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Obesity is highly prevalent in Western populations and is

considered a risk factor for the development of renal

impairment. Interventions that reduce the tissue burden of

advanced glycation end-products (AGEs) have shown

promise in stemming the progression of chronic disease.

Here we tested if treatments that lower tissue AGE burden in

patients and mice would improve obesity-related renal

dysfunction. Overweight and obese individuals (body mass

index (BMI) 26–39 kg/m2) were recruited to a randomized,

crossover clinical trial involving 2 weeks each on a low- and a

high-AGE-containing diet. Renal function and an

inflammatory profile (monocyte chemoattractant protein-1

(MCP-1) and macrophage migration inhibitory factor (MIF))

were improved following the low-AGE diet. Mechanisms of

advanced glycation-related renal damage were investigated

in a mouse model of obesity using the AGE-lowering

pharmaceutical, alagebrium, and mice in which the receptor

for AGE (RAGE) was deleted. Obesity, resulting from a diet

high in both fat and AGE, caused renal impairment; however,

treatment of the RAGE knockout mice with alagebrium

improved urinary albumin excretion, creatinine clearance, the

inflammatory profile, and renal oxidative stress. Alagebrium

treatment, however, resulted in decreased weight gain and

improved glycemic control compared with wild-type mice on

a high-fat Western diet. Thus, targeted reduction of the

advanced glycation pathway improved renal function in

obesity.

Kidney International (2011) 80, 190–198; doi:10.1038/ki.2011.57;

published online 16 March 2011

KEYWORDS: alagebrium chloride; nephropathy; obesity; RAGE

Obesity is an important risk factor for type 2 diabetes and its
subsequent complications including renal and cardiovascular
diseases. Between 2010 and 2030, it is estimated that world-
wide numbers of diabetes cases will increase by 54%.1 As
such, the International Diabetes Federation has proposed
lifestyle changes as a cost-effective method of preventing or
delaying the onset of type 2 diabetes,2 which would likely
extend to manifestations of obesity such as an increased risk
of chronic kidney disease.3 Current figures show that 30–50%
of individuals with diabetes will develop nephropathy.4

It is well known that certain lifestyle choices such as diets
high in saturated fat and processed foods contribute to
obesity and the development of type 2 diabetes, although the
exact mechanisms involved have not been fully defined.
Dietary fat and processed foods are extremely high in a group
of sugar modifications known as advanced glycation end-
products (AGEs). These molecules improve taste, reduce food
spoilage, and promote longer shelf life. Excessive dietary
intake of AGEs has recently been shown to contribute to
renal5 and cardiovascular6 diseases and the development of
type 2 diabetes, especially in the context of a high-fat diet in
animal models.7 Once in circulation,8–10 dietary AGEs may
cause inflammation and free oxygen radical production by
modulation of specific receptors, including the receptor for
AGE (RAGE). Interestingly, the kidney is the main organ
responsible for the removal of AGEs from the bloodstream.11

This high exposure of the kidney to AGEs is likely to make
the organ particularly susceptible to AGE-mediated damage.
The potential for reduction in dietary AGEs to improve renal
function in nonobese, renal failure patients has been
demonstrated after a 4-week low-AGE diet that reduced
serum creatinine concentrations by 30–40%.9

This study investigated the effects of lowering the
accumulation of AGEs or interrupting RAGE downstream
signaling pathways using a model of obesity-related renal
disease in mice. The efficacy of a reducing dietary AGE intake
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to improve renal function in obese humans was also
examined.

RESULTS
Clinical study

The baseline characteristics of the 11 participants are shown
in Table 1. Although diets were isocaloric and matched
for macronutrient content, on a 9 MJ/day diet, individuals
were calculated to consume 14,090 kU N-carboxymethylly-
sine (CML) on the high-AGE diet and 3302 kU CML on the
low-AGE diet. There was no effect of the dietary interven-
tions on body weight, body mass index (BMI), or adiposity,
which remained elevated (Table 2).

