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Abstract 

Dimov, I.T. and 0.1. Tonev, Monte Carlo algorithms: performance analysis for some computer architectures, 
Journal of Computational and Applied Mathematics 48 (1993) 253-277. 

The paper deals with the performance analysis of three Monte Carlo algorithms for some models of computer 
architectures. To estimate the performance and the speedup of these algorithms, we introduce a special 
modification of the criterion for the time required to achieve a preset probable error and consider a serial (van 
Neumann) architecture, a pipeline architecture, and two MIMD (Multiple Instruction stream, Multiple Data 
stream) parallel architectures. An approach to constructing Monte Carlo vector algorithms to be efficiently 
run on pipeline computers has also been considered. 

Keywords: Monte Carlo method; parallel algorithms; probable error estimator; performance analysis. 

1. Introduction 

The Monte Carlo algorithms are known to be inherently parallel. Already in the first paper 
[9] on the Monte Carlo method it was said that “the statistical methods can be applied by many 
computers working in parallel and independently”. 

At present, there are many different Monte Carlo algorithms for solving a wide range of 
problems. 

To estimate the performance of the Monte Carlo algorithms on different computer architec- 
tures we have considered the following models. 

(1) A serial model with time 7 required to complete a suboperation (for real computers this 
time is usually the clock period). The important feature of this model is that each operation has 
to be performed sequentially and one at a time. 
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Fig. 1. The pipeline model with I, segments. Fig. 2. The multiprocessor model with p processors. 

(2) A pipeline model with startup time ~7. Pipelining means an application of assembly-line 
techniques to improve the performance of the arithmetic operations (see Fig. 1). 

(3) A multiprocessor configuration consisting of p processors. Every processor of the 
multiprocessor system performs its own instructions on the data in its own memory (see Fig. 2). 

(4) A multiprocessor system of p processor arrays. It is a model of third type but one in 
which every processor is connected to a processor array of 2n - 1 processing elements. The 
processor array is a set of processing elements performing the same operations on the data in 
its own memory, i.e., SIMD (Single Instruction stream, Multiple Data stream) architecture (see 
Fig. 3). 

Considering models instead of real computers allows for the distinction of the typical 
features of the architectures on the one hand, and, on the other hand, it enables general 
conclusions about the algorithms to be drawn, 

2. General description of the Monte Carlo method 

The problems one usually solves using the Monte Carlo methods can be given the following 
formal description. Let f =f(x) and ui = u(xi) be real-valued functions defined in the domain 
G c R”, and L = L(u) be a linear operator defined on the space of all real-valued functions u 
whose arguments belong to G. It is required to calculate the sequence of functions ui, u2,. . . , 

defined by the recursive formula 

‘i+l =L(ui) +f, i=o, 1,2 )... . 

The formal solution of (1) is the truncated von Neumann series 

(1) 

Uk =f+L(f) + ..* +Lk-l(f) + LQ,), k > 0, 

f?q &/F-j 
Fig. 3. The multiprocessor model consisting of p processors (P) of which everyone is connected with a processor 

array (PA) of 2n - 1 processing elements. 
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where Lk means the kth iterate of L. Special interest lies in the case in which the 
corresponding infinite series converges. Its sum then is a function u which satisfies the 
equation 

u = L(u) +f, 

and the truncation error of (2) is 

Ll,-u=Lk(u,-u). 

(3) 

The solution procedure of (1) by the Monte Carlo method will now be described in correspond- 
ingly general terms. Consider the space [w” over which the functions f, z+, ul,. . . are defined. 
Let J(uk) be a linear functional that is to be calculated. A probability distribution is now set up 
on each of the spaces 

q= [w”x[w”x .a. x[w”, i=l,2 ,..., k, (5) 
i times 

where “ x ” denotes the Cartesian product of spaces. Random variables oi, i = 0, 1,. . . , k, are 
defined on the respective product spaces q and have conditional expectations 

E0, =.+,), E(8, I&) =+1), . . . ,E(& I’&) =+k). (6) 

Thus the problem is reduced to the estimation of the conditional expectation E(8, IO,). The 
computational problem then becomes one of calculating repeated realizations of 8, and 
combining them into an appropriate statistical estimator of J(u,). Because of the nature of the 
process, every realization of 8, is a Markov chain. So, we will next use the Markov chain as a 
synonym of the realization of a random variable of this type. As approximate value of the linear 
functional J(u,) is used 

J(Uk) = - ’ 2 {ek)s, n s=l 
(7) 

where {e,}$ is the sth realization of the random variable 8,. The probable error r, of (7) is then 
[51 

rN=c0,z(T(6)ekN-1'2, (8) 

where co.5 = 0.6745 and a(e)e, is the standard deviation. 
Suppose there are different Monte Carlo algorithms to solve a problem. It follows from (8) 

that the computational effort for the achievement of a preset probable error is proportional to 
ta2(e)e, where t is the expectation of the time required to calculate one realization of the 
random variable 0. The product ta2(0)0 is called the labour consumption coefficient, whereas 
[to2(0)0]-’ is a measure for the efficiency. In these terms the optimum Monte Carlo algorithm 
is the one with the lowest labour consumption coefficient. 

