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ABSTRACT 

We show that the principle of maximum U-uncertainty for ampliative possibilistic 
reasoning can be characterized as uniquely satisfying a small set of normative axioms. 
Two proofs are given--one each for Hisdal's and Dempster's definitions of conditional 
possibility. These results complement a similar characterization of maximum entropy for 
ampliative probabilistic inference, given by Paris and Vencovska. 
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1. INTRODUCTION 

1.1. Logical Knowledge Representation 

One popular method of representing knowledge in AI is as a set of 
well-formed sentences of some well-understood logic, such as propositional 
logic or first-order predicate logic. I_x)gic-based representations have the 
advantages of a precisely defined semantics and a sound and complete 
proof calculus (e.g. natural deduction or complete resolution) for perform- 
ing deductive inference. 

Most domains of interest in AI, such as medical diagnosis, involve 
knowledge that is merely tentative or qualified rather than definite and 
certain. Such inexact knowledge may suffer from being vague/ambiguous 
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(involving ill-defined terms such as tall, young, red) or through being 
uncertain (known to hold sometimes, although exceptions do exist). Both 
kinds of imprecision can be modeled by assigning a numerical value in the 
range [0, 1] to a sentence of propositional logic. If the imprecision is due to 
vagueness, then the value is interpreted as a degree of truth or fuzzy truth 
value. When the imprecision is due to uncertainty, the value is interpreted 
as a degree of belief or certainty. Various fuzzy logics [1] have been 
proposed for manipulating logical sentences with attached fuzzy truth 
values, while a variety of logics have been proposed for reasoning about 
logical sentences with attached degrees of certainty (such as probabilistic 
logic [2], the Dempster-Shafer theory of evidence [3], and possibilistic logic 
[1, 3, 4]). 

1.2. Possibilistic Logic 

Possibilistic logic has emerged from both fuzzy logic [4] and the theory 
of evidence [3]. The possibility of a vague predicate is defined as the 
supremum of the membership function of the fuzzy set denoted by the 
predicate. In Dempster-Shafer theory, in the special case of nonconflicting 
evidence (consonant body of evidence, i.e. nested focal subsets), the 
plausibility of a propositional sentence is precisely equivalent to the 
possibility of that sentence regarded as a vague predicate, denoting a fuzzy 
subset of the underlying set of possible worlds. The membership function 
of this fuzzy set is the possibility distribution [5]. So we can see that 
possibilistic logic is applicable to both vague and uncertain reasoning. 

Possibility measures, like probability measures, are decomposable [6] 
fuzzy measures [7], and are thus more amenable to mathematical analysis 
than general fuzzy measures or plausibility/credibility measures [3]. 
Whereas probability measures arise from dissonant evidence, possibility 
measures arise from imprecise but consonant evidence, and thus capture 
ignorance as well as uncertainty. Detailed accounts of possibility theory 
appear in [6] and [8]. 

1.3. AmpUative Reasoning and Minimum Information 

In the case of certain and definite knowledge, the sound and complete 
deductive proof calculus is in general found to be inadequate when the 
knowledge base is either inconsistent or incomplete. In the latter case, 
various nonmonotonic logics have been proposed for performing inference. 

The corresponding problem for approximate reasoning (i.e. what to do 
in the presence of inconsistencies or incompleteness in the knowledge 
base) has received relatively little attention in the past. In this context, the 
process of reasoning from a consistent but incomplete knowledge base K 
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(generally known as ampliative reasoning [8]) is often regarded as one of 
eliciting a complete knowledge base, Comp(K), from the available infor- 
mation and then reasoning in the usual way. 

Various minimum-information principles are used to justify a particular 
choice of Comp(K), the most well-known of which is the maximum-ent- 
ropy principle, which is applicable to probabilistic knowledge bases. This 
principle defines Comp(K) as the unique complete probabilistic knowledge 
base amongst those consistent with K that has the maximum entropy or 
minimum information content. 

Though plausible, the principle of minimum information is far from 
compelling. For example, we might consider it fairer to choose Comp(K) 
as having average information content amongst those consistent with K, or 
we might ignore information content altogether and choose Comp(K) as a 
(possibly weighted) average of all those complete probabilistic knowledge 
bases that are consistent with K. Both of these choices can be regarded as 
the fairest way of eliciting knowledge from a given K, although in general 
they give different choices for Comp(K). 