Renal function and inflammatory makers. Urinary albu-
min/creatinine ratios were significantly better following the
low AGE dietary period in obese individuals (low- vs high-
AGE diet: P¼ 0.02, Figure 1a). Plasma cystatin C levels were
elevated following consumption of a high-AGE diet for 2
weeks (low vs high: P¼ 0.02, Figure 1b). Plasma CML
concentrations following high AGE consumption declined
(low vs high: P¼ 0.01, Figure 1c), whereas urinary CML
concentrations increased following consumption of the high-
AGE diet (low vs high: P¼ 0.03, Figure 1d). The high-AGE
diet increased urinary 8-isoprostanes (low vs high: P¼ 0.02,
Figure 1e). Plasma monocyte chemoattractant protein-1
(MCP-1), also known as chemokine (C-C motif) ligand 2
(CCL2), was increased as a result of high AGE dietary
consumption (low vs high: P¼ 0.04, Figure 1f). Conversely,
however, plasma macrophage migration inhibitory factor
(MIF) significantly declined after consumption of the high-
AGE diet (low vs high: P¼ 0.04, Figure 1g). There were no
significant effects of the order in which the diets were
consumed on any of the parameters, when these data were
analyzed via repeated measures analysis of variance with
order as a between-subject factor. There were no differences
in other circulating cytokines and transcription factors
including endogenous secreted form of RAGE, soluble RAGE
(sRAGE), nuclear factor-kB, interleukin-6, and high-sensi-
tivity C-reactive protein between diets (data not shown).

Murine study

Biochemical and metabolic parameters. Both wild-type
(WT) and RAGE–/– mice consuming the Western-style diet,
high in AGEs and fat content, were obese by week 16 (DBW;
Table 3), with significant increases in epididymal and
omental adipose depots (Table 3). Increases in body weight
and fat deposition after the Western diet were prevented
using the AGE-lowering therapy, alagebrium (ALA, Table 3).
Kidney size was unaffected by dietary consumption of a
western-style diet (Table 3). Fasting plasma glucose and
insulin concentrations were increased in obese mice following
the consumption of the western diet in both WT and
RAGE–/– mouse strains (Table 3), and the parameters were
significantly improved in the mice treated with ALA.

Renal functional parameters. Renal function was assessed
by albumin excretion rate and creatinine clearance. Obese
WT mice consuming the Western-style diet had albuminuria
(Figure 2a), which was reduced in obese RAGE–/– mice fed a
Western diet but not with ALA. Creatinine clearance was
elevated in obese WT mice and significantly improved by
ALA (Figure 2b). Furthermore, a western diet did not induce
hyperfiltration in RAGE–/– mice (Figure 2b). All obese mice
had lower plasma CML concentrations (Figure 2c) despite
consuming more dietary AGEs than lean low-AGE-fed mice
(Figure 2d). Urinary CML excretion was below detectable
limits (5.6 nmol/mol lysine) in all mice. Also of interest
was that obese WT (16.8±11.2 kJ/day) and RAGE–/– mice
(29.7±6.9 kJ/day) consumed less kilojoules per day than
both lean low-AGE-fed mice (50.3±3.4 kJ/day; Po0.05 vs
obese WT) or obese mice treated with ALA (34.9±9.4 kJ/day;
Po0.05 vs obese WT).

Concentrations of the AGE CML in renal cortices were
significantly increased in obese and obese ALA-treated
animals but not in obese RAGE knockout mice when
measured via enzyme-linked immunosorbent assay (ELISA;
Figure 2e). Immunohistochemistry confirmed that there were
increases in CML in renal cortices taken from
obese mice that were not seen in lean low-AGE-fed mice
(Figure 2f).

RAGE protein expression and inflammation. Membranous
RAGE protein concentrations in renal cortices taken from
obese WT mice were significantly higher than those in lean
mice consuming a low-AGE diet (Figure 3a). This parameter
was not affected by treatment with ALA (Figure 3a).
Circulating levels of sRAGE, measured via ELISA, tended to
be higher in obese mice, although they were significantly
lower after ALA therapy (lean low AGE (216.6±65.98 pg/ml)
vs obese (352.2±172.4 pg/ml) RAGE, Po0.05; obese vs
obese ALA (152.2±55.67 pg/ml RAGE, Po0.05). As ex-
pected, there was no expression of membranous or soluble
RAGE protein detected in RAGE–/– mice (data not shown).
Renal MCP-1 levels were significantly lower in obese
ALA-treated animals and obese RAGE–/– mice (Figure 3b)
when compared with untreated obese WT mice. Plasma MIF
concentrations in mice were decreased with obesity
and significantly increased by ALA treatment or in obese