We shall consider the theory for two special cases of the operator L. 
(i> L is an ordinary integral transform 

L(u) = j” k(x, Y>U(Y> dy. 
G 

(9) 

(ii) L is a matrix and u is a vector. 
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Let us consider the problems for the first case. They consist in calculating 

J(u) = (g, u) = /,-g(x)u(x) dx, 

where G E R”, and g(x) E L,(G) is an arbitrary function. In this case, (3) becomes 

u(x) = j$x, Y>+> dy +f(x), 

(LO) 

(11) 

and the random variable whose mathematical expectation coincides with J(U) is 

g(So) m 
OLgl = P(tO> j=O - C Qjf(tj)y (12) 

where 

and to, &,... is a Markov chain in G with initial density function p(x), and transition 
densities p(x, y), which are admissible ’ for g(x) and k(x, y), respectively. 

This formulation includes many boundary problems as well. Let us consider a typical 
problem of the quasi-electrodynamics: 

Au(x) -m(x) = -f(x), x E G, (134 
u(x)=+(x), x~aG. ( w 

From the theory of fundamental solutions there follows that the solution of (13) can be 
represented [5] as the integral equation (11) where 

d& 

k(x~ Y) = sinh(d&) 
fqY -x>, when x@aG, 

0, when xEaG, 

(14) 

1 
1 

-1 f(x)= 47r 

sinh((d- IY -~l)fi)~(~) dy 

I y -x I sinh(dG) 
7 when x@aG, 

(15) 

e>, when XE~G, 

and d = d(x) is the distance from x to the boundary aG. The Monte Carlo procedure for 
solving this problem is known as the “spherical process”. To ensure the convergence of the 
process, we introduce the e-strip aG, = {x E G: d(x) < E} of the boundary, and assume that 
u(x) is known for all points in aG,. Then, 

I/-k(x, y)k(y, 2) dy dz G /a(~ -x)/W -Y> dz dy = /-a(~ -4 dy 

EL 
<l-- 

4&“, ’ 
(16) 

’ p(x) is admissible for f(x) if p(x) > 0 when f(x) > 0. 
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where dsup is the supremum of all radii of the spheres lying in G. Inequality (16) ensures the 
convergence of the von Neumann series and therefore of (12), too. 

In the second interpretation, when L is a matrix, the recurrence (1) takes the form 

Uk+i = KU, +f, (17) 

where uk, Uk+i and f are vectors and K is a matrix. 
Knowing K = (kap)$=l, and u. = <u!, . . . , u:), we can find the solution of (17): 

u,=Kkuo+Kk-‘f+ a.. +~f+f= (I - K~)(I - K)-‘f+ K~u~, (18) 

where I is the unit matrix and the matrix 1- K is supposed to be nonsingular. 
It is well known that if and only if all eigenvalues of K lie within the unit circle of the 

complex plane, there exists a vector u such that 

u= limuk, 
k+m 

(19) 

which satisfies the equation 

u=Ku+f. (20) 

If the Neumann series for u does not converge, there exist some other procedures (e.g., 
extension of the resolvent, isolating the poles of the resolvent and so on [lo]) to construct a 
convergent Monte Carlo method. The same can be used also when the series is convergent but 
its rate of convergence is slow. 

As an illustration let us consider the problem of evaluating the inner product J(u) = (g, u), 
where g E R” is a given vector and u is the solution of the system of linear equations 

Au=b, (21) 

with b = (b,, . . . , b,). 

We can choose a nonsingular matrix M such that 

bZA=I-K (22) 

and 

Mb=f, (23) 

and then (21) becomes 

MAu=Mb, (24) 

which is equivalent to (20). With M and A both nonsingular, and K having its eigenvalues all 
inside the unit circle, (17) becomes a stationary linear iterative process [2]. 

We will next construct a Monte Carlo algorithm to solve the above problem, i.e., to calculate 

To do that we will use a method similar to those used for solving the first kind problem (i.e., 
the continuous case) [13]. 
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Let us consider the integral equation 

U(X) = / k(x, Y)U(Y> dy +f(x), 
G 

(26) 

for which G = [0, m) is a one-dimensional segment divided into equal subsegments G, = [a - 

1, a), (Y = 1, 2,. . . , m, such that 

i 

+,Y) =k,,, LEG,, Y ~$7 

f(x) =fa, XEG,. 
(27) 

Then (26) in G, becomes 

and if we denote 

up = lG;’ Y) dy> 

we obtain (in G,) 

44 = Ck,pUp +f,. 
P 

From (30) there follows that U(X) = u,, and so it becomes 

u, = C&.+$3 +fa7 
P 

or in matrix form 

u=Ku+f. 

Then similarly to (12) we construct the random variable 

o[gl = : c Q,fiu~ 
0 v-o 

where 

P-9 

(30) 

(31) 

(32) 

(33) 

Q,= 1, 
k(tj-ly sj> 

Qj = Qj-l p(tj_l, lj) ’ 
j = 1 

’ 
2 

>*-*, 

and lo, l,,.. . is a Markov chain constructed according to the probability densities which are 
admissible for g and K = (k,,), respectively. 

If the rth component of the vector u = (zQ,. . . , urn> is to be calculated, we can choose the 
vector g = e(‘) with the rth component unity, the other components all zero. 

The inherent parallelism of the Monte Carlo methods lies in the possibility of calculating 
each realization of the random variable 8 on a different processor (or computer). There is no 
need for communication between the processors during the time of calculating the realizations 
- the only need for communication is at the end when the averaged value is to be calculated. 

To estimate the performance of the Monte Carlo algorithms, we need modifications of the 
usual criterion [12]. The modification consists in replacement of T,(d) (which is the time 



I. T. Dimou, 0.1. Tonev / Monte Carlo algorithms 259 

required for a set of p processing elements to solve the problem using an algorithm &) with 
the mathematical expectation ET,(&) of this time. That is so because of the nature of the 
Monte Carlo method. 

