighborhood U 
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of p,,(Sp) can be extended up and down to levels a + ,LL and c1 - v. where n -p - 1 < n + ,n 

<n-p,p<a--v<p f 1, p, v > 0. Since (pO(Sp) has a stably trivial norma! bundle in 

C, c .-i,, and 2p < n - 1 = dim C,, (po(Sp) has a trivial normal bundle in C, . Let 4 = n - p 

- 1: define an imbedding II/ : Sp x Dq + C,, $(Sp x D4) c U such that $[Sp x 0 =qO 

and extend it to an imbedding Ed : Sp x Dq+’ -+ ,M in the following way. Let u = (uO, . . . , 

Lip), L: = (L.0, . . . , r4_1), 1’ = (L.0 ( ( 1.J’ II E Dp, i[u[l 5 1, V E Dq, //E/j 2 1, I: E Dqf’, /jujl 5 1. 

For (u, I’) E Sp x DqL’ define q(ld, L.) as the point P on the trajectory through $(u, 6) lying 

on the level 6(c4), where 1. is a C’ function [- 1, 1] --t R such that j.‘(y) > 0, p < j.( - 1) 

<i.(O) = u < L(1) < 4 + 1. Such a point is well defined, since for 1~~1 s 1, P lies between 

the levels p and 4 + 1, where all trajectories passing through the neighborhood U 3 (po(Sp) 

can be continued without meeting critical points. Moreover, the framing over A, can be 

extended in a trivial way to A, u &Sp x Dq+’ ), which has the same homotopy type as A,. 

LENA 3.3. III the ahoce situation, r\Yth ‘pojixed and j.jixed, the imbedding Ic/ : Sp x D4 + 

C, can be chosen in such II way that the manifold A * obtained from A, u (Sp x D4 “) by 

surgery along cp be framed. 

Proof: A * is obtained from ((A, u &Sp x D”“)) - qo(Sp x 0)) u (Dp+’ x Sq) via 

the identification q(u, tr) - (tu, v), 0 < t 5 1, so that a framing is defined in A*- Image of 

0 x Sq; it is easy to see that the unique obstruction to the extension of the framing is given 

by an element x,~ E Hp+‘(Dp” x Sq, 0 x Sq; n,(SO)) = n,(SO). Furthermore, Kervaire 

and Milnor [8] have shown that if 2 : Sp + SO,, , and if sq+ 1 : ‘I~(SO,+,) + n,(SO) is 

induced by inclusion, then the map cp, : .SP x D*” -+ M, defined by qz(u, c) = cp(~l, L’ . x(10) 

satisfies xrPz = ,Y,,, + (s,+ i)*([z]), where [Y] E 7rp(S0,+,) is the class of r. Under our assump- 

tions, p < q = n - p - 1 and therefores,.,., : zp(SOq) -+ n,(SO, + 1) is an epimorphism, while 

sq+ I is an isomorphism. We may therefore choose /3 : Sp -+ SO, such that (sq+t 0 s,,,+r)*[p] 

-xv. Then, for the map (pp defined with the help of $s, and the fixed ‘pa and i., where 

TD(u, E . /l(u)), we have 

%ea = 0 

and the corresponding framing can be extended. 

LEMMA 3.4. Let $,q~ be chosen as in Lemma 3.3 and let M* be the manifold obtained 

from M be surgery along cp. There exists a Morse function f * on M*, which coincides with f 

on the complement of’ some neighborhood of (p(SP x 0) and which has exactly trto non- 

degenerate critical points, in addition to those qff: One of these critical points has index p + 1 

and the other has index q. Moreover, 

i) if p + 1 = q = k, and if P and Q are the two additional critical points (of index k), 

then f*(P) = II - E, > k - l,f*(Q) = a + s2 < k + 1, Ed, E* > 0; 

ii>ifp+l <q,f*(P)=p+l,f*(Q)=,=.-p-1. 