Table 1 | Baseline anthropometric and biochemical data in
obese individuals recruited for the dietary intervention study
(n=11 patients)

Mean (±s.d.) Range

N 11
Age (years) 30 (±9) 21–50
BMI (kg/m2) 31.8 (±4.8) 27–36
Waist circumference (cm) 96.9 (±18.4) 78.5–115.3
Waist/hip ratio 0.91 (±0.12) 0.78–1.30
24 h Creatinine clearance (ml/s) 2.4 (±1.1) 1.3–4.2
Urinary CML (nmol/mol lysine) 11.5 (±14.4) 0.35–44.4
Serum CML (mmol/mol lysine) 224.5 (±166.9) 122.9–859.8
Fasting plasma glucose (mmol/l) 4.7 (±0.4) 4.1–5.5
Fasting plasma insulin (mU/ml) 10.2 (±4.1) 6.3–19.1
Insulin sensitivity (mg glucose/kg/min) 7.8 (±3.4) 2.5–17.1

Abbreviations: BMI, body mass index; CML, N-carboxymethyllysine.
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RAGE–/– mice (Figure 3c). Kidney MIF levels were increased
in obese mice, which were not affected by ALA treatment;
however, deletion of RAGE significantly decreased renal MIF

concentrations (Figure 3d). Collagen IV deposition in
glomerular cortices was not significantly different among
treatment groups (Figure 3e and f).

Table 2 | Anthropometric and biochemical data at the completion of 2 weeks of dietary consumption of either a low- or
high-AGE diet (n=11 patients)

Following low-AGE diet Following high-AGE diet
Mean (±s.d.) Mean (±s.d.) P-value for change

Weight (kg) 93.2 (±15.9) 93.9 (±15.8) NS
BMI (kg/m2) 31.5 (±4.2) 31.4 (±4.2) NS
Body fat (%) 29.3 (±6.4) 29.2 (±6.8) NS
Urine albumin (mg/day)* 20.27 (±34.8) 16.05 (±20.9) NS
Serum creatinine (mmol/l) 72.3 (±18.3) 70.2 (±13.5) NS
Total cholesterol (mmol/l) 4.2 (±0.9) 4.2 (±1.0) NS
Fasting plasma glucose (mmol/l) 5.1 (±0.3) 4.8 (±0.3) NS

Abbreviations: AGE, advanced glycation end-product; BMI, body mass index; NS, not significant (P40.05).
This clinical study in obese individuals (BMI 31.8 (±4.8)) was performed as a single-blinded, randomized, crossover dietary intervention study.
*A nonparametric analysis was performed.
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Figure 1 | Renal and inflammatory parameters in obese humans following dietary interventions. Assays were performed in samples
collected from the same obese individuals following consumption of a diet either low or high in advanced glycation end-product (AGE)
content for 2 weeks. (a) Urinary albumin/creatinine ratios, (b) plasma cystatin C concentration, (c) plasma concentrations of the AGE,
N-carboxymethyllysine (CML), (d) urinary CML concentrations, (e) urinary 8-isoprostanes, (f) plasma monocyte chemotactic protein-1
(MCP-1) concentrations, and (g) plasma macrophage migration inhibitory factor (MIF) concentrations. *Po0.05 low- versus high-AGE diet,
Student’s paired t-test.
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Obesity induced excess cortical superoxide production in
the mitochondrial (Figure 4a) and cytosolic compartments
(Figure 4b). Treatment with ALA and the deletion of the
RAGE gene significantly decreased renal superoxide levels
(Figure 4a and b). Urinary 8-isoprostane concentrations were
increased in obese mice; however, this was attenuated with
ALA therapy (Figure 4b).

