
Journal of Computational and Applied Mathematics 48 (1993) 253-277

North-Holland

253

CAM 1305

Monte Carlo algorithms: performance
analysis for some computer architectures *

Ivan T. Dimov and Ognyan I. Tonev

Center of Informatics and Computer Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Received 31 May 1991
Revised 28 April 1992

Abstract

Dimov, I.T. and 0.1. Tonev, Monte Carlo algorithms: performance analysis for some computer architectures,
Journal of Computational and Applied Mathematics 48 (1993) 253-277.

The paper deals with the performance analysis of three Monte Carlo algorithms for some models of computer
architectures. To estimate the performance and the speedup of these algorithms, we introduce a special
modification of the criterion for the time required to achieve a preset probable error and consider a serial (van
Neumann) architecture, a pipeline architecture, and two MIMD (Multiple Instruction stream, Multiple Data
stream) parallel architectures. An approach to constructing Monte Carlo vector algorithms to be efficiently
run on pipeline computers has also been considered.

Keywords: Monte Carlo method; parallel algorithms; probable error estimator; performance analysis.

1. Introduction

The Monte Carlo algorithms are known to be inherently parallel. Already in the first paper
[9] on the Monte Carlo method it was said that “the statistical methods can be applied by many
computers working in parallel and independently”.

At present, there are many different Monte Carlo algorithms for solving a wide range of
problems.

To estimate the performance of the Monte Carlo algorithms on different computer architec-
tures we have considered the following models.

(1) A serial model with time 7 required to complete a suboperation (for real computers this
time is usually the clock period). The important feature of this model is that each operation has
to be performed sequentially and one at a time.

Correspondence to: Dr. IT. Dimov, Center of Informatics and Computer Technology, Bulgarian Academy of
Sciences, Acad. G. Bonchev str. bl. 25-A, 1113 Sofia, Bulgaria.
* Supported by the Ministry of Science, Culture and Education of Bulgaria, grant no. 831/1987.

0377-0427/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82000275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

254 I. T. Dimou, 0. I. Tonev / Monte Carlo algorithms

Fig. 1. The pipeline model with I, segments. Fig. 2. The multiprocessor model with p processors.

(2) A pipeline model with startup time ~7. Pipelining means an application of assembly-line
techniques to improve the performance of the arithmetic operations (see Fig. 1).

(3) A multiprocessor configuration consisting of p processors. Every processor of the
multiprocessor system performs its own instructions on the data in its own memory (see Fig. 2).

(4) A multiprocessor system of p processor arrays. It is a model of third type but one in
which every processor is connected to a processor array of 2n - 1 processing elements. The
processor array is a set of processing elements performing the same operations on the data in
its own memory, i.e., SIMD (Single Instruction stream, Multiple Data stream) architecture (see
Fig. 3).

Considering models instead of real computers allows for the distinction of the typical
features of the architectures on the one hand, and, on the other hand, it enables general
conclusions about the algorithms to be drawn,

2. General description of the Monte Carlo method

The problems one usually solves using the Monte Carlo methods can be given the following
formal description. Let f =f(x) and ui = u(xi) be real-valued functions defined in the domain
G c R”, and L = L(u) be a linear operator defined on the space of all real-valued functions u
whose arguments belong to G. It is required to calculate the sequence of functions ui, u2,. . . ,

defined by the recursive formula

‘i+l =L(ui) +f, i=o, 1,2)... .

The formal solution of (1) is the truncated von Neumann series

(1)

Uk =f+L(f) + ..* +Lk-l(f) + LQ,), k > 0,

f?q &/F-j
Fig. 3. The multiprocessor model consisting of p processors (P) of which everyone is connected with a processor

array (PA) of 2n - 1 processing elements.

I. T. Dimou, 0.1. Toneo / Monte Carlo algorithms 255

where Lk means the kth iterate of L. Special interest lies in the case in which the
corresponding infinite series converges. Its sum then is a function u which satisfies the
equation

u = L(u) +f,

and the truncation error of (2) is

Ll,-u=Lk(u,-u).

(3)

The solution procedure of (1) by the Monte Carlo method will now be described in correspond-
ingly general terms. Consider the space [w” over which the functions f, z+, ul,. . . are defined.
Let J(uk) be a linear functional that is to be calculated. A probability distribution is now set up
on each of the spaces

q= [w”x[w”x .a. x[w”, i=l,2 ,..., k, (5)
i times

where “ x ” denotes the Cartesian product of spaces. Random variables oi, i = 0, 1,. . . , k, are
defined on the respective product spaces q and have conditional expectations

E0, =.+,), E(8, I&) =+1), . . . ,E(& I’&) =+k). (6)

Thus the problem is reduced to the estimation of the conditional expectation E(8, IO,). The
computational problem then becomes one of calculating repeated realizations of 8, and
combining them into an appropriate statistical estimator of J(u,). Because of the nature of the
process, every realization of 8, is a Markov chain. So, we will next use the Markov chain as a
synonym of the realization of a random variable of this type. As approximate value of the linear
functional J(u,) is used

J(Uk) = - ’ 2 {ek)s, n s=l
(7)

where {e,}$ is the sth realization of the random variable 8,. The probable error r, of (7) is then
[51

rN=c0,z(T(6)ekN-1'2, (8)

where co.5 = 0.6745 and a(e)e, is the standard deviation.
Suppose there are different Monte Carlo algorithms to solve a problem. It follows from (8)

that the computational effort for the achievement of a preset probable error is proportional to
ta2(e)e, where t is the expectation of the time required to calculate one realization of the
random variable 0. The product ta2(0)0 is called the labour consumption coefficient, whereas
[to2(0)0]-’ is a measure for the efficiency. In these terms the optimum Monte Carlo algorithm
is the one with the lowest labour consumption coefficient.

We shall consider the theory for two special cases of the operator L.
(i> L is an ordinary integral transform

L(u) = j” k(x, Y>U(Y> dy.
G

(9)

(ii) L is a matrix and u is a vector.