Furthermore, if K is not probabilistic, but is consistent with Dempster- 
Shafer theory or possibility theory, then there are several distinct mini- 
mum-information principles, one for each of the measures of information 
content in these frameworks. For example, in possibility theory, the infor- 
mation content of a possibility measure can be regarded as its specificity 
[9] (in the Dempster-Shafer sense), as its strife, as its discord, or as the 
negative fuzziness [8, 9] of the fuzzy set with membership function equal to 
this possibility distribution, for some measure of fuzziness. So, even if 
we can decide on some particular measure of fuzziness, there are at least 
two applicable minimum-information principles. These are the principle 
of minimum specificity (or maximum U-uncertainty) and the principle of 
maximum fuzziness. In fact, U-uncertainty is not the only measure of 
unspecificity of possibility measures. Alternative definitions of specificity 
include those given by Yager [11, 12] and Dubois and Prade [13], and 
minimum-information principles could be based on minimizing these mea- 
sures of specificity. Other possible minimum-information principles in- 
clude the principle of maximum discord and the principle of minimum 
strife. It appears that we need some extra-information-theoretic principles 
for preferring the Comp(K) given by one minimum information principle 
to that given by another. 

1.4. Inference Processes and Principles of Ampliative Reasoning 

Paris and Vencovska [14-16] have thoroughly investigated ampliative 
probabilistic reasoning. They view ampliative reasoning as a single infer- 
ence process mapping consistent but incomplete probabilistic knowledge 
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bases to unique probabilities for every sentence of the underlying logical 
language, rather than a two-stage process of elicitation followed by stan- 
dard inference using conventional probabilistic logic. This subtly different 
viewpoint allows a shift in emphasis away from information theory to a 
purely logical perspective. Paris and Vencovska hypothesize a collection of 
compelling principles or laws of ampliative reasoning [14], which necessar- 
ily hold for any sound inference process. Under certain technical assump- 
tions about the form of the knowledge base, Paris and Vencovska [15] 
demonstrate that the maximum-entropy inference process (given by the 
principle of maximum entropy combined with probabilistic logic) is the 
only inference process which is sound with respect to these principles. 

1.5. Overview 

Here, we apply the Paris-Vencovska approach to ampliative possibilistic 
reasoning. We present a purely logical justification of the principle of 
minimum specificity. However, there is another highly plausible principle 
of ampliative reasoning (the principle of atomicity) that is satisfied by the 
minimum-specificity (maximum-U-uncertainty) inference process, but is 
inconsistent with the other principles in the probabilistic case (even 
maximum entropy doesn't satisfy it). This highlights a weakness of proba- 
bilistic reasoning (the inability to handle ignorance properly) and shows a 
definite need for logics such as possibilistic logic that can better accommo- 
date ignorance. 

2. A FORMAL FRAMEWORK FOR AMPLIATIVE 
POSSIBILISTIC LOGIC 

We now describe the details of a formalization of ampliative possibilistic 
reasoning, based on that of [17]. 

We shall take the rather unusual position of defining a possibility 
measure over a domain of sets of logically equivalent sentences (as in [1, 
18]), rather than over a frame of discernment [3] of subsets of the set of all 
possible worlds (the conventional approach). These approaches are, of 
course, equivalent, because every logical sentence corresponds uniquely to 
a subset of the set of all possible worlds, i.e. all those worlds in which the 
sentence is true. Furthermore, two sentences are equivalent precisely if 
they denote the same set of possible worlds. We shall restrict consideration 
to propositional sentences from some finite alphabet L, so that there is a 
1-1 correspondence between atoms of the underlying Lindebaum algebra 
of L and the set of possible worlds (valuations on L). This induces a 1-1 
correspondence between the frame of discernment and the set of elements 
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of the Lindebaum algebra (i.e. the set of equivalence classes of proposi- 
tional sentences, where the equivalence relation is just logical equivalence 
between sentences). 

DEFINITION 2.1 R is the set of  reals, N the set of  naturals, and L the set 
of  all finite subsets of  {pn[n ~ N}, where {p, ln ~ N} is a countably infinite 
set of  propositional variables. We denote the set of  all subsets of  a set S by 
pow(S). The symbol $ denotes domain restriction. 

Suppose that L is a finite propositional language (i.e. just a finite 
alphabet of symbols used to denote propositions), and that SL is the set of 
propositional sentences constructed from L and the standard connectives 
A, V, 7 ,  ~ ,  ~ by structural recursion in the usual way. We denote by 
SL the und__~erlying Lindebaum__ algebra of L. We denote by At/. th____e set of 
atoms of SL. Let Aut(SL) denote the set of automorphisms of SL. Let 0 
= p A - T p a n d l = p V ~ p ,  w h e r e p ~ L .  Define _< o n S L b y 0 <  4~¢* 
~b --, 05= 1. 

DEFINITION 2.2 Suppose that ~ ' S L  ~ [0, 1]. We call 7r a possibility 
measure on L if and only if 

(Trl) ~'(0) = O, 
(~-2) 7r(1)= 1, 
(~-3) ~(0 V 4~) = max{~'(0), 7r(~)} for any O, 4a c S-T. 