Proof. M* is obtained from the disjoint union (M - cp(Sp x 0)) u (Dpi’ x 9) via 

the identification cp(u, tc)- (tu, c), /lull = 1, j/u]] = 1, 0 <t 5 1. Thusfinduces under this 

identification a map F: ((Dpf’ x Sq) - (0 x Sq)) -+ R, F(u, U) = i.(jlul/cq). The problem 

reduces now to the definition of a new function F*(u, u), (u, v) E Dp+’ x Sq, which coincides 
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with F(u, C) on some neighborhood of the boundary SP x Sq = ?(DPi’ x 9) and which 

has exactly two critical points in the interior. 

Let P : [O, l] + [0, l] be a function of class C”, such that 

~‘(5) > 0 and ~I(.‘c) > 0 for 0 < ,Y < 1. 

Define F*(u, u) = I.(~(iluj&~,). Direct computation, by taking (L.,, , . . , v,_~) as local co- 

ordinates on Sp if cq < 0 or uq > 0, and ~1~ as one of the coordinates in the neighborhood 

of u4 = 0, shows the following: 

a) F*(u, u) has as its only critical points /lull = 0, uq = + I ; we shall denote by P the 

point Ilull = 0, uq = - 1, and by Q the point 11~11 = 0, cq= +I. TheindexofPisp+land 

the index of Q is q. 

b) For p + 1 < q we choose the function A so that j.( - j) = p + 1, A(j) = q. Thus in 

this case F*(P) =p + 1, F*(Q) = q. 

c)Forp+l=q=kwetakeJ.(-))=a-El <a<E.(j)=a+c2;thenk-1 <F*(P) 

<Q <F*(Q) <k+l. 

The required function f * is defined on M* = n((M - q(Sp x 0)) u Dqf’ x Sq), where 

n is the identification map, by setting f* = fx-' on rr(M- ‘p(Sp x D4;81)) and f* = 

F* 7c-l on x(Dp+’ x Sq) - (DTT81 x 9)); here D,,, is the ball of radius 7/8. 

$4. ALGEBRAIC LEMMAS 

We continue to assume here that n = 2k, k > 2, that :\I” is k-parallelizable, and that a 

k-almost nice function f and a gradient like field are defined on M, the notations being the 

same. 

Let 0 < fze < 1 < . . . < i < ai < i + 1 < . . . <n = a,, and let us use the notations 

Ai=A,i, Ci=C,,, Bi=B,,, Wi=Ai nBi_,. We assume that all critical points of index 

k lie between C,_, and C, . Let Xi = Hi( Wi, Ci_ 1); Xi is a free abelian group generated 

by the oriented left-hand disks of the critical points of index i; the composition 

defines a boundary operator 2 : Xi --f Xi_ 1. The homology of the chain-complex (X, a) 

is isomorphic to H,(M; 2) [lo]. Similarly, the right-hand disks generate a chain-complex 

(X, J), also yielding the homology of M, and the intersection between left-hand and right- 

hand disks defines an orthogonal pairing 

(,>: XiO~“-i-fZ. 

With respect to this pairing 3 is the adjoint of 8 [lo]. 

Remark. Given any chain complex X we can always add to it an elementary chain 

complex with two generators x E Xi and x E X,,, such that 3~ = x, and that the resulting 

chain complex X’ has the following property 
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(ri) given any 7 E Hi(X’), there is a representative c’ E 7, c’ E X;, which is indivisible. 

Indeed, if c E X represents 7, c = c’ + x u c is indivisible. We shall assume henceforth 

that both (X, 8) and (X, 2) have property (zk-r). This is easily achieved by adding pairs of 

non-essential critical points of index k - 1 and k to f and -f [see e.g. [lo, @].i 

Choose a,_, < f -C k + 1 and an imbedding of a sphere (pO : Sk-’ -+ C,, and perform 

the framed surgery along ‘pO described in 3.3, by modifying f and s’ as shown in 3.4. Let 

f * and <* be the new function and field. 

LEMMA 4.1. If‘the homology class 7 is represented by qo, one can further modify f * and 

<* in the neighborhood of the additional critical points P and Q, such that the new function 

andfield (also denoted by f * and <*) satisfy the following conditions: 

i)f*(P)=t-s,>k-l,f*(Q)=t+EZ<k+l. 

ii) If (X*, a*) is the new chain-complex, XT = Xi for i # k and X, = X, + F + G 

where F and G are infinite cyclic groups with generators a = D,(P) and b = D,(Q); 

iii) 8*1X: = 81X, for i # k, k + 1 ; 8*/x, = 81x,; 

iv) The class 0f d*a in Hk-,(X, a) = H,_,(M) is 7; 

v) d*b = 0 and there exists h E X,*+, = Xk+l, such that b - d*h E Xk. 