256 LT. Dimov, 0.1. Tonev / Monte Carlo algorithms

Let us consider the problems for the first case. They consist in calculating

J(u) = (g, u) = /,-g(x)u(x) dx,

where G E R”, and g(x) E L,(G) is an arbitrary function. In this case, (3) becomes

u(x) = j$x, Y>+> dy +f(x),

(LO)

(11)

and the random variable whose mathematical expectation coincides with J(U) is

g(So) m
OLgl = P(tO> j=O - C Qjf(tj)y (12)

where

and to, &,... is a Markov chain in G with initial density function p(x), and transition
densities p(x, y), which are admissible ’ for g(x) and k(x, y), respectively.

This formulation includes many boundary problems as well. Let us consider a typical
problem of the quasi-electrodynamics:

Au(x) -m(x) = -f(x), x E G, (134
u(x)=+(x), x~aG. (w

From the theory of fundamental solutions there follows that the solution of (13) can be
represented [5] as the integral equation (11) where

d&

k(x~ Y) = sinh(d&)
fqY -x>, when x@aG,

0, when xEaG,

(14)

1
1

-1 f(x)= 47r

sinh((d- IY -~l)fi)~(~) dy

I y -x I sinh(dG)
7 when x@aG,

(15)

e>, when XE~G,

and d = d(x) is the distance from x to the boundary aG. The Monte Carlo procedure for
solving this problem is known as the “spherical process”. To ensure the convergence of the
process, we introduce the e-strip aG, = {x E G: d(x) < E} of the boundary, and assume that
u(x) is known for all points in aG,. Then,

I/-k(x, y)k(y, 2) dy dz G /a(~ -x)/W -Y> dz dy = /-a(~ -4 dy

EL
<l--

4&“, ’
(16)

’ p(x) is admissible for f(x) if p(x) > 0 when f(x) > 0.

I. T. Dimov, 0.1. Tonev / Monte Carlo algorithms 257

where dsup is the supremum of all radii of the spheres lying in G. Inequality (16) ensures the
convergence of the von Neumann series and therefore of (12), too.

In the second interpretation, when L is a matrix, the recurrence (1) takes the form

Uk+i = KU, +f, (17)

where uk, Uk+i and f are vectors and K is a matrix.
Knowing K = (kap)$=l, and u. = <u!, . . . , u:), we can find the solution of (17):

u,=Kkuo+Kk-‘f+ a.. +~f+f= (I - K~)(I - K)-‘f+ K~u~, (18)

where I is the unit matrix and the matrix 1- K is supposed to be nonsingular.
It is well known that if and only if all eigenvalues of K lie within the unit circle of the

complex plane, there exists a vector u such that

u= limuk,
k+m

(19)

which satisfies the equation

u=Ku+f. (20)

If the Neumann series for u does not converge, there exist some other procedures (e.g.,
extension of the resolvent, isolating the poles of the resolvent and so on [lo]) to construct a
convergent Monte Carlo method. The same can be used also when the series is convergent but
its rate of convergence is slow.

As an illustration let us consider the problem of evaluating the inner product J(u) = (g, u),
where g E R” is a given vector and u is the solution of the system of linear equations

Au=b, (21)

with b = (b,, . . . , b,).

We can choose a nonsingular matrix M such that

bZA=I-K (22)

and

Mb=f, (23)

and then (21) becomes

MAu=Mb, (24)

which is equivalent to (20). With M and A both nonsingular, and K having its eigenvalues all
inside the unit circle, (17) becomes a stationary linear iterative process [2].

We will next construct a Monte Carlo algorithm to solve the above problem, i.e., to calculate

To do that we will use a method similar to those used for solving the first kind problem (i.e.,
the continuous case) [13].

2.58 I. T. Dimou, 0.1. Toneu / Monte Carlo algotithms

Let us consider the integral equation

U(X) = / k(x, Y)U(Y> dy +f(x),
G

(26)

for which G = [0, m) is a one-dimensional segment divided into equal subsegments G, = [a -

1, a), (Y = 1, 2,. . . , m, such that

i

+,Y) =k,,, LEG,, Y ~$7

f(x) =fa, XEG,.
(27)

Then (26) in G, becomes

and if we denote

up = lG;’ Y) dy>

we obtain (in G,)

44 = Ck,pUp +f,.
P

From (30) there follows that U(X) = u,, and so it becomes

u, = C&.+$3 +fa7
P

or in matrix form

u=Ku+f.

Then similarly to (12) we construct the random variable

o[gl = : c Q,fiu~
0 v-o

where

P-9

(30)

(31)

(32)

(33)

Q,= 1,
k(tj-ly sj>

Qj = Qj-l p(tj_l, lj) ’
j = 1

’
2

>*-*,

and lo, l,,.. . is a Markov chain constructed according to the probability densities which are
admissible for g and K = (k,,), respectively.

If the rth component of the vector u = (zQ,. . . , urn> is to be calculated, we can choose the
vector g = e(‘) with the rth component unity, the other components all zero.

The inherent parallelism of the Monte Carlo methods lies in the possibility of calculating
each realization of the random variable 8 on a different processor (or computer). There is no
need for communication between the processors during the time of calculating the realizations
- the only need for communication is at the end when the averaged value is to be calculated.

To estimate the performance of the Monte Carlo algorithms, we need modifications of the
usual criterion [12]. The modification consists in replacement of T,(d) (which is the time

I. T. Dimou, 0.1. Tonev / Monte Carlo algorithms 259

required for a set of p processing elements to solve the problem using an algorithm &) with
the mathematical expectation ET,(&) of this time. That is so because of the nature of the
Monte Carlo method.

The criteria for speedup and paralleling efficiency 2 of an algorithm ti will be as follows:

Sp(4 =
Ewe
ETpW)

and

SPP?
E,(&q = ~

P .