The criteria for speedup and paralleling efficiency 2 of an algorithm ti will be as follows: 

Sp(4 = 
Ewe 
ETpW) 

and 

SPP? 
E,(&q = ~ 

P . 

The classical problem 

Au= -f(x), XEG, 

u(x) =$(x), x E aG, 

where x=(x1,..., x,)EGcK,={O<x<l, i=l,2,. 
Our aim is to calculate the linear functional 

,, n} is considered. 

(364 
Pw 

J(u) = (8, u> =/$+(x) dx. (37) 

We will next consider three Monte Carlo algorithms for the calculation of this product. 

(34) 

(35) 

3. Algorithm d 

Using a regular discretization with step h, (36a) is approximated by the difference equation 

A’h”‘u = -fh, (384 

or solved for the ith point i = (i,, . . . , i,): 

h2 
ui = L,u + Zfi, WV 

where At) is the Laplace difference operator, and L, is an averaging operator. For example, 
the operator L, in R2 is 

L,U = +[Ui&l,j + Ui+l,j + Ui,j-1 + Ui,j+l] = $n,(i, j)> 

and then (38b) becomes 

ui,j = $A,(i, j) + $h2fi,j. (39) 

The approximation error of (38) is 

I ui - u(xJ I = O(h2). (40) 

We need h = I& to ensure consistency of the approximate error and the probability error. 

* The paralleling efficiency is the measure of the price to be paid for the speedup achieved. 
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The matrix form of equations (38) is of the type of (32) but the matrix there has only 2n 
nonzero elements in every row and they all are equal to 1/(2n). 

The Monte Carlo algorithm for solving (37) consists in simulating a Markov chain with initial 
density pO, which is admissible to the vector g, and probability pap for transition from the point 
(Y to the next point p equal to 1/(2n) if the point is inner, and equal to 0 for boundary points 
(the boundary is the absorbing barrier for the process). The random variable whose mathemati- 
cal expectation coincides with the solution of the problem is 

.?+2 i*-1 

(41) 

where fi are the values of the function f in the points of the Markov chain, and i* is the point 
where the Markov chain reaches the boundary aG,. 

Every transition in the Markov chain is done following the algorithm 
(i) generation of a random number (it is usually done in k arithmetic operations where 

k = 2 or 3); 
(ii) determination of the next point which includes a random number of logical operations 3 

with expectation equal to ~2, and maximum 2n (n is the space dimension) and one algebraic 
operation to calculate the coordinates of the point. 

Let m,(h, n) be the mean number of steps required to reach the boundary for a process (or a 
chain) starting at the point i and m(h, n) is the vector with coordinates m. Then m(h, n> is the 
solution of the difference problem 

2n 
mi=Lhm+(pi, iEG h? vi= 2’ h 
m, = 0, iGaG,,. 

If {m$h, n)} is the solution of problem (42) in the unit cube K,, then the following 
inequality holds: 

mi(h, n) am,(h, n), i = 1, 2,. . . . (43) 

The difference problem for mi(h, n> could be approximated by the problem 

Am’(x) = - 9, XEK,, 

m’(x) = ; g (XI-X:), XEaK,, 
l-l 

where the error is of order O(1). 
Let M be the maximum of m’(x), i.e., 

(44) 

This value is independent of the problem dimension and could be reached when xl = +, 
I= 1, 2,. . . ) n. 

3 The logical operation means testing the inequality “a < b”. 
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The result in (45) is natural because the inverse operator of A(hn) is uniformly bounded over 
h, and so it follows that 

c(n) 1 
m,(h, n) = 7 +o 2 . 

i I (46) 

Thus, A4 is an upper bound for the expectation of the number of steps in a Markov chain, 
which is a realization of the random variable 19. To achieve a probable error E, it is necessary to 
average N realizations of the random variable 8 where 

u”(e)e 
N = c;,~ ~ 

E2 * (47) 
The expectation of the number of all transitions R in the Markov chain will then be 

1 

Let 1, and I, be the number of suboperations of the arithmetic and logical operations, 
respectively. Then the expectation of the time required to achieve a probable error on the 
serial model using the algorithm JZZ is 

ET,@‘) = ~[(k + I+ Y&A + (n + I+ r,)i=](l(c~.~~(~)e))2~~ 

where yA and yr are the number of arithmetic and logical operations to calculate the distance 
from a given point to the boundary aG. Here we assume that f(x) = 0 in (36a), because the 
number of operations to calculate a value of f(x) in an arbitrary point x varies for different 
functions f. 

In the case of the third model we suppose that it is possible to choose the number of 
processors to be 

Then 

E7&@‘) = ~[(k + 1 + Y/& + (n + 1 + y$r] ;> (51) 

S,(d) =P (52) 

and 

Q(-@) = 1, (53) 

i.e., the paralleling efficiency has its maximum value in terms of the modified criterion. 
The speedup can be improved using the fourth model. In this case all 2n logical operations 

at each step of the Markov chain are done simultaneously, and so 

J-2,,@‘) = 2 [(k + 1 + Y& f 31,] > (54) 

S,,,(4 =P 1 + 
i 

n+lfy, 1, 

k+l+y,, 
iii 

1+ 
3 1, 

k+l+y*l, ’ i 
(55) 

and S,,,(ti) > S,(J@‘) when n + 1 + YL - 3. 
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The paralleling efficiency is 

1+ 
n + 1 + yJ_ I, 

k+l+y*l, 
1+ 

Assuming the pipeline model [6,7] to have I, segments, we obtain the following results: 

k -t 1 + yA I, 
1+ 

s+k+l,+y, 

n+1+y&- n+l+y, 

(56) 

(58) 

From (55) follows that S,,,(ti) > 1 when s, 1, and ?A meet the inequality 

s < (1, - W + Y/,), (59) 

which is not a real restriction, but it becomes obvious that algorithms like JY are not well suited 
for the pipeline model. This follows from the formula for S,,,(d) which does not have a factor 
l/c, whereas S,(d) = O(E-‘). 