Proof. According to 3.4, X,* = Xk + K, where K is the free abelian group generated 

by the left-hand disks of the new critical points P and Q. Since y is killed by surgery in IV*, 

we have for some a E K, a*a = c, where c E Xk_ 1 represents y in (X, a). In the dual complex 

(x *, 8*); x,* = xk + R, where K is generated by the right-hand disks of P and Q. Here 

we also have 
L: =J*b (4.1) 

where 6 E K and ? represents 7. According to (uk_t) we can assume that both Z and c are 

indivisible; if not we may add to a and b some elements of Xk or w, as in the proof of the 

basis theorem. This will change the representatives of c and C so that they become indivisible. 

Since C is indivisible, there exists h E X,,, such that (h, C) = (h, 8’6) = (a*h*, 6) = 1. 

Let 8*/r = x + b where x E Xk, b E K. Then (x, 6) = 0 and we have (b, 6) = 1. I claim 

that {a, 6) is a basis for K with the required properties. 

First, it is clear that x + b = d*h means that x = ah, since the incidence numbers 

between the (k + 1)-disks and the k-disks are not affected by surgery, so that the component 

of d*h in X is exactly dh. Therefore, d*s = ax = 0, which implies that d*b = 0. If now 

/ta + vb = 0, d*(w + vb) = 0, whence PC = 0 and p = 0 and v = 0. Next, if pa + vb = nd, 

d E K and ,u and v are relatively prime, we have on one hand, by applying d*, PC = na*d, 

whence ql~, and on the other hand n(d, 6) = (pa + vb, 6) = u(a, 6) + v, whence q]v, so 

that q = 1. This means that {a, 6) generate a subgroup L c K of rank 2 such that K/L is 

free, i.e. L = K. 

Now, as in the proof of the basis theorem [lo], we modify the function f * and the 

gradient like field in the image of Dk x .Snmk in M*, so that the left-hand disks of P and Q 

t The author is indebted for the above remark to W. Browder. 
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represent the basis a and b of K. This can be done without affecting the valuesf*(P) = 

t - Ei,f*(Q) = t + E2. The basis {a, b} satisfies all the requirements of 4.1. 

Let a = D,(P), 6 = D&l), where we are in the conditions of Lemma 4.1. Then 

LEJLXU 4.2. ?*C = 0, 2*6 = ?, lvhere the class of c in Hk_l(x, 2) = Hk_l(M) represents 

y. Moreover there exists ,5 in X,,, = X,, 1 such that a - ?‘*I; E X, . 

Thus the roles of li and 6 are reversed. 

ProoJ We have (a, li) = (6, 6) = 1, (a, 6) = (6, 5) = 0. If a*?i f 0, there exists 

z E X,,, such that (z, 5’~) = (d*z, C} = q # 0. This implies that Z*Z = qa i- pb fy, 

VEX,, y=dz. Applying a* again, and noticing that Z*y = Zy and Z*b = 0 we obtain 

0 = qc + dy = qc + ZZZ = qc 

which is a contradiction, showing that Z*Z = 0. 

On the other hand, for some ~5 + v6 we have 8*(pZ + ~6) = C where i: represents y 

in (x,3). Since 8*a = 0, it follows immediately that vz*b = Z, whence 2*6 =i: because E is 

indivisible. 

The existence of t; is proved exactly as that of h in 4.1. 

Let M* be a (k - I)-connected manifold obtained from 1M by framed surgery. We may 

assume that the last stage of the surgery is realized by killing the generators of a direct sum 

decomposition of Hk_l(M) in a minimal number of cyclic groups. Moreover, if f *, <* 
are obtained from the original f, t by successively applying 3.3 and 3.4, then X,* = X, + 

F + G, where F is generated by ai and G is generated by bi . Each element Ui, bi and their 

duals satisfy the conditions of 4.1 and 4.2. 