The classical problem

Au= -f(x), XEG,

u(x) =$(x), x E aG,

where x=(x1,..., x,)EGcK,={O<x<l, i=l,2,.
Our aim is to calculate the linear functional

,, n} is considered.

(364
Pw

J(u) = (8, u> =/$+(x) dx. (37)

We will next consider three Monte Carlo algorithms for the calculation of this product.

(34)

(35)

3. Algorithm d

Using a regular discretization with step h, (36a) is approximated by the difference equation

A’h”‘u = -fh, (384

or solved for the ith point i = (i,, . . . , i,):

h2
ui = L,u + Zfi, WV

where At) is the Laplace difference operator, and L, is an averaging operator. For example,
the operator L, in R2 is

L,U = +[Ui&l,j + Ui+l,j + Ui,j-1 + Ui,j+l] = $n,(i, j)>

and then (38b) becomes

ui,j = $A,(i, j) + $h2fi,j. (39)

The approximation error of (38) is

I ui - u(xJ I = O(h2). (40)

We need h = I& to ensure consistency of the approximate error and the probability error.

* The paralleling efficiency is the measure of the price to be paid for the speedup achieved.

260 I. T. Dimou, 0.1. Toneu / Monte Carlo algorithms

The matrix form of equations (38) is of the type of (32) but the matrix there has only 2n
nonzero elements in every row and they all are equal to 1/(2n).

The Monte Carlo algorithm for solving (37) consists in simulating a Markov chain with initial
density pO, which is admissible to the vector g, and probability pap for transition from the point
(Y to the next point p equal to 1/(2n) if the point is inner, and equal to 0 for boundary points
(the boundary is the absorbing barrier for the process). The random variable whose mathemati-
cal expectation coincides with the solution of the problem is

.?+2 i*-1

(41)

where fi are the values of the function f in the points of the Markov chain, and i* is the point
where the Markov chain reaches the boundary aG,.

Every transition in the Markov chain is done following the algorithm
(i) generation of a random number (it is usually done in k arithmetic operations where

k = 2 or 3);
(ii) determination of the next point which includes a random number of logical operations 3

with expectation equal to ~2, and maximum 2n (n is the space dimension) and one algebraic
operation to calculate the coordinates of the point.

Let m,(h, n) be the mean number of steps required to reach the boundary for a process (or a
chain) starting at the point i and m(h, n) is the vector with coordinates m. Then m(h, n> is the
solution of the difference problem

2n
mi=Lhm+(pi, iEG h? vi= 2’ h
m, = 0, iGaG,,.

If {m$h, n)} is the solution of problem (42) in the unit cube K,, then the following
inequality holds:

mi(h, n) am,(h, n), i = 1, 2,. . . . (43)

The difference problem for mi(h, n> could be approximated by the problem

Am’(x) = - 9, XEK,,

m’(x) = ; g (XI-X:), XEaK,,
l-l

where the error is of order O(1).
Let M be the maximum of m’(x), i.e.,

(44)

This value is independent of the problem dimension and could be reached when xl = +,
I= 1, 2,. . .) n.

3 The logical operation means testing the inequality “a < b”.

I. T. Dimov, 0.1. Toneu / Monte Carlo algorithms 261

The result in (45) is natural because the inverse operator of A(hn) is uniformly bounded over
h, and so it follows that

c(n) 1
m,(h, n) = 7 +o 2 .

i I (46)

Thus, A4 is an upper bound for the expectation of the number of steps in a Markov chain,
which is a realization of the random variable 19. To achieve a probable error E, it is necessary to
average N realizations of the random variable 8 where

u”(e)e
N = c;,~ ~

E2 * (47)
The expectation of the number of all transitions R in the Markov chain will then be

1

Let 1, and I, be the number of suboperations of the arithmetic and logical operations,
respectively. Then the expectation of the time required to achieve a probable error on the
serial model using the algorithm JZZ is

ET,@‘) = ~[(k + I+ Y&A + (n + I+ r,)i=](l(c~.~~(~)e))2~~

where yA and yr are the number of arithmetic and logical operations to calculate the distance
from a given point to the boundary aG. Here we assume that f(x) = 0 in (36a), because the
number of operations to calculate a value of f(x) in an arbitrary point x varies for different
functions f.

In the case of the third model we suppose that it is possible to choose the number of
processors to be

Then

E7&@‘) = ~[(k + 1 + Y/& + (n + 1 + y$r] ;> (51)

S,(d) =P (52)

and

Q(-@) = 1, (53)

i.e., the paralleling efficiency has its maximum value in terms of the modified criterion.
The speedup can be improved using the fourth model. In this case all 2n logical operations

at each step of the Markov chain are done simultaneously, and so

J-2,,@‘) = 2 [(k + 1 + Y& f 31,] > (54)

S,,,(4 =P 1 +
i

n+lfy, 1,

k+l+y,,
iii

1+
3 1,

k+l+y*l, ’ i
(55)

and S,,,(ti) > S,(J@‘) when n + 1 + YL - 3.

262 LT. Dimou, 0.1. Tonev / Monte Carlo algorithms

The paralleling efficiency is

1+
n + 1 + yJ_ I,

k+l+y*l,
1+

Assuming the pipeline model [6,7] to have I, segments, we obtain the following results:

k -t 1 + yA I,
1+

s+k+l,+y,

n+1+y&- n+l+y,

(56)

(58)

From (55) follows that S,,,(ti) > 1 when s, 1, and ?A meet the inequality

s < (1, - W + Y/,), (59)

which is not a real restriction, but it becomes obvious that algorithms like JY are not well suited
for the pipeline model. This follows from the formula for S,,,(d) which does not have a factor
l/c, whereas S,(d) = O(E-‘).

Special Monte Carlo algorithms can be constructed for the pipeline computers which are
known as vector algorithms [8]. Such an algorithm will be considered later.