Special Monte Carlo algorithms can be constructed for the pipeline computers which are 
known as vector algorithms [8]. Such an algorithm will be considered later. 

4. Algorithm ~23’ 

Let us consider again the problem of calculating the inner product (g, U) with a preset 
probable error E. 

The discretization formula for the Laplace equation 

Ui,j,k = iiAi,j,k) (60) 
stated in Appendix A, leads to the random variable 

0 = @(5), 
where 5 is a random point on the 
coincides with the required value. 

The Monte Carlo algorithm for 
repeated realizations of 6’ which are 
transition probabilities 

(61) 
boundary i3G,. The expectation of this random variable 

estimating the expectation of 8 consists in calculating 
Markov chains with initial density p0 admissible to g, and 

when CYEG~, 

when (Y E aG,, 

where 

is the Kronecker notation. Next, we consider the problem of estimating the number of 
operations R required to reach the probable error E. 
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From (48) it follows that the estimators for the number of realizations N and the number of 
transitions M in one Markov chain have to be obtained. 

The number of realizations N is independent of the algorithm used, and is given by 

Let us find an upper bound for the number of steps M in a Markov chain. To do that we 
consider the following problem. Let D be a plane in R3 and 0 be the half-space bounded by 
D. The domain fl is replaced by a set of points wh using a regular discretization. The Markov 
chains in the algorithm B are random walks in oh that begin at a point chosen according to 
the initial density p 0; the next point is selected according to the following stipulations. 

(i) About the inner point cr determine the maximum approximation molecule 4 I. 
(ii) With probability pap = i, select the point /3 uniformly at random on ~(a). 

(iii) If the point j3 is on the boundary, the Markov chain is terminated and the process begins 
again at a point chosen correspondingly to p,,. If the point p is an inner point of wh, then step 
(ii) is repeated using p in place of (Y. 

Our aim is to estimate the number of inner points passed by until a boundary point is 
reached. 

Let T be a random variable that is the number of steps in a Markov chain, and T, be the 
number of steps in the vth Markov chain [l]. Then 

P{T, = k} = (;)k-l;, (63) 
and the expectation of the random variable T is given by 

ET= c k($)k-l+ = 6. 
k=l 

(64) 

This result gives an upper bound for the number of steps in a Markov chain, i.e., 

M,< 6; 

so in this case 

For one transition in the Markov chain we have to do the following operations: 
- yA arithmetic and 5 logical operations to find (calculate) the distance from the point to the 
boundary aG and 1 logical operation to verify if this distance is nonzero, i.e., the point is not on 
the boundary; 

(65) 

- k arithmetic operations for the generation of a random number; 
- 3 logical and 1 arithmetic operations for calculating the coordinates of the next point. 

So, for a serial model it is obtained that 

ET&B) = 67[(k + 1 + y/+)1/, + 91,] (67) 

4 The approximation molecule PC(Y) for the differential operator is the set of mesh points used for approximation of 
the derivatives in the operator at the point (Y. 
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and for the third model with p = (c~,,o(~)/E>~ processors the expectation is 

ET&S’) = 67[(k + 1 + 3/$, + 941. (68) 

Then the coefficients for the speedup and the performance are 

S,(S) =P 

and 

(69) 

(70) 

which means that one could achieve the optimum performance. 
The calculation of repeated realizations of a random variable do not need any communica- 

tions between the processors, so the mathematical expectation of the idle time of the 
processors is zero. 

The value of S,(&‘) could be improved with the fourth model. In this case all logical 
operations for determining the next point in the Markov chain and these for finding the 
distance to the boundary could be fulfilled at two clock periods, and so 

ET,,(B) = 6r(( k + 1 + 3/JZ, + 51,) (71) 

and 

(k + 1 + Y*)I* + 91, 

WB) = (k + 1 

For the performance coefficient we obtain 

9 4_ 

ii! 

5 1, 

k+l+r/,l, 
l+ 

k+l+y,I, i 
< 1. 

(72) 

(73) 

It is obvious that increasing the number of processing elements will involve increasing the 
idle time, i.e., efficiency will decrease. 

Let us now consider the pipeline model with 1, segments for performing the arithmetic 
operations. In this case the coefficients of interest become 

E&J 25’) = 67( s + k + I, + 3/A + 94) 

&,+.(&?) = 1 + $(k + 1 + YA); 
L 

P-4) 

(75) 

and the sufficient condition for S,,,(S) > 1 is 

s <(‘A- W+yA), 

which holds for all real computers. 

(76) 
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As in the case of the algorithm &, one can see that this algorithm is not the best one for 
pipeline computers. 

5. Algorithm E’ 

There exists a different approach to the solution of problem (36) which uses the integral 
representation [ 141 

- U(Y$ 
1 

an, IX-YI 1 ds,, (77) 

for f(x) = 0 and II = 3. 
Representation (77) allows us to construct a Monte Carlo algorithm, called spherical process 

for computing the inner product (g(x), u(x)). The algorithm is as follows. 
(i) We choose an E-strip aGE of the boundary aG and suppose that the solution of problem 

(36) is known in aGE. 
(ii) The starting point x0 is to be chosen with respect to the initial density p(x) which is 

admissible for the function g(x). 
(iii) The next point is chosen to be equidistributed on the maximum sphere in G with the 

center in x0. The formula for computing x, from x,_, is 

x, =x,-r +Wnd(Xn_J, Iz = 1, 2 )...) (78) 

where w is a unit vector uniformly distributed on the unit sphere. Then, if X, E G\ aG, the 
process continues by determining the next point from (781, whereas if x, E aG, the process is 
terminated with setting up 13, = u(x,). 