L~~ku4.3. Let u E H,(M*) = Hk(X*, a*) = H&Y*, z*). We can choose representatives 

x* E A’,*, f* E _Yz of zl such that 

X*=X+C~iUi, .t-EXk, 

~* = y + C pi 6, ) yExk. 

Proof. In view of 4.1 and 4.2 it is enough to prove the first of the two statements; 

the proof of the other is similar. 

In general we have 

X* =X + 1 pia< + C vi bi; 

however, in view of 4.1, v) the cycles bi may be successively replaced by homologous cycles 

not containing bi . 

LEMNA 4.4. If z = 1 piai is a cycle, then z = 0. 

Proof. Let pi # 0 for some i, whence (1, Ci) # 0. By 4.3, pi - I*, where jj* = J + 

CV$~, j E X, and (z, J*) = 0, which is a contradiction. 

Let zll, . . . , u,, vl, . . . , v,,, be a basis for H,(M*). Let XT E X,* be representatives for 

ui, i= 1, . . . . m, chosen in accordance with 4.3. 

XT=Xi+CclijUj,XiEXk. (4.2) 
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LEMMA 4.5. The elements I,, . . . , x,, can be extended to a basis of X, 

Proof. It is enough to show that if the g.c.d. of a system of numbers J.i, . . . , i, is 1, 

then .\: = I,x, + ..a + i., x, is not divisible in X, . 

Let x* = d,.u: + ... + L, X: ; x* E X,* is a representative cycle of u = i.,u, + ... + E.,u, . 
Since II is indivisible and of infinite order, there exists t’ E H,(M*) such that (u, r) = 1. Let 

y* = j + c nisi represent L: according to 4.3, where J E x,. We have (u, c) = (x*, J*) = 

(x, J) = 1 since (a,, tij) = (x, cj) = (aj, J) = 0. This means that x cannot be divisible. 

$5. PROOF OF 1.3 

Let us suppose that either k is even and the index of ICI is zero, or the Arf-Kervaire 

invariant of M is zero. Start with a nice (selfindexing) function f on M. In both cases we 

can perform framed surgery on M, as described in the previous two sections such that the 

resulting (k - 1)-connected manifold M* possesses a symplectic basis zli, . . . , u,, cl, . . . , r,, . 

In the zero Arf-Kervaire invariant case we may assume that c(~i) = . . . = c(u,) = 0. Let 

x7 be representatives of ui of the form (4.2). Apply 4.5 and the basis theorem [lo] to the 

original manifold A4 and the original nice function f and modify f, < in the neighborhood 

of the level k, so that ,yi, . . . , x, are a part of a basis of X, and are represented by left- 

hand disks of critical points R,, . . . . R,. By changing slightly f, we may assume that 

J(Ri) = t - E, > k - 1 and that any other critical point of index k off lies on the level 

t+E,<k+l. 

Let A, and B, have the meaning of the beginning of Section 3 with respect to the new 

function J 

LEWIA 5.1. A, and B, can be imbedded in R”. 

Before proving 5.1 we shall prove a few additional lemmas. 

Letf*, 5* be obtained fromf, < according to 3.3 and 3.4 by performing again the surgery 

which makes M* (k - I)-connected, in the same order as before and on imbeddings of 

sp x D”-P isotopic to the original ‘ones with ‘p(SP x D) c C,, so that M* is (k - l)- 

connected. 

LEMMA 5.2. A, c A:, B, c BT, where A:, B: are rehted to f *, f* in the same way in 

which A, and B, are related to j; 5. 

Proof. According to 3.4, each elementary surgery introduces one additional critical 

point below the level t, i.e. a handle is attached to A,. Similarly a handle is attached to B, . 

Let CF = A,* nB;” i.e. C: =f*-‘(t). 

LEMMA 5.3. i) The incIusion A: --) M* induces a monomorphism H,(A:) -+ H,,(M*); 

its image is generated by the element3 u,, . . . , u,,, . 

ii) The incIusion Cl” -+ At* . Induces an epimorphism H,(C:) + H,(A:). 