4. Algorithm ~23’

Let us consider again the problem of calculating the inner product (g, U) with a preset
probable error E.

The discretization formula for the Laplace equation

Ui,j,k = iiAi,j,k) (60)
stated in Appendix A, leads to the random variable

0 = @(5),
where 5 is a random point on the
coincides with the required value.

The Monte Carlo algorithm for
repeated realizations of 6’ which are
transition probabilities

(61)
boundary i3G,. The expectation of this random variable

estimating the expectation of 8 consists in calculating
Markov chains with initial density p0 admissible to g, and

when CYEG~,

when (Y E aG,,

where

is the Kronecker notation. Next, we consider the problem of estimating the number of
operations R required to reach the probable error E.

I. T. Dimov, 0.1. Tonev / Monte Carlo algorithms 263

From (48) it follows that the estimators for the number of realizations N and the number of
transitions M in one Markov chain have to be obtained.

The number of realizations N is independent of the algorithm used, and is given by

Let us find an upper bound for the number of steps M in a Markov chain. To do that we
consider the following problem. Let D be a plane in R3 and 0 be the half-space bounded by
D. The domain fl is replaced by a set of points wh using a regular discretization. The Markov
chains in the algorithm B are random walks in oh that begin at a point chosen according to
the initial density p 0; the next point is selected according to the following stipulations.

(i) About the inner point cr determine the maximum approximation molecule 4 I.
(ii) With probability pap = i, select the point /3 uniformly at random on ~(a).

(iii) If the point j3 is on the boundary, the Markov chain is terminated and the process begins
again at a point chosen correspondingly to p,,. If the point p is an inner point of wh, then step
(ii) is repeated using p in place of (Y.

Our aim is to estimate the number of inner points passed by until a boundary point is
reached.

Let T be a random variable that is the number of steps in a Markov chain, and T, be the
number of steps in the vth Markov chain [l]. Then

P{T, = k} = (;)k-l;, (63)
and the expectation of the random variable T is given by

ET= c k($)k-l+ = 6.
k=l

(64)

This result gives an upper bound for the number of steps in a Markov chain, i.e.,

M,< 6;

so in this case

For one transition in the Markov chain we have to do the following operations:
- yA arithmetic and 5 logical operations to find (calculate) the distance from the point to the
boundary aG and 1 logical operation to verify if this distance is nonzero, i.e., the point is not on
the boundary;

(65)

- k arithmetic operations for the generation of a random number;
- 3 logical and 1 arithmetic operations for calculating the coordinates of the next point.

So, for a serial model it is obtained that

ET&B) = 67[(k + 1 + y/+)1/, + 91,] (67)

4 The approximation molecule PC(Y) for the differential operator is the set of mesh points used for approximation of
the derivatives in the operator at the point (Y.

264 I. T. Dimov, 0.1. Tonev / Monte Carlo algorithms

and for the third model with p = (c~,,o(~)/E>~ processors the expectation is

ET&S’) = 67[(k + 1 + 3/$, + 941. (68)

Then the coefficients for the speedup and the performance are

S,(S) =P

and

(69)

(70)

which means that one could achieve the optimum performance.
The calculation of repeated realizations of a random variable do not need any communica-

tions between the processors, so the mathematical expectation of the idle time of the
processors is zero.

The value of S,(&‘) could be improved with the fourth model. In this case all logical
operations for determining the next point in the Markov chain and these for finding the
distance to the boundary could be fulfilled at two clock periods, and so

ET,,(B) = 6r((k + 1 + 3/JZ, + 51,) (71)

and

(k + 1 + Y*)I* + 91,

WB) = (k + 1

For the performance coefficient we obtain

9 4_

ii!

5 1,

k+l+r/,l,
l+

k+l+y,I, i
< 1.

(72)

(73)

It is obvious that increasing the number of processing elements will involve increasing the
idle time, i.e., efficiency will decrease.

Let us now consider the pipeline model with 1, segments for performing the arithmetic
operations. In this case the coefficients of interest become

E&J 25’) = 67(s + k + I, + 3/A + 94)

&,+.(&?) = 1 + $(k + 1 + YA);
L

P-4)

(75)

and the sufficient condition for S,,,(S) > 1 is

s <(‘A- W+yA),

which holds for all real computers.

(76)

I. T. Dimov, 0.1. Tonev / Monte Carlo algorithms 265

As in the case of the algorithm &, one can see that this algorithm is not the best one for
pipeline computers.

5. Algorithm E’

There exists a different approach to the solution of problem (36) which uses the integral
representation [141

- U(Y$
1

an, IX-YI 1 ds,, (77)

for f(x) = 0 and II = 3.
Representation (77) allows us to construct a Monte Carlo algorithm, called spherical process

for computing the inner product (g(x), u(x)). The algorithm is as follows.
(i) We choose an E-strip aGE of the boundary aG and suppose that the solution of problem

(36) is known in aGE.
(ii) The starting point x0 is to be chosen with respect to the initial density p(x) which is

admissible for the function g(x).
(iii) The next point is chosen to be equidistributed on the maximum sphere in G with the

center in x0. The formula for computing x, from x,_, is

x, =x,-r +Wnd(Xn_J, Iz = 1, 2)...) (78)

where w is a unit vector uniformly distributed on the unit sphere. Then, if X, E G\ aG, the
process continues by determining the next point from (781, whereas if x, E aG, the process is
terminated with setting up 13, = u(x,).

The value 8 is the nth realization of the random variable 8. Then, using N such realizations,
we construct the approximation of the solution

(g, u> = ; t 0,. (79)
n-l

The number of steps M in a realization of the random variable 8 is

M=clln ~1, (80)

where c depends on the boundary aG [5,11].
To ensure a probable error E, it is necessary to do N realizations where N is chosen from

(62). Then for the expectation of the number of steps we obtain

and each step consists of yA arithmetic and yL logical operations for finding d(x), 2k
arithmetic operations for generating two pseudo-random numbers (when it = 31, qA arithmetic
operations for calculation of the coordinates of the next point and 1 logical operation to
determine whether x E aG.