The value 8 is the nth realization of the random variable 8. Then, using N such realizations, 
we construct the approximation of the solution 

(g, u> = ; t 0,. (79) 
n-l 

The number of steps M in a realization of the random variable 8 is 

M=clln ~1, (80) 

where c depends on the boundary aG [5,11]. 
To ensure a probable error E, it is necessary to do N realizations where N is chosen from 

(62). Then for the expectation of the number of steps we obtain 

and each step consists of yA arithmetic and yL logical operations for finding d(x), 2k 
arithmetic operations for generating two pseudo-random numbers (when it = 31, qA arithmetic 
operations for calculation of the coordinates of the next point and 1 logical operation to 
determine whether x E aG. 
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It then follows that 

,lrl E 
ET,(g’)= r[(2k + YA+qA)lA + (YL+l)lA]c(cO.S(T(~)~) 77 

whereas for the third model with p = (c,,,a(0)/~)~ processors it follows that 

ET,(e) = r[(2k + YA + QA)~A + (YL + l)lL]c In E, 

and so for the speedup and paralleling efficiency we obtain 

S,(%) =p = O(E_2) 

and 

E,(g) = 1. 

If the fourth model is considered, a greater speedup can be achieved: 

&5,(~‘) =P 1+ 
i 

2k+?‘,+q, 

YL+l 

but the paralleling efficiency decreases: 

l+ 

1+ 
2k+YA+qA l, 

YL+l IL 
l+ 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

In case of the pipeline model with 1, segments, the respective results are 

,ln E 

and 

ETpipe(@) = 7(S + 2k + yA + qA + 1, - 1 + (ye + l)~,)+,,~(~)~) - 
E2 (88) 

2k+YA+q, 1, 
l+ 

s+2k+yA+qA+l,-1 1 

YL+l L YL+l 
(89) 

and S,,,(G9) > 1 when the inequality 

s < (2k + yA + qA - l)(Z, - 1) (90) 

holds. But it is met for the real computers where a speedup greater than one could be 
obtained. 

In Appendix B all results concerning algorithms &‘, L&’ and SF in the case 12 = 3, f(x) = 0 and 
p = (c,,,(T(~)/E)~ are enumerated. 

There one can see that the rates of increasing the time required to achieve a preset probable 
error E using algorithms ~9, ~8’ and ‘8’ are O(~/E), O(1) and O(ln E), respectively. Thus, 
algorithm 9 is faster than algorithms LZ? and %. 

On the other hand, it is obvious that the speedup and the paralleling efficiency coefficients 
are greater for MIMD architectures (models (3) and (4)) than those for the pipeline architec- 
ture (model (2)). That is so, because the increase of the number of processing elements in 
models (3) and (4) involves an increase of the speedup with the same factor, while the 
paralleling efficiency remains constant. The formulae in Appendix B show that the third model 
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is the best one for such algorithms, because their paralleling efficiency is unity, i.e., the idle 
time of its processing elements is zero. 

The Monte Carlo algorithms described include a wide range of problems with probable error 
of type 

YN 
= (-N-1/2-E(n) 

9 

where ~(~11 > 0 is a nonnegative function of the dimensionality of the problem. Such methods 
can be found in, e.g., [4,13]. 

The Dupach algorithm is constructed for calculation of integrals of functions from W(‘)( M, G) 
with partially continuous derivatives limited by M. It consists in the following. The domain G is 
divided into subdomains Gj which are uniformly small by probability and by measure, i.e., 

Pj=IGP(X) dx G $7 d,= sup Ix1 -x2] i&. 
I XI, X*tG/ 

Random points are generated in different subdomains. This allows to obtain a greater rate of 
convergence with E(Y~) = l/n. 

In [4] an overconvergent Monte Carlo method for solving (111, (12) has been considered. The 
algorithm results from the special way of separation of the domain G. 

In this case the random error becomes 

YN 
= c~-1/2-W@-1)) 

> 

i.e., l (n) = l/(n(k - l)), where k comes from the truncated Neumann series (2). 
In this case every Markov chain is realized in one of the subdomains Gj. This means that the 

only difference between the algorithm described above and this algorithm is the probability 
density function which does not change the speedup and efficiency estimators. 

In [3] an optimum (with a minimum standard deviation) algorithm for problem (9), (10) is 
proposed. This algorithm has a minimum probable error. 

It is obtained using the idea of the importance sampling technique for construction of the 
transition probabilities in the Markov chain. 

As the only difference between this algorithm and the classical one is the probability density 
function, it is obvious that the estimations for the speedup and the efficiency are the same. 

However, the Monte Carlo algorithms described above are not well suited for pipeline 
architectures. Thus, if one wants to achieve greater speedup on pipeline computers, it is 
necessary to construct special Monte Carlo algorithms. 

6. A Monte Carlo vector algorithm 

There are Monte Carlo algorithms called vector algorithms which are more efficient for 
pipeline computers. 

Let us now consider an approach to solve the problem 

R,(A)u(x) = (- l)“f(x), x E G c R2, (914 
A%(x) -+&(x), x+xg, xg E =, (9 lb) 
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where 

R,(A) = A” + c,/Y-’ + * *. +c,_,/l + c, (92) 

is a polynomial with real zeros and A is the Laplace operator [8]. This is a common problem in 
the investigation of the beam penetration in multilayer targets. 