Proof. i) Let (Y, a*> be the chain-complex generated by the left-hand disks off *, 
t* lying in A:. Clearly YT = Xi* for i <k, YT = 0 for i > k a d Y,* is generated by 
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.Yl, . . .) x,, a,, . . . ) a4 . Therefore the group of cycles of Y,* coincides with H,(A:) and by 

4.3 it contains xf, . . . , ,rz, which are mapped by inclusion on ur, . . . , u, . If x” = 1 ,3,.yi 

+ 1 piai is a cycle, then by 4.4., I = x* - 1 i.,x,C vanishes, so that s* = c iixF. 

ii) Since H,(A:) has no torsion, by Lefschetz duality the intersection pairing between 

H,(il:) and H,(A:, C:) is orthogonal. It is enough therefore to show that the intersection 

number of any two cycles in A: is zero, which is immediate since (lli, uj) = 0 for all i and j. 

Indeed, this implies that &(A:) + H&4:, C:) is trivial, which immediately yields ii). 

LE&NA 5.4. C: is simply connected and one may jind elements zl, . . . , z, E H,(C:) 

whose images are ul, . . . , u, and which are represented by spherical cycles. 

Proof. The first assertion is a ready consequence of 3.2; the second follows from the 

next two commutative diagrams of exact sequences 

n&4:)-+ n,(M*) + 7Q(M*, ‘4:) 

I I z I 23 

0 -+ H,(AF) -+ H,(.M *) + Hk(M*, A:) 

%(G+) -+ dm + %(A:, c:> 
I I I- 

Hk(C:) + H,(A:) -+ H,(A:, C:> 

(5.1) 

(5.2) 

By 3.2, the pairs (M*, A:) and (A,*, CT) are (k - I)-connected so that the last vertical 

arrows in (5.1) and (5.2) are relative Hurewicz isomorphisms. The second vertical arrow 

in (5.1) is an absolute Hurewicz isomorphism. Since ui is the image of XT E H,(A:), its 

image in H,(M*, A:) is trivial, so that its representative vi E rt,(M*) is null-homotopic in 

rr,(M*, A:), which means that vi is the image of some iii E ~Q(AT). The latter has to be 

mapped onto XT since by 5.3. i) the lower left arrow is a monomorphism. In (5.2) the image 

of ?ji in n,(A:, CT) is zero (since the image of x: in H,(A,* CT) is zero by 5.3 ii). Therefore 

?i comes from Gi E rrL(CT); we may take as zi the image of qi in Hk(CT). 

Proof of 5.1. According to 5.2 it suffices to prove that A: c R”. Let W be a tubular 

neighborhood of C;” in M*; the complement M* - W is diffeomorphic to the disjoint 

union of A: and B:. Therefore our goal will be attained if we succeed to perform surgery 

in W, so that to transform M* into a homotopy sphere c. Then A:, B: c c - pt which 

is diffeomorphic to a ball. 

According to 5.4, ur, . . . , u, are represented by spherical cycles in W. Since A: M A: u W, 

W can be framed. Moreover all intersections between ui and uj are zero, and c(ul) = 

. . . = c(u,) = 0 ; therefore ur, . . . , u, are represented by imbedded spheres in W on which 

surgery can be done. All we have to do is to kill these spheres by surgery as in [8]. The 

resulting manifold is 1. 

Theorem 1.3 ii) and iii) follow directly from 5.1. 1.3i) admits a similar and much 

easier proof, but it also follows from Proposition 6.1 in the next section. 
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56. PROOF OF 1.5 

We shall first prove the following proposition, which is of some independent interest. 

PROPOSITION 6.1. Let M be a k-parallelizable closed n-manifold, k < 5. Then it’,(M) 5 

n 
pfl wherep= - 

[ 1 kfl ’ 

We recall that a regular neighborhood N of a subcomplex K of a (combinatorial) 

manifold A4 is a subcomplex of some subdivision of M, which is also a manifold and which 

collapses to K. A smooth regular neighborhood of K in a differentiable manifold M is a 

regular neighborhood of K in some smooth triangulation of M, which is a smooth sub- 

manifold of M [7]. 