266 I. T. Dimou, 0.1. Tonev / Monte Carlo algorithms

It then follows that

,lrl E
ET,(g’)= r[(2k + YA+qA)lA + (YL+l)lA]c(cO.S(T(~)~) 77

whereas for the third model with p = (c,,,a(0)/~)~ processors it follows that

ET,(e) = r[(2k + YA + QA)~A + (YL + l)lL]c In E,

and so for the speedup and paralleling efficiency we obtain

S,(%) =p = O(E_2)

and

E,(g) = 1.

If the fourth model is considered, a greater speedup can be achieved:

&5,(~‘) =P 1+
i

2k+?‘,+q,

YL+l

but the paralleling efficiency decreases:

l+

1+
2k+YA+qA l,

YL+l IL
l+

(82)

(83)

(84)

(85)

(86)

(87)

In case of the pipeline model with 1, segments, the respective results are

,ln E

and

ETpipe(@) = 7(S + 2k + yA + qA + 1, - 1 + (ye + l)~,)+,,~(~)~) -
E2 (88)

2k+YA+q, 1,
l+

s+2k+yA+qA+l,-1 1

YL+l L YL+l
(89)

and S,,,(G9) > 1 when the inequality

s < (2k + yA + qA - l)(Z, - 1) (90)

holds. But it is met for the real computers where a speedup greater than one could be
obtained.

In Appendix B all results concerning algorithms &‘, L&’ and SF in the case 12 = 3, f(x) = 0 and
p = (c,,,(T(~)/E)~ are enumerated.

There one can see that the rates of increasing the time required to achieve a preset probable
error E using algorithms ~9, ~8’ and ‘8’ are O(~/E), O(1) and O(ln E), respectively. Thus,
algorithm 9 is faster than algorithms LZ? and %.

On the other hand, it is obvious that the speedup and the paralleling efficiency coefficients
are greater for MIMD architectures (models (3) and (4)) than those for the pipeline architec-
ture (model (2)). That is so, because the increase of the number of processing elements in
models (3) and (4) involves an increase of the speedup with the same factor, while the
paralleling efficiency remains constant. The formulae in Appendix B show that the third model

I. T. Dimou, 0.1. Toneu / Monte Carlo algorithms 267

is the best one for such algorithms, because their paralleling efficiency is unity, i.e., the idle
time of its processing elements is zero.

The Monte Carlo algorithms described include a wide range of problems with probable error
of type

YN
= (-N-1/2-E(n)

9

where ~(~11 > 0 is a nonnegative function of the dimensionality of the problem. Such methods
can be found in, e.g., [4,13].

The Dupach algorithm is constructed for calculation of integrals of functions from W(‘)(M, G)
with partially continuous derivatives limited by M. It consists in the following. The domain G is
divided into subdomains Gj which are uniformly small by probability and by measure, i.e.,

Pj=IGP(X) dx G $7 d,= sup Ix1 -x2] i&.
I XI, X*tG/

Random points are generated in different subdomains. This allows to obtain a greater rate of
convergence with E(Y~) = l/n.

In [4] an overconvergent Monte Carlo method for solving (111, (12) has been considered. The
algorithm results from the special way of separation of the domain G.

In this case the random error becomes

YN
= c~-1/2-W@-1))

>

i.e., l (n) = l/(n(k - l)), where k comes from the truncated Neumann series (2).
In this case every Markov chain is realized in one of the subdomains Gj. This means that the

only difference between the algorithm described above and this algorithm is the probability
density function which does not change the speedup and efficiency estimators.

In [3] an optimum (with a minimum standard deviation) algorithm for problem (9), (10) is
proposed. This algorithm has a minimum probable error.

It is obtained using the idea of the importance sampling technique for construction of the
transition probabilities in the Markov chain.

As the only difference between this algorithm and the classical one is the probability density
function, it is obvious that the estimations for the speedup and the efficiency are the same.

However, the Monte Carlo algorithms described above are not well suited for pipeline
architectures. Thus, if one wants to achieve greater speedup on pipeline computers, it is
necessary to construct special Monte Carlo algorithms.

6. A Monte Carlo vector algorithm

There are Monte Carlo algorithms called vector algorithms which are more efficient for
pipeline computers.

Let us now consider an approach to solve the problem

R,(A)u(x) = (- l)“f(x), x E G c R2, (914
A%(x) -+&(x), x+xg, xg E =, (9 lb)

268 I. T. Dimou, 0.1. Tonev / Monte Carlo algorithms

where

R,(A) = A” + c,/Y-’ + * *. +c,_,/l + c, (92)

is a polynomial with real zeros and A is the Laplace operator [8]. This is a common problem in
the investigation of the beam penetration in multilayer targets.

Suppose that all conditions ensuring the existence and the uniqueness of the solution of
problem (91) are met [14] and all zeros of the polynomial R,(A) are real numbers. Let
A r,***, A, be the zeros of R,(A).

Then the problem (91), (92) can be given the following representation:

‘(A-A&l=(-l)“f(4,
(A -A&, = ~1,

< *

iA -A,,&, = u,,-~,
u,=u,

with the boundary conditions

where

Then the

(93)

(94)

(95)

(96)

(97)

u,(x)+f,(x)+b;f,_,(x)+ .*’ +b,“_,f,=W,(x), s=l,...,m,

(bi"=b;+'+A,bj"_,, j=l,..., s-l,

b;=l, bTfl=ck, k=l,..., m-l.

discrete problem becomes

u~,~ = f 5 u~,~ - $h2A,pk,o - +h2u,_,,o, k = 1,. . . , m,
i=l

u,,o=fo=(-l)mf(x), =Gh.