DISCUSSION

This study has provided evidence that intervention using
diets low in AGE content may attenuate renal changes seen
with obesity. Although our current human study did not
encourage weight loss in obese participants because of
matching of caloric intake and the short duration of dietary
intervention (2 weeks), we were able to demonstrate that
altering dietary AGE content alone is sufficient to improve
inflammatory profiles and early renal disease. These findings
are consistent with a previous study of patients with
advanced end-stage renal disease.12 To complement these
findings, we performed studies in mice to further define
potential mechanisms linking the AGE/RAGE axis to renal
functional changes in the context of obesity. Indeed, our
studies in obese mice highlighted that interfering with the
AGE/RAGE axis by either preventing AGE tissue accumula-
tion with the AGE-lowering therapy, ALA, or via RAGE
deletion in RAGE–/– mice is protective against obesity-related
renal dysfunction. These findings are consistent with
previous evidence that AGE formation is important in the
pathogenesis of other chronic kidney diseases.13–17

The increases in the expression of the proinflammatory
protein RAGE in kidney cortices taken from obese mice,
and its contributory role to obesity-related renal dysfunction
in this model, was further suggested in obese RAGE–/– mice
who had better renal function and less inflammation.
Elevations in the circulating concentrations of sRAGE were
also seen in obese mice, consistent with findings in type 2
diabetic individuals with nephropathy who are generally
obese.18,19 Although sRAGE was not changed after a low-AGE
diet in our human study, this was most likely because of the
short duration of the dietary intervention. It is possible that a
longer dietary duration would have ultimately led to lower

circulating sRAGE concentrations. This hypothesis is sup-
ported by the improved inflammatory profile seen with
consumption of a low-AGE diet as reflected by decreased
MCP-1 and MIF concentrations which in the context of
previous studies which have associated increases in sRAGE
with systemic inflammation.19–21

We have also demonstrated for the first time that total
AGE burden is likely a combination of circulating, tissue and
excreted AGE concentrations in obesity. Furthermore this can
be modulated via alteration of diet or treatment with
therapies, as was the case in our murine study. Previous
other studies have reported that circulating AGE concentra-
tions may be an indication of renal disease progression as they
showed increases.22 As a result of our findings, we therefore
heed caution at this becoming a gold standard marker.

Given the findings of this study and the previously
reported roles of RAGE, it is possible that inflammation plays
a role in modulating the changes seen in this study. In both
obese humans and mice, there was evidence of low-grade
inflammation, which was enhanced by consumption of a
high-AGE diet. This increased plasma MCP-1 and lowered
MIF concentrations, attenuated by interrupting the AGE/
RAGE axis, either by lowering the tissue AGE burden using
dietary means, the AGE-lowering therapy ALA, or by deletion
of RAGE. Activation of RAGE has already been reported to be
crucial for macrophage recruitment, as highlighted by its role
in host–pathogen defense.23 Therefore, it is likely that RAGE
activation as a result of AGE stimulation is a modulator of
MCP-1 and MIF secretion in this study. However, obesity-
related changes in circulating insulin concentrations seen in
both humans and mice may also be indirectly modulating the
expression of MIF (localized in the pancreatic islets24) and
MCP-1 (from white adipose tissue21,25) that are known to
affect insulin secretion and action, respectively.

AGEs and RAGE are also known to contribute to renal
dysfunction via excess generation of reactive oxygen spe-
cies.26–28 High-AGE diets in both obese humans and mice
appear to influence oxidative stress as reflected by increases in
urinary isoprostanes and renal superoxide production. This
pro-oxidant effect of AGEs is further suggested by the
findings in obese mice that received ALA that appeared to

Table 3 | Murine physiological and metabolic parameters at study completion (week 16)

D Body
weight (g)

Left kidney
weight (g)

Omental
adipose tissue (g)

Epididymal
adipose (g)

KW/BW
ratio (� 103)

Plasma
glucose (mmol/l)

Plasma
insulin (ng/ml)