Suppose that all conditions ensuring the existence and the uniqueness of the solution of 
problem (91) are met [14] and all zeros of the polynomial R,(A) are real numbers. Let 
A r,***, A, be the zeros of R,(A). 

Then the problem (91), (92) can be given the following representation: 

‘(A-A&l=(-l)“f(4, 
(A -A&, = ~1, 

< * 

iA -A,,&, = u,,-~, 
u,=u, 

with the boundary conditions 

where 

Then the 

(93) 

(94) 

(95) 

(96) 

(97) 

u,(x)+f,(x)+b;f,_,(x)+ .*’ +b,“_,f,=W,(x), s=l,...,m, 

( bi"=b;+'+A,bj"_,, j=l,..., s-l, 

b;=l, bTfl=ck, k=l,..., m-l. 

discrete problem becomes 

u~,~ = f 5 u~,~ - $h2A,pk,o - +h2u,_,,o, k = 1,. . . , m, 
i=l 

u,,o=fo=(-l)mf(x), =Gh. 

Using the notation k = (1 + $h2Ai)-l, i = 1,. . . , m, one can obtain the following system of 
linear algebraic equations: 

/ 

U m,O = k?z i i Um,i- $h2Um-l,o)T 
k=O 

U m-l,O=km-l 
< 

$ um-l,i- +h2um-2,0 
I=0 

i ,$ul,~-$h2f, i=l ,...,m, 
z=o 

(98) 

or represented in a matrix form: 

U=AUtF, (99) 
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where U = (urn a, u,_~ O,. . . , u1 JT and each uk 0 is a vector with m,m, components (here m, 
and m2 are the number of points along x1 and’ x2, respectively), 

A= 

( 

\ 

/ m 

(-+h*)“-$kiL,, 
\ 

k?Al - $h2k,k,_,L,, . . . 
i=l 

m-l 

0 k L/l m-l 
..a (-$h*)“-* n k,L, 

i=l 
(100) 

0 0 . . . w% J 

T 

F= l~ki(-+h2)m,..., 
( 

(-$h2)*k2kl, (-+h*)k, (101) 

In what follows we will denote by W= (w,(x), . . . , w,(x))~ the boundary conditions vector. 
Obviously, (99) is of type (20) but one in which u and f are vector functions. 
This interpretation allows for constructing a Monte Carlo vector algorithm. We introduce 

matrix weights in the following manner: 

120 = {‘ij}Tj=l, Qj = Qj-1 
k(xj-1, Xj) 

PCxj-l' xi) ’ 
where 

@n-l, xn) = fik 
I=i 

,+-I( - $h2)t-iL,, i, j 

Then the random variable 5, with Et, =J(U) is 

i* 

= 

where i* is a random variable that is the length of the Markov chain constructed, and J(U) is a 
linear functional of the solution U. Each Markov chain is a realization of the random variable 
tX. From the law of large numbers follows that we need N realizations to estimate the 
mathematical expectation of (,, i.e., the linear functional of the solution U. 

Each realization is done according to the following algorithm. 
(i) The process begins at the point x0, chosen according to the initial density, and 

accumulate in lo the values of F,. 
(ii) From the point xk we go to the next point xl depending on the transition densities pkl 

and 
if x E G,, then to = LJ~ + Q,F, and the process continues with a transition to the next point 

(according to step (ii)); 
- if x E aG,, then to = co + Q,w, and the process is terminated; 
- if the boundary aG, is reached at the point xi+ and on the sth step, then 
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This algorithm is used to solve the problem 

AAAu(x) = ( -1)3f(x), x E G, x = (x1, x2), 

Aku(x) +fk+l(x), when x +x,,, x0 E aG, k = 0, 1,2, 

where G = {(x,, x,): 0 <x1 < 1, 0 <x2 < 11 is the unit square, and 

I 

f(x) = 2 * 36 sin 3x, + 26 cos 2x2, 

fI(x) = 2 sin 3x, + cos 2x2, 

f2(x) = - 18 sin 3x, - 4 cos 2x2, 

f3(x) = 2. 34 sin 3x, + 24 cos 2x,. 

The corresponding system of differential equations is 

I 

Au, = (- l)“f(x), 
AU,=U,, 

Au, = u2, 
Lb3 =u, 

and using a grid of mesh size h = 0.1, we obtain the difference system 

u=Au+F, 

where 

u = (U&O, u2,0, 4,01T~ 

I 

L -$h2L, (-+h2)2Lh’ 

A=0 L, -+h2L, 9 

,O 0 L, 

F=((-+h2)3, (-+h2)2, (-;h2))T(-l)3f(x), 

and the boundary conditions vector is 

w= (f3WY f2(47 fib))=. 

The random vector tk is 

&=h+Qs% 

Table I 

(108) 

(109) 

WO) 

(111) 

(112) 

(113) 

(114) 

Points Exact solution Monte Carlo solution Relative error 

(0.6, 0.8) 2.6444 2.6790 - 0.013 

(0.2,O.S) 1.6696 1.6895 - 0.012 
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where 

/ 
z?(s + l)( -$q3’ 

Q,4 = (s + I)( - +h2)2 ( - 1)3f(+ 

\ 

1 2 
-4 h I 

(115) 

(116) 

’ f, + s( - +h2)f2 + R(s)( - $h2)‘f, ’ 
Q,K = fi+s(-ifh2)f, 2 (117) 

\ fl I 
where R(1) = 1, R(s) =s +R(s - 1). 