Using the notation k = (1 + $h2Ai)-l, i = 1,. . . , m, one can obtain the following system of
linear algebraic equations:

/

U m,O = k?z i i Um,i- $h2Um-l,o)T
k=O

U m-l,O=km-l
<

$ um-l,i- +h2um-2,0
I=0

i ,$ul,~-$h2f, i=l ,...,m,
z=o

(98)

or represented in a matrix form:

U=AUtF, (99)

I. T. Dimov, 0.1. Toneu / Monte Carlo algorithms 269

where U = (urn a, u,_~ O,. . . , u1 JT and each uk 0 is a vector with m,m, components (here m,
and m2 are the number of points along x1 and’ x2, respectively),

A=

(

\

/ m

(-+h*)“-$kiL,,
\

k?Al - $h2k,k,_,L,, . . .
i=l

m-l

0 k L/l m-l
..a (-$h*)“-* n k,L,

i=l
(100)

0 0 . . . w% J

T

F= l~ki(-+h2)m,...,
(

(-$h2)*k2kl, (-+h*)k, (101)

In what follows we will denote by W= (w,(x), . . . , w,(x))~ the boundary conditions vector.
Obviously, (99) is of type (20) but one in which u and f are vector functions.
This interpretation allows for constructing a Monte Carlo vector algorithm. We introduce

matrix weights in the following manner:

120 = {‘ij}Tj=l, Qj = Qj-1
k(xj-1, Xj)

PCxj-l' xi) ’
where

@n-l, xn) = fik
I=i

,+-I(- $h2)t-iL,, i, j

Then the random variable 5, with Et, =J(U) is

i*

=

where i* is a random variable that is the length of the Markov chain constructed, and J(U) is a
linear functional of the solution U. Each Markov chain is a realization of the random variable
tX. From the law of large numbers follows that we need N realizations to estimate the
mathematical expectation of (,, i.e., the linear functional of the solution U.

Each realization is done according to the following algorithm.
(i) The process begins at the point x0, chosen according to the initial density, and

accumulate in lo the values of F,.
(ii) From the point xk we go to the next point xl depending on the transition densities pkl

and
if x E G,, then to = LJ~ + Q,F, and the process continues with a transition to the next point

(according to step (ii));
- if x E aG,, then to = co + Q,w, and the process is terminated;
- if the boundary aG, is reached at the point xi+ and on the sth step, then

270 I.T. Dimov, 0.1. Tonev / Monte Carlo algorithms

This algorithm is used to solve the problem

AAAu(x) = (-1)3f(x), x E G, x = (x1, x2),

Aku(x) +fk+l(x), when x +x,,, x0 E aG, k = 0, 1,2,

where G = {(x,, x,): 0 <x1 < 1, 0 <x2 < 11 is the unit square, and

I

f(x) = 2 * 36 sin 3x, + 26 cos 2x2,

fI(x) = 2 sin 3x, + cos 2x2,

f2(x) = - 18 sin 3x, - 4 cos 2x2,

f3(x) = 2. 34 sin 3x, + 24 cos 2x,.

The corresponding system of differential equations is

I

Au, = (- l)“f(x),
AU,=U,,

Au, = u2,
Lb3 =u,

and using a grid of mesh size h = 0.1, we obtain the difference system

u=Au+F,

where

u = (U&O, u2,0, 4,01T~

I

L -$h2L, (-+h2)2Lh’

A=0 L, -+h2L, 9

,O 0 L,

F=((-+h2)3, (-+h2)2, (-;h2))T(-l)3f(x),

and the boundary conditions vector is

w= (f3WY f2(47 fib))=.

The random vector tk is

&=h+Qs%

Table I

(108)

(109)

WO)

(111)

(112)

(113)

(114)

Points Exact solution Monte Carlo solution Relative error

(0.6, 0.8) 2.6444 2.6790 - 0.013

(0.2,O.S) 1.6696 1.6895 - 0.012

I. T. Dimou, 0.1. Toneu / Monte Carlo algorithms 271

where

/
z?(s + l)(-$q3’

Q,4 = (s + I)(- +h2)2 (- 1)3f(+

\

1 2
-4 h I

(115)

(116)

’ f, + s(- +h2)f2 + R(s)(- $h2)‘f, ’
Q,K = fi+s(-ifh2)f, 2 (117)

\ fl I
where R(1) = 1, R(s) =s +R(s - 1).

In Table 1 the results from the solution of the problem in two points over 3000 realizations
of the random variable are shown.

Appendix A

Consider the boundary-value problem

Au(x) = 0, x = (x1, x2, x3) E G,

and the boundary condition

z+)=$(x), XE~G.

(A4

Using the finite-difference technique, one can derive a system of
solution approximates the solution of (A.l). The system depends
molecule for the Laplace operator.

(A4
linear equations whose
on the approximation

Let us consider the usual seven-point approximation molecule. The equation which approxi-
mates (A.11 in the point xi = (i,h, i,h, i,h) is

AI(ui) - 6uj = 0, (A.3

where

AI = u((i, + l)h, i,h, i,h) + u((i, - l)h, i,h, i,h) + u(i,h, (i, + l)h, i,h)

+ u(i,h, (i, - l)h, i,h) + u(i,h, i,h, (i, + 1)h) + u(i,h, i,h, (i, - l)h),

(A.4

and h is the mesh size of the discrete domain aG,. For brevity, in what follows we assume h to
be unity.