C57BL/6J
Lean 2.9 (±2.4) 0.19 (±0.02) 33.5 (±1.8) 0.89 (±0.3) 11.35 (±1.2) 5.3 (±1.8) 0.24 (±0.21)
Obese 11.0 (±1.6)* 0.19 (±0.01) 40.8 (±2.6)* 1.59 (±0.2)* 9.35 (±1.2)* 8.5 (±1.5)* 1.69 (±0.68)*
Obese ALA 8.1 (±2.5)*w 0.17 (±0.02) 37.8 (±3.8)* 1.31 (±0.3)*w 9.74 (±0.8) 6.6 (±1.5) 0.66 (±0.5 )*w

RAGE–/–
Obese 15.4 (±2.2)*w 0.19 (±0.01) 39.7 (±2.6)w 1.94 (±0.3)w 9.8 (±0.6) 10.3 (±3.1) 3.36 (±0.97)*w

Abbreviations: AGE, advanced glycation end-product; ALA, alagebrium chloride; BW, body weight; KW, kidney weight; RAGE, receptor for AGE.
Data are presented as mean (±s.d.).
Obese (high AGE/high-fat diet), ALA (AGE-lowering therapy, alagebrium chloride 1 mg/kg/day), and RAGE–/– (RAGE deletion).
*Po0.05 vs lean low AGE, wPo0.05 vs obese.
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have less oxidative stress. RAGE deficiency did not improve
obesity-related increases in urinary isoprostane excretion,
which was interesting given that this group also had a lack of
effect on adiposity and obesity-related abnormalities in
glycemic control. This suggests that the benefits afforded by
low-AGE diets and ALA on oxidative stress may be partly
independent of RAGE. This is not totally surprising as AGEs
can interact with other receptors in addition to RAGE, and
ALA is likely to have additive actions that may be relevant
including a modest effect as an antioxidant.15,29

In conclusion, this study suggests that a low-AGE diet has
an impact on modulating renal function in healthy obese
individuals. Studies in murine models suggest that the

mechanism responsible for AGE effects on renal function is
likely to involve its receptor RAGE and include improve-
ments in inflammation, oxidative stress, and glycemic
control.

MATERIALS AND METHODS
Clinical study

Participant selection. This study was approved by the Alfred
Hospital Ethics Committee and conducted according to the
Declaration of Helsinki Principles. All individuals gave written
informed consent before commencement of the study. Participants
were males, aged between 18 and 50 years with stable body weight
(weight change o5 kg in last year), BMI X25 kg/m2, normal glucose
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production in fresh kidney cortices, measured via lucigenin-enhanced chemiluminescence. (b) Cytosolic NADPH-dependent superoxide production
in fresh kidney tissue. (c) 8-Isoprostane measured via enzyme-linked immunosorbent assay (ELISA) in urine. Obese (high advanced glycation end-
product (AGE)/high-fat diet), ALA (AGE-lowering therapy, alagebrium chloride 1 mg/kg/day), RAGE–/– (RAGE deletion). NADH, nicotinamide
adenine dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate. *Po0.05 vs lean low AGE, wPo0.05 vs obese, wwPo0.01 vs obese.
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tolerance (by oral glucose tolerance test), and healthy according to
medical history, examination, and basic blood screening. Exclusion
criteria included morbid obesity (BMI X40 kg/m2), current smoking
habit, high alcohol use or a positive urine drug screening test, any
medication taken within 1 month before commencing the study,
presence of acute inflammation (by history, physical, or laboratory
examination), or highly unusual dietary habits or vegan diet.

Clinical study design and anthropometric and metabolic

measurements. In all, 11 healthy overweight males participated
in a clinical dietary intervention study involving 2 weeks each of
low- and high-AGE diet separated by a 4-week wash-out period.
Participants kept a 3-day diet record (two weekdays and one
weekend day) based on household measures. Nutrient content was
analyzed with SERVE (SERVE Nutrition Systems, St Ives, NSW,
Australia), based on Australian Food Composition tables plus US
data for food AGE content.30 Results guided food selection and
indicated the approximate habitual AGE intake. A menu of carefully
matched alternative food choices (Table 4), each similar in
macronutrients and total kilojoules but differing in total AGE
content, were prepared for each meal of the day, including snacks
and beverages, according to previously described guidelines.30 All
foodstuffs for the low- and high-AGE diets were provided to the
individuals, in addition to instructions for storage and preparation
of meals (method, temperature, and duration of cooking).
Participants were instructed to eat to appetite, and maintain normal
physical activity as measured by IPAQ (International Physical
Activity Questionnaire)31 and by accelerometer (Respirotics Mini-
mitter, Bend, OR). Participants had a 6-week run-in period of the