The following Lemma is known [5]. 

LEMMA A. Let M be a combinatorial n-manifold. For any k 2 0 there exists a n 
subdivision of M and p + 1 subcomplexes Ki c AC?, dim Ki 5 k, i = 0, . . . , p = - 

[ 1 k+l ’ 

such that regular neighborhoods N(K,) of Ki cover M. 

Remark. Lemma A is actually proved in [S] in the more general case when M is an 

arbitrary n-complex. 

Proof of 6.1. Apply Lemma A to a smooth triangulation of M. Let vi be smooth 

regular neighborhoods of Ki, Ui 3 Ki, i = 0, , . . , p. According to Theorem 1 of [7] such 

neighborhoods exist and it follows from the proof of that theorem that we may assume that 

80, . ..) Up form a covering of M. Since Vi collapses to a k-dimensional complex, Vi is 

parallelizable and thus by the Hirsch-Poenaru theorem [6], [12], there exist immersions 

Oi : ~7, --+ R”. Since k < $we may apply [16, Th. 2(e)] and assume that BilKi are imbeddings. 

Then Bi are imbeddings on some smooth regular 

again by [7, Th. l] are diffeomomorphic to vi. 

This completes the proof. 

We shall now recall the results of Adams [I, 

K,(P”). 

neighborhoods pi 3 Ki, vi c Ui, which 

Thus M= U,u . ..uU. and Uic R”. 

$7.41 concerning the reduced real K-ring 

Let r be the reduced stable class of the canonical line-bundle over P” and let f = f(n) 

be the number of all natural numbers 6n congruent to 0, 1, 2 or 4 mod 8. Additively 

gR(P”) is a cyclic group of order 21 generated by [; multiplicatively 4’ = -2r so that 

5 . ffl= (-J 

LEMMA 6.2. Let k(q) be the largest integer k such that f(k) s q. Then 

if q f O(4), 

if qzl,2(4), 

24 + 1 if q 3 3(4). 
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Proof. It follows from the definition off(k) that 

I 
4s if k = 8s, 

4s i 1 if k = Ss + 1, 

(6.2) 

4s f 3 if k = 8s i 4, or k=8s+5,k=8s+6,k=8s+7. 

If q = 4s, the largest k such that j(k) 5 q is 8s i.e. 2q. If q = 4s + 1, the largest k such that 

f(k) 5 q is 8s + 1 = 2q - 1 . The other values of k(q) can be similarly read of from (5.1). 

Let n + I = 2qr where r is odd. 

LEJI~CIA 6.3. Let s(n) be the largest integer s such that qs + s - 1 <f(n). Then 

(6.3) 

provided q 2 3. 

Proof. Since n = 2qr - 1 and q >= 3, the last line of (6.2) implies thatf(n) 
2qr - 2 

=T = 

Zq-‘r - 1. Therefore we have to solve the inequality 

qs + s - 1< 2q-1r - 

2q-‘r 
i.e. (q + 1)s < 2q-‘r and s < -. 

q+l 
It is clear that the Iargest solution is given by (6.3). 

Proof of 1.5. The first non-vanishing Stiefel-Whitney class of P” is wa, and (~t’J_’ # 0. 

Therefore 2.5 implies that N,(P”) >= nO(P”) 2 r. On the other hand, the reduced stable 

class of the tangent bundle of P” is r = (n + l)<; hence according to [l, 97.41, ZIP’ = 0 if 

k 5 k(q). Since Pk is the k-skeleton of P”, this means that P” is k(q)-parallelizable. If 

k(q) 2 1, 1.3 implies that N,(P”) = 2; if however k(q) <i, 6.1 implies that N,(P”) s 

n 

[ 1 n 
____ fl. IfqS3, ___ 
k(q) + 1 I 1 k(q) + 1 

+ 1 = r so that we obtain (1.1). If q >= 3, let s be the 

largest number such that zs ~0. Since z = (n + l)t = 2¶rt, 9 = 2qSrS~S = +245fS-1J~ and 

? # 0 if qs + s - 1 <f(n). According to 6.3, the value of s is given by (6.3), which by 2.6 

yields the first inequality of (1.2). 
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