Using (A.3) for all terms in (A.41 we obtain

Ui = & [A2(ui) + 2A,,m(ui) + 6~,] 7 (fw

272 I. T. Dimou, 0.1. Toneu / Monte Carlo algorithms

where

A,,,(uj) = u(i, + 1, i,, i, + 1) + u(i, - 1, i,, i, + 1) + u(i, - 1, i,, i, - 1)

+ u(i, + 1, i,, i, - l)+u(i,+l,i,+l,i,)+u(i,,i,+l,i,+l)

+ u(i, - 1, i, + 1, i3) + u(i,, i, + 1, i, - 1) + u(i, + 1, i, - 1, i3)

+ u(i,, i, - 1, i, + 1) + u(i, - 1, i, - 1, i3) + u(i,, i, - 1, i, - l), (A.6)

and A,(u) is obtained from the formula

Ak(ui) = u(i, + k, i,, ix) +u(i, -k, i,, i3) + u(i,, i, + k, ix)

+ u(i,, i, -k, i3) + u(i,, i,, i, + k) + u(i,, i,, i, -k),

when k = 2.
If we use the Taylor formula for terms in A r,,j~~), it is easy to construct another

approximation molecule for (A.l) which leads to

A,,,(UJ = 12U,. (A.?

Then (AS) becomes

ui = $A2(ui), (A4

which is of the same type as (A.31 but the step in the approximation molecule is 2. Application
of the algorithm described above leads to the following theorem.

Theorem 1. Let xi = (i,, i,, i3) be an arbitrary point in G, and k be the radius of the largest
sphere in G, with the centre in xi. Then the following equation holds:

ui = :A&,). (A.9

To prove this theorem some preliminary statements are needed.

Lemma 2. For each integer k the following formula holds:

A&i) = + [4+1w + 4-1w + &w] 7 (A.lO)

where

Ar,(ui) = u(i, + k ,i,+l,i,)+u(i,+k,i,,i,+l)+u(i,+k,i,-l,i,)

+ u(i, + k, i,, i, - 1) + u(i, -k, i, + 1, i3) + u(i, - k, i,, i, + 1)

+ u(i, -k, i, - 1, i3) + u(i, -k, i,, i, - 1) + u(i, + 1, i, + k, i3)

+ u(i,, i, + k, i, + 1) + u(i, - 1, i, + k, i3) + u(i,, i, + k, i, - 1)

+ u(i, + 1, i, - k, i3) + u(i,, i, - k, i, + 1) + u(i, - 1, i, - k, i3)

+ u(i,, i, -k, i, - 1) + u(i, + 1, i,, i, + k) + u(i,, i, + 1, i, + k)

+ u(i, - 1, i,, i, + k) + u(i,, i, - 1, i, + k) + u(i, + 1, i,, i, -k)

+ u(i,, i, + 1, i, - k) + u(i, - 1, i,, i, - k) + u(i,, i, - 1, i, - k).

The proof of Lemma 2 follows from (A.31 and (A.6).

I. T. Dimou, 0.1. Toneu / Monte Carlo algorithms 273

Lemma 3. For an arbitrary integer k it follows that

f (k-3)/2

g (- 1)‘(12n,-,,-I (uJ - ‘Ik_*[_&Li)) + (- l)[“/“li&J,

ii,(u,) = ((k-2),2 k Odd, (A.ll)

c (-1)‘(12A k-21-1(q) -L&i)) + (- l)[k’Z1&(q,
l=O

\ k even,

where [t] means the integer part of t, and

‘k(‘i)

=u(i,+k, i,+l, i,- 1) + u(i, + k, i, + 1, i, + 1) + u(i, + k, i, - 1, i, + 1)

+ u(i, + k, i, - 1, i, - 1) + u(i, - k, i, + 1, i, - 1) + u(i, -k, i, + 1, i, + 1)

+ u(i, -k, i, - 1, i, + 1) + u(i, -k, i, - 1, i, - 1) + u(i, + 1, i, + k, i, - 1)

+ u(i, - 1, i, + k, i, - 1) + u(i, - 1, i, + k, i, + 1) + u(i, + 1, i, + k, i, + 1)

+ u(i, + 1, i, - k, i, - 1) + u(i, - 1, i, -k, i, + 1) + u(i, - 1, i, -k, i, - 1)

+ u(i, + 1, i, - k, i, + 1) + u(i, + 1, i, - 1, i, + k) + u(i, + 1, i, + 1, i, + k)

+u(i,-l,i,+l,i,+k)+u(i,-l,i,-l,i,+k)+u(i,+l,i,-1,i,-k)

+ u(i, + 1, i, + 1, i, -k) + u(i, - 1, i, + 1, i, -k) + u(i, - 1, i, - 1, i, -k).

Proof. Using formula (A.71 for each term in A,_I(~i>, we obtain

12A,_,(‘,) =~k(“i) +X/._l(Ui) +~,_,(“i)

or

A,(u,) =Ak_Z(Ui) +xk_l(Ui) - 12A,_,(ui),

and applying it recursively yields (A.ll). q

Lemma 4. For an arbitrary integer k the following formula holds:

C (-l)‘nk_2,_,(ui) + (-l)‘k-21/1~(~i), k odd,

[F. (- l)‘~k-21-,(Ui) + (- l)[k-21&(u,), k even.

Proof. Using the Taylor formula one can derive the approximation formula

A,,,(q) = gq,

where AI,, = $,(ui).

(A.12)

(A.13)

(A.14)

274 I.T. Dimov, 0.1. Tonev / Monte Carlo algorithms

Then applying this formula for all terms in Ak_ I(ui), we obtain

8A,_,(u,) = &(ui) +x,-&J

or

&(z.+) = -8&-&J +&&+),

which leads to (A.13). 0

(A.15)

Proof of Theorem 1. When k is unity, (A.9) becomes the usual approximation formula (A.3).
We will prove (A.9) when k = II, provided it holds for all k = 2, 3,. . . , n - 1.
From Lemma 2 it follows that

U%) = +[A,+,(%) + A,-,(%) + JU%)] Y

and according to the above assumption

A,&,) = +[n,+,(q) + 6q +&(q)],

and so for k = II, (A.9) becomes

ui= ~[An+l(ui)+6u,+il,(u,)]. (A.16)