In Table 1 the results from the solution of the problem in two points over 3000 realizations 
of the random variable are shown. 

Appendix A 

Consider the boundary-value problem 

Au(x) = 0, x = (x1, x2, x3) E G, 

and the boundary condition 

z+)=$(x), XE~G. 

(A4 

Using the finite-difference technique, one can derive a system of 
solution approximates the solution of (A.l). The system depends 
molecule for the Laplace operator. 

(A4 
linear equations whose 
on the approximation 

Let us consider the usual seven-point approximation molecule. The equation which approxi- 
mates (A.11 in the point xi = (i,h, i,h, i,h) is 

AI(ui) - 6uj = 0, (A.3 

where 

AI = u((i, + l)h, i,h, i,h) + u((i, - l)h, i,h, i,h) + u(i,h, (i, + l)h, i,h) 

+ u(i,h, (i, - l)h, i,h) + u(i,h, i,h, (i, + 1)h) + u(i,h, i,h, (i, - l)h), 

(A.4 

and h is the mesh size of the discrete domain aG,. For brevity, in what follows we assume h to 
be unity. 

Using (A.3) for all terms in (A.41 we obtain 

Ui = & [ A2(ui) + 2A,,m(ui) + 6~,] 7 (fw 
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where 

A,,,(uj) = u(i, + 1, i,, i, + 1) + u(i, - 1, i,, i, + 1) + u(i, - 1, i,, i, - 1) 

+ u(i, + 1, i,, i, - l)+u(i,+l,i,+l,i,)+u(i,,i,+l,i,+l) 

+ u(i, - 1, i, + 1, i3) + u(i,, i, + 1, i, - 1) + u(i, + 1, i, - 1, i3) 

+ u(i,, i, - 1, i, + 1) + u(i, - 1, i, - 1, i3) + u(i,, i, - 1, i, - l), (A.6) 

and A,(u) is obtained from the formula 

Ak(ui) = u(i, + k, i,, ix) +u(i, -k, i,, i3) + u(i,, i, + k, ix) 

+ u(i,, i, -k, i3) + u(i,, i,, i, + k) + u(i,, i,, i, -k), 

when k = 2. 
If we use the Taylor formula for terms in A r,,j~~), it is easy to construct another 

approximation molecule for (A.l) which leads to 

A,,,(UJ = 12U,. (A.? 

Then (AS) becomes 

ui = $A2(ui), (A4 

which is of the same type as (A.31 but the step in the approximation molecule is 2. Application 
of the algorithm described above leads to the following theorem. 

Theorem 1. Let xi = (i,, i,, i3) be an arbitrary point in G, and k be the radius of the largest 
sphere in G, with the centre in xi. Then the following equation holds: 

ui = :A&,). (A.9 

To prove this theorem some preliminary statements are needed. 

Lemma 2. For each integer k the following formula holds: 

A&i) = + [ 4+1w + 4-1w + &w] 7 (A.lO) 

where 

Ar,(ui) = u(i, + k ,i,+l,i,)+u(i,+k,i,,i,+l)+u(i,+k,i,-l,i,) 

+ u(i, + k, i,, i, - 1) + u(i, -k, i, + 1, i3) + u(i, - k, i,, i, + 1) 

+ u(i, -k, i, - 1, i3) + u(i, -k, i,, i, - 1) + u(i, + 1, i, + k, i3) 

+ u(i,, i, + k, i, + 1) + u(i, - 1, i, + k, i3) + u(i,, i, + k, i, - 1) 

+ u(i, + 1, i, - k, i3) + u(i,, i, - k, i, + 1) + u(i, - 1, i, - k, i3) 

+ u(i,, i, -k, i, - 1) + u(i, + 1, i,, i, + k) + u(i,, i, + 1, i, + k) 

+ u(i, - 1, i,, i, + k) + u(i,, i, - 1, i, + k) + u(i, + 1, i,, i, -k) 

+ u(i,, i, + 1, i, - k) + u(i, - 1, i,, i, - k) + u(i,, i, - 1, i, - k). 

The proof of Lemma 2 follows from (A.31 and (A.6). 
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Lemma 3. For an arbitrary integer k it follows that 

f (k-3)/2 

g (- 1)‘(12n,-,,-I (uJ - ‘Ik_*[_&Li)) + (- l)[“/“li&J, 

ii,(u,) = ( (k-2),2 k Odd, (A.ll) 

c (-1)‘(12A k-21-1(q) -L&i)) + (- l)[k’Z1&(q, 
l=O 

\ k even, 

where [t] means the integer part of t, and 

‘k(‘i) 

=u(i,+k, i,+l, i,- 1) + u(i, + k, i, + 1, i, + 1) + u(i, + k, i, - 1, i, + 1) 

+ u(i, + k, i, - 1, i, - 1) + u(i, - k, i, + 1, i, - 1) + u(i, -k, i, + 1, i, + 1) 

+ u(i, -k, i, - 1, i, + 1) + u(i, -k, i, - 1, i, - 1) + u(i, + 1, i, + k, i, - 1) 

+ u(i, - 1, i, + k, i, - 1) + u(i, - 1, i, + k, i, + 1) + u(i, + 1, i, + k, i, + 1) 

+ u(i, + 1, i, - k, i, - 1) + u(i, - 1, i, -k, i, + 1) + u(i, - 1, i, -k, i, - 1) 

+ u(i, + 1, i, - k, i, + 1) + u(i, + 1, i, - 1, i, + k) + u(i, + 1, i, + 1, i, + k) 

+u(i,-l,i,+l,i,+k)+u(i,-l,i,-l,i,+k)+u(i,+l,i,-1,i,-k) 

+ u(i, + 1, i, + 1, i, -k) + u(i, - 1, i, + 1, i, -k) + u(i, - 1, i, - 1, i, -k). 