We note that by (~-3), 

7 r ( O ) = T r (  V 91 = max { T r ( ; / ) } ~ ( * )  
~ At L(~) ~ e  At ~(0) 

We denote by IlL the set of all possibility measures on L. 

DEFINITION 2.3 Suppose that r : A t  L -~ [0, 1] satisfies r(~) = 1 for some 
c At L. Then we call r a possibility distribution on L. 
Let R L denote the set of  possibility distributions on L. 

Suppose that ~-~ H L. Then, by (~-2) and (*), ~ - (~)=  1 for some 
~ At L. Hence, ~r $ At L E R L. 
Furthermore, for any r ~ R L, define 7r r : SL -~ [0, 1] as follows: 

~'r(o) = O, 

~.r(~) = max {r(~)} for any 0#0. 
"~E AtL(0) 

It is readily verified that 7r r ~ IlL, and furthermore that if 7r ~ l i  L and 
7rSAt L = r  then 7r= 7r r. 

In summary, every possibility measure on L is uniquely determined by 
its possibility distribution on L, and every possibility distribution on L can 
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be extended to a unique possibility measure on L. Thus, possibility 
measures and distributions are related in the same way as probability 
measures and distributions. 

2.1. U-Uncertainty 

The amount of uncertainty associated with a possibility distribution r is 
called its U-uncertainty, denoted UL(r). First, we give a preliminary defini- 
tion: 

DEFINITION 2.4 Let  n = IAtLI. We define a map  tx L : R L ~ [0, 1] n as 
follows: Le t  V(r )  = {r(~)l~ ~ AtL}, and let v = [V(r)l. Let  al(r)  = max 
V(r )  = 1, and for  2 < i <_ v, let ai(r)  = max [ V ( r ) \  {al(r) . . . . .  ai_l(r)}]. 
Le t  m i ( r )  = I{y ~ AtLIr(y) = ai(r)}[ for  1 < i < v, and 

/xL(r ) = \(al(r) . . . . .  aa(r) ,~ a2(r) . . . .  , a2(r) . . . . .  a v ( r ) , . . . , a v ( r )  )_, 

m ~ r )  m ~ ( r )  m ~ ( r )  

For any r ~ R L, we write IxL(r) = ( ~1~(1 r) . . . .  , ]Z(nr)). 

DEFINITION 2.5 We define 

UL(r ) = ~ (r)_ (r) " (where ,,(r) = f l  (/x i /Zi+l)lOg2t con+ 1 v by convention).  
i = 1  

This measure was first suggested by Higashi and Klir [19]. They also 
introduced a number of information-theoretic axioms (possibilistic versions 
of those from Shannon's statistical information theory) and showed that 
the measure satisfies the axioms. This measure was later uniquely charac- 
terized by a set of normative axioms [20]. The axioms are stated and 
justified in [8, pp. 177-181], where a proof of the characterization is also 
given (see [8, Appendix A.2]). Complementary results appear in [21] and 
[22], the latter giving a characterization of the generalization of U-uncer- 
tainty to evidence theory (see Section 2.2 below). Here, we just note some 
simple monotonicity and symmetry properties of U L. 

DEFINITION 2.6 We define a relation < L on R L as follows: 

r I <Lr2 i f a n d o n l y i f  r l (~)  < r 2 ( ~ )  forevery  ~ / ~ A t  L. 

It is readily verified that < L is a partial order on R L. 
The following lemma is a corollary of [9, Proposition 7]. A self-contained 

proof of this special case is given below for completeness. 

LEMMA 2.1 I f  rl, r 2 ~ R L and r 1 < L r2, then UL(r 1) < UL(r2). 
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P roof  Note  that UL(r)= ~7=2  ~!r)  [log2 i -  log2(i - 1)]. It is very 
tedious, but  straightforward,  to verify that  if r I _< Lr2, then ~i" (rl) -- < ~t/'~ r2)" for  
1 _< i _< n. Fur the rmore ,  we can show that  if r 1 < L  rE, then t~ i (rl) < /ZI r2). 
for  some 1 < i < n. So, if r 1 < L  r2, then /x~ rl) < u~ r2) for  every 2 < i < n 
a n d  /&} rl) < /&} r2) for  some 2 < j  < n. Hence ,  UL(r 1) < UL(r2). • 

LEMMA 2.2 Suppose that g ~ Aut(SL)  and that r ~ R L. Then UL(g(r)) 
= UL(r). 

Proof  Define g(r )  ~ [0, 1] AtL by 

g ( r ) ( g ( ~ / ) )  = r(~/) for  any ~ ~ At c.  