Without any restrictions of generality we assume that it = 2m - 1. So using Lemmas 3 and 4
we obtain

m-2

/i *m-d%) = g (- I)‘[12~2(m-I-I)(~i) - X2(m-l-I)(%)] + (- 1)“M4

m-l-2

12A2(m-1-&) - 8 c (-l)“A,,m-z-,(4
s=o

- (- l)“-‘-‘llo(Ui) + (- l)“lil,(UJ. 1
From the definitions follows that

(i&) = 24u, and AI = 24ui,

and from the assumption that

A,@,) = 6ui,

when j < ~1. Then
m-2 m-l-2

II’ 2m_1(ui) = ,Fo (- 1)’ 72u, - 8 sFo (- 1)‘6u, - (- l)“-‘-‘24~~ + (- l)m24ui 1
m-2 m-2 m-l-2 m-2

=72i+ c (-l)‘-48ui c (-1)’ c (-l)‘- c (-l)“-‘24~~
I=0 l=O s=o l=O

+(-l)m24ui=24ui,

I. T. Dimou, 0.1. Toneu / Monte Carlo algorithms 275

and (A.16) becomes

ui = &[A,+,(u~) + 30~~1 or ui = iA,+,((A.17)

The case when k = 2m is similar. 0

Theorem 1 is used to construct a Monte Carlo method for finding the inner product of a
given vector g with the solution of the system (A.3).

The algorithm is as follows.
(i) The start point x0 is selected according to a density admissible for g.

(ii) Determine the mesh distance d,(x,) from the selected point x0 to the boundary; the
next point is selected from among the neighbours on the seven-point approximation molecule
with step d,(x,);
- if the point is on the boundary, the process terminates;
- otherwise the process continues with (ii).

Appendix B

Here all the results for the values of interest are summarized.

B.1. Algorithm d (f(x) E 0, P = (C&do) /Ej2)

ET,@‘) = T((k + 1 + y& + (n + 1 + y$&.

ET2,&4 = r((k + 1 + y/,)/A + 3&

Spipe(d) = ' +

i

k + 1 + yA I,
-

n + 1+ yr_ 1, i/i
1+

s+k+I,+y* 1

nflfy, C’ I

$@q = P,

L&q =P 1 +
i

n + 1+ yr 1,

iii

3 4/

k+l+y*c
1+

k+l+y*l, ’ i

Jqg = 1,

E2npW = ; 1+
i

n+l+y, 1,

k+l+y,I,
l+

276 I.T. Dimov, 0.1. Tonev / Monte Carlo algorithms

B.2. Algorithm ~8 (f(x) = 0, n = 3, p = (cO,,a(0) /d2)

ET,(S) = 67((k + 1 + yA)lA + 91,)

ET,_& ~4.7) = 67(s + k + I, + 3/* + 91,)

ET&%‘) = 67((k + 1 + yA)Z, + 91,),

ET,,(Li?) = 6T((k + 1 + y/&, + 5Z,),

$j,(*) =P i 9 1+ 1, 5 1+ 1,

k+l+rAI, k+l+rAl, ’ I

E,(B) = 1,

E&q = ; 9 1+ 1,

k+l+y,l,
l+

B.3. Algorithm %? (f(x) = 0, n = 3, p = &,,a(@ /E)~)

ET,i,,(~) = T(S + 2k + YA + qA + I, - 1 + (yL +

=+YA+qA l,
l+

S+2k+yA+q,+l,-1 1

YL+l IL YL+l

qg’) =P,

2k+YA+qA I,

YL+l c

1+

qq = 1,

J!&(d) = ; 1+
zk+Y,+qA 1,

YL+l I,

l+

I. T Dimoq 0. I. Tonet! / Monte Carlo algorithms 277

Acknowledgement

The authors wish to thank Miss Lidiya Todorova for helping with the computer programs
and calculations concerning the Monte Carlo vector algorithm.

References

[l] D.R. Cox and W.L. Smith, Renewal Theory (Sovetskoe Radio, Moscow, 1967) (in Russian).
[2] J.H. Curtiss, “Monte Carlo” methods for the iteration of linear operators, J. Math. Phys. 32 (4) (1954) 209-232.
[3] I.T. Dimov, Minimization of the probable error for some Monte Carlo methods, in: Proc. Summer School on

Mathematical Modelling and Scientific Computations, Albena, Bulgaria, 1990, CINTI, Reg. No. II 14147.
[4] I. Dimov and 0. Tonev, Monte Carlo numerical methods with overconvergent probable error, in: Bl. Sendov, R.

Lazarov and Iv. Dimov, Eds., Proc. Internat. Conf on Numerical Methods and Applications, Sofia, 1988
(Publishing House of the Bulgarian Academy of Sciences, Sofia, 1989) 116-120.

[5] S.M. Ermakov and G.A. Mikhailov, Statistical Simulation (Nauka, Moscow, 1982) (in Russian).
[6] R.W. Hackney and CR. Jesshope, Parallel Computers: Architecture, Programming and Algorithms (Adam

Hilger, Bristol, 1981).
[7] P.M. Kogge, The Architecture of Pipeline Computers (Hemisphere, Washington, DC, 1985).
[8] SE. Makharov, Discrete random walk vector algorithm for solving high order equations, in: G.A. Mikhailov,

Ed., Theory and Algorithms of the Statistical Modelling, Novosibirsk (1984) 54-66 (in Russian).
[9] N. Metropolis and S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc. 44 (1949) 335-341.

[lo] G.A. Mikhailov, Optimization of the Weighted Monte Carlo Methods (Nauka, Moscow, 1985) (in Russian).
[ll] M.E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann Math. Statist. 27 (1956)

569-589.
[12] J.M. Ortega and R.G. Voigt, Solution of partial differential equations on vector and parallel computers, SOiM

Reu. 27 (2) (1985) 149-240.
[13] I.M. Sobol’, The Monte Carlo Numerical Methods (Nauka, Moscow, 19731 (in Russian).
[14] S.V. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1976) (in Russian).