Proof. Using formula (A.71 for each term in A,_I(~i>, we obtain 

12A,_,(‘,) =~k(“i) +X/._l(Ui) +~,_,(“i) 

or 

A,(u,) =Ak_Z(Ui) +xk_l(Ui) - 12A,_,(ui), 

and applying it recursively yields (A.ll). q 

Lemma 4. For an arbitrary integer k the following formula holds: 

C (-l)‘nk_2,_,(ui) + (-l)‘k-21/1~(~i), k odd, 

[F. (- l)‘~k-21-,(Ui) + (- l)[k-21&(u,), k even. 

Proof. Using the Taylor formula one can derive the approximation formula 

A,,,(q) = gq, 

where AI,, = $,(ui). 

(A.12) 

(A.13) 

(A.14) 
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Then applying this formula for all terms in Ak_ I( ui), we obtain 

8A,_,(u,) = &(ui) +x,-&J 

or 

&(z.+) = -8&-&J +&&+), 

which leads to (A.13). 0 

(A.15) 

Proof of Theorem 1. When k is unity, (A.9) becomes the usual approximation formula (A.3). 
We will prove (A.9) when k = II, provided it holds for all k = 2, 3,. . . , n - 1. 
From Lemma 2 it follows that 

U%) = +[ A,+,(%) + A,-,(%) + JU%)] Y 

and according to the above assumption 

A,&,) = +[n,+,(q) + 6q +&(q)], 

and so for k = II, (A.9) becomes 

ui= ~[An+l(ui)+6u,+il,(u,)]. (A.16) 

Without any restrictions of generality we assume that it = 2m - 1. So using Lemmas 3 and 4 
we obtain 

m-2 

/i *m-d%) = g (- I)‘[ 12~2(m-I-I)(~i) - X2(m-l-I)(%)] + (- 1)“M4 

m-l-2 

12A2(m-1-&) - 8 c (-l)“A,,m-z-,(4 
s=o 

- (- l)“-‘-‘llo(Ui) + (- l)“lil,(UJ. 1 
From the definitions follows that 

(i&) = 24u, and AI = 24ui, 

and from the assumption that 

A,@,) = 6ui, 

when j < ~1. Then 
m-2 m-l-2 

II’ 2m_1(ui) = ,Fo (- 1)’ 72u, - 8 sFo (- 1)‘6u, - (- l)“-‘-‘24~~ + (- l)m24ui 1 
m-2 m-2 m-l-2 m-2 

=72i+ c (-l)‘-48ui c (-1)’ c (-l)‘- c (-l)“-‘24~~ 
I=0 l=O s=o l=O 

+(-l)m24ui=24ui, 
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and (A.16) becomes 

ui = &[A,+,(u~) + 30~~1 or ui = iA,+,( (A.17) 

The case when k = 2m is similar. 0 

Theorem 1 is used to construct a Monte Carlo method for finding the inner product of a 
given vector g with the solution of the system (A.3). 

The algorithm is as follows. 
(i) The start point x0 is selected according to a density admissible for g. 

(ii) Determine the mesh distance d,(x,) from the selected point x0 to the boundary; the 
next point is selected from among the neighbours on the seven-point approximation molecule 
with step d,(x,); 
- if the point is on the boundary, the process terminates; 
- otherwise the process continues with (ii). 

Appendix B 

Here all the results for the values of interest are summarized. 

B.1. Algorithm d (f(x) E 0, P = (C&do) /Ej2) 

ET,@‘) = T((k + 1 + y& + (n + 1 + y$&. 

ET2,&4 = r((k + 1 + y/,)/A + 3& 

Spipe(d) = ' + 

i 

k + 1 + yA I, 
- 

n + 1+ yr_ 1, i/i 
1+ 

s+k+I,+y* 1 

nflfy, C’ I 

$@q = P, 

L&q =P 1 + 
i 

n + 1+ yr 1, 

iii 

3 4/ 

k+l+y*c 
1+ 

k+l+y*l, ’ i 

Jqg = 1, 

E2npW = ; 1+ 
i 

n+l+y, 1, 

k+l+y,I, 
l+ 
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B.2. Algorithm ~8 (f(x) = 0, n = 3, p = (cO,,a(0) /d2) 

ET,(S) = 67(( k + 1 + yA)lA + 91,) 

ET,_& ~4.7) = 67( s + k + I, + 3/* + 91,) 

ET&%‘) = 67((k + 1 + yA)Z, + 91,), 

ET,,(Li?) = 6T((k + 1 + y/&, + 5Z,), 

$j,(*) =P i 9 1+ 1, 5 1+ 1, 

k+l+rAI, k+l+rAl, ’ I 

E,(B) = 1, 

E&q = ; 9 1+ 1, 

k+l+y,l, 
l+ 

B.3. Algorithm %? (f(x) = 0, n = 3, p = &,,a(@ /E)~) 

ET,i,,( ~) = T(S + 2k + YA + qA + I, - 1 + (yL + 

=+YA+qA l, 
l+ 

S+2k+yA+q,+l,-1 1 

YL+l IL YL+l 

qg’) =P, 

2k+YA+qA I, 

YL+l c 

1+ 

qq = 1, 

J!&(d) = ; 1+ 
zk+Y,+qA 1, 

YL+l I, 

l+ 
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