high-AGE diet as this was generally similar to their normal dietary
habits, and were then randomized to either the low-AGE or high-
AGE diet for 2 weeks. At the commencement and conclusion of each
2-week dietary test period, body weight, waist-hip ratio, and
adiposity by four-point bioimpedence analysis (Body Composition
Analyser, Model BC-418MA; Tanita, Middlesex, UK) were measured
and BMI calculated. A 24-h urine collection and fasting plasma
sample were taken at the commencement of the study and further
spot urine and fasting plasma samples were taken before and after
dietary interventions. Fasting plasma samples were analyzed for
glucose (Radiometer, Copenhagen, Denmark) and insulin via ELISA.

Renal function. Before and after each dietary period, spot
urines and plasma samples were taken to assess serum creatinine and
urinary albumin/creatinine ratios. Creatinine clearance was esti-
mated via the Cockcroft–Gault formula,32 and albumin excretion
rates assayed in 24 h urine collections at baseline.

CML indirect ELISA. CML was measured in human serum
(1:8000) and urine samples (1:4) before and after each diet at their
respective dilutions, using an in-house indirect CML ELISA that has
been previously described.33 CML was also measured in mouse
chow, murine plasma, urine, and renal cortices using the previously
described methods.15,29

Immunohistochemistry. Immunohistochemistry analysis for
CML and collagen IV was performed on paraffin-embedded neutral
buffered formalin-fixed murine kidneys as previously described.34

Cystatin C, MIF, and MCP-1 ELISAs. Cystatin C was measured
in human plasma samples according to the manufacture’s
instructions in a 1:1000 dilution (Human Cystatin C; BioVendor,

Table 4 | Representative example of isocaloric meal selections for high-AGE versus low-AGE diets consumed by obese
individuals

High-AGE diet AGE (kU)a Low-AGE diet AGE (kU)

Breakfast Breakfast
2 scrambled eggs 2749 2 lightly poached eggs 628
1.5 slices toasted white bread (with crusts) 310 2 slices of fresh white bread (without crusts) 12
Commercial orange juice 9 Juice from an orange 0

Lunch Lunch
One apple 19 One apple 19
One toasted bacon sandwich (with crusts) 4026 One avocado and ham sandwich (without crusts) 1217
One glass colab 16 One glass diet lemonade 2

Dinner Dinner
Pan-fried chicken breast 5387 Steamed chicken breast 989
Vegetables 391 Steamed vegetables 36

(fried in olive oil) 300 Olive oil dressing 300
Fried white rice 66 Boiled white rice 18
One apple 19 One apple 19
One glass cola 16 One glass diet lemonade 2

Evening snack Evening snack
One glass of heated skim milk 138 One glass cold full-cream milk 48
Shortbread biscuits 644 Angel food cake 11

Total AGE content (kU) 14,090 Total AGE content (kU) 3302
Total energy (MJ) 9.0 Total energy (MJ) 9.0
Protein (%E) 16 Protein (%E) 16
Total fat (%E) 30 Total fat (%E) 30
Carbohydrate (%E) 54 Carbohydrate (%E) 55
Saturated fat (g) 10 Saturated fat (g) 10

Abbreviations: AGE, advanced glycation end-product; %E, percent of total energy.
aApproximate values only as calculated from available American data for the N-carboxymethyllysine (CML) content of foods.12 While Australian foods may differ in AGE
content, all foods prepared for the high-AGE diet were subjected to a high level of browning.
bCola is a rich source of methylglyoxal in addition to CML.
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Mordice, Czech Republic). MIF was measured in human plasma
(R&D Systems, Minneapolis, MN) and murine plasma and renal
cytosolic fractions (USCN Life, Wuhan, China) according to the
manufacturer’s guidelines. MCP-1 was assayed in human plasma
(R&D Systems) and murine renal cortex cytosolic protein fractions
(Raybiotech, Norcross, GA).

Murine study

Study design. Male WT, C57BL/6J (WT), and RAGE-deficient
mice (RAGE–/–)35 on a C57BL/6J background were housed in a
temperature-controlled environment with a 12 h light–dark cycle
(Alfred Medical Research and Education (AMREP) Precinct Animal
Centre, Melbourne, Australia). At 8 weeks of age, groups of
C57BL/6J mice (n¼ 10/group) were randomized to either (1) a
high-AGE, high-fat, Western diet (obese; SF05-031, Specialty Feeds,
Perth, Australia, baked for 1 h at 160 1C, 101.9 nmol/mol lysine of
CML per 100 mg) (2) a high-AGE, high-fat Western diet plus the
AGE-lowering therapy ALA (obese ALA; 1 mg/kg/day oral gavage;
Synvista Therapeutics, Montvale, NJ), or (3) a low-AGE standard fat
diet (lean; AIN-93G, Specialty Feeds, unbaked; 20.9 nmol/mol lysine
of CML per 100 mg). Food intake and water access was ad libitum
with diets matched for vitamin and amino-acid content. However,
40% of total energy in the Western diet was derived from animal fat
(Ghee; 210 g/kg) versus 16% of total energy in the low-AGE diet.
One further group of RAGE–/– mice consuming the Western diet
were also studied (n¼ 10; obese RAGE–/–). All animal studies were
performed in accordance with the guidelines from the AMREP
Animal Ethics Committee and the National Health and Medical
Research Council of Australia.

Murine physiological and biochemical parameters. Body
weight, fasting plasma glucose, and fasting plasma insulin were
measured at 16 weeks as previously described.36 The 24 h metabolic
caging to collect urine and measure food and water intake was
performed at weeks 8 and 16 of the study. Albumin excretion rate
was assessed using a mouse albumin ELISA kit according to the
manufacturer’s instructions (Bethyl Laboratories, Montgomery,
TX). Creatinine clearance was determined following HPLC (Agilent
HP1100 system, Hewlett Packard, Nuremberg, Germany) measure-
ment of creatinine content in timed plasma and urine samples as
previously described and in accordance with AMDCC (Animal
Models of Diabetic Complications Consortium) guidelines.37 Frozen
renal cortex was processed via ultracentrifugation as previously
described15 in order to generate membrane, cytosol, and nuclear
protein fractions.

Urinary isoprostane concentrations. As a noninvasive mea-
sure of oxidative stress, 8-isoprostane F2 was measured in 24 h
human urine samples collected before and after each diet by
competitive ELISA (Oxford Biomedical Research, Oxford, MI).
Human urine samples were assayed neat and the assay was
conducted as per the manufacturer’s instructions. Murine urine
samples were also analyzed neat for 8-isoprostane, according to the
manufacturer’s instructions (8-isporostane enzyme immunoassay;
Cayman Chemical, Ann Arbor, MI).

Superoxide production. Renal superoxide was measured in
fresh murine renal cortical tissue as previously described via
chemiluminescence of lucigenin.38,39

Renal RAGE expression. Murine renal cytosolic protein
fractions were assayed for RAGE protein using an ELISA specific
for mouse (R&D Systems). Unknown values were calculated relative
to a four-parameter logistic standard curve generated using the

GraphPad Prism program (GraphPad Prism, San Diego, CA). All
assays were run according to the manufacturer’s instructions.

Statistical analyses. Human data were expressed as mean±

s.e.m. unless otherwise stated and were analyzed using paired
Student’s t-test analysis. Urinary albumin/creatinine values were
nonparametric and were therefore logarithmically transformed
before analysis. Order effect of the diets was analyzed via repeated
measures analysis of variance with order as a between-subject factor.
Human statistical analyses were performed using SPSS (SPSS
Statistics 17.0, IBM, Somers, NY).

Murine study analyses were performed by one-way analysis of
variance followed by Tukey’s post hoc analysis (GraphPad Prism,
5.2). Mouse data are presented as mean±s.d. Mouse albuminuria
data were not normally distributed and were therefore logarith-
mically transformed before analysis. A Po0.05 was considered to be
statistically significant.
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