Then  g(r )  ~ R L. Fur the rmore ,  V(g(r ) )  = V(r )  and so ai(r) = ai(g(r))  for  
1 < i < v. Also, mi(r )  = mi (g ( r ) )  for  1 < i < v. Hence ,  tZL(g(r)) = I~L(r), 
and so UL(g(r)) = UL(r). • 

DEFINITION 2.7 Suppose that rl, r 2 ~ R L. Define max{r 1, r2} :At  L 
[0, 11 by 

(max{r 1, r e} ) (~)  = max{r l (~) ,  r2(~)} for any ~ ~ At  L. 

It is readily verified that  max{r 1, r e} ~ R L. 

2.2. Relation to Dempster-Shafer Theory 

We may consider  possibility theory  as a special case of  the Dempster -  
Shafer  theory of  evidence. Suppose that m is a basic probabili ty assign- 
ment_(bpa)  and that  its focal set ~ ( m ) =  {01, 02 . . . . .  0n} _c SL,  where  
0~ < 02 < "'" < 0n" Then  we say that  m is consonant (i.e. f ree  of  conflict 
in evidence),  and the associated plausibility measure ,  P1 m, is a possibility 
measure.  

In fact, for  every 7r ~ I / c ,  there  is some unique bpa m such that 
7r = PI E. 

We remark  that  U L may be reexpressed as 

UL(r) = ~ m ( 0 )  log2lAtL(0)l 
O~ SL 

(where m is a bpa such that  PIT = 7r~). So U L is essentially just the 
s tandard unspecificity measure  of  evidence theory.  

2.3. Conditional Possibility 

The  meaning of  the concept  of  condit ional  possibility is still a controver-  
sial issue. In [18], Dubois  and Prade  consider axioms for condit ional  
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possibility and derive two main choices: 

(H) Hisdal conditioning [23]: 

{ T r ( 0 ~ )  if 7 r ( 0 ~ )  < 7r(~), 
7r(01~) = 1 otherwise 

for any 0, ~b ~ SL,  Tr ~ H L. 

(D) Dempster conditioning [3]: 

¢r(01~) = Tr(~) if 7r(~) > 0, 

undefined otherwise 

for any 0, 4, ~ SL,  7r ~ HL. 

Another suggestion is 

(dC) deCampos-Lamata-Moral  conditioning [24]: 

/ 

/ i f  ~'(0---~) > 0 or ~ - ( 0 - ~ - ~  ~) < 1, 
k undefined otherwise 

for any 0, 4~ ~ SL,  7r ~ IIL. 

Several alternative definitions have also appeared in the literature (e.g. 
Nguyen conditioning [25]). 

2.4. Knowledge Bases and Inference Processes 

A possibilistic knowledge base is a formal representation of a set of 
inexact rules provided by an expert. 

DEFINITION 2.8 We define a possibilistic knowledge base on L as a finite 
set o f  constraints 

7"1"(0i) ~ [Oli, Old], 1 < i < n,  

7r(~jlOj) ~ [/3,,/3]], 1 < j  < m ,  

where 0 i, qbj, ~. ~ SL  and 0 <_ ol i <~ ol; <_~ 1, 0 <_~ ~j <~ ~ <_~ 1 f o r  1 <~ i < 
n, 1 < j < m ,  a n d m ,  n ~ N .  
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We allow intervals of belief values, since the expert may feel too 
uncertain about his belief in the possibility of some statement to represent 
it by a precise number. 

Let E denote the empty knowledge base. 

DEFINITION 2.9 Let HI lL(K)  = {r ~ RL [Tr r satisfies K using (H)}. 
Let DIIL(K)  = {r ~ RLI~ "r satisfies K using (D)}. 
Let H H I K  L = {KIHHL(K)  4= 0}. 
Let H I I K  L = { K ~ H I I I K L I a  i =  a~, flj = [3] for 1 < i < n, 1 < j 

< m}. 
Let D I I I K  L = {KIDIIL(K) ~ 0}. 

We say that K is consistent if there are possibility measures on L 
satisfying the constraints K. An inference process maps consistent possi- 
bilistic knowledge bases to sets of possibility measures (distributions) on 
the underlying logical language. Formally, 

DEFINITION 2.10 We say that N is a Hisdal inference process if 
N : H H K ~ P R  where H I I K = { ( L ,  K)IL  ~ L, K ~  HIIKL},  P R =  
U L ~ L poW(RL), and N ( L ,  K )  c_ R L for any L ~ L. 

This definition is analogous to Paris and Vencovska's definition of 
probabilistic inference processes [15]. We write NL(K) instead of N ( L ,  K).  
For every K ~ H I I K  L and 0 c SL, define NL(K)(O) = {~-~(0)lr ~ NL(K)}. 
Then NL(K)(-O) is the set of possible values of rr(0)  inferred from K. 

We say that N is a Dempster inference process if N : D I I I K  ~ PR, 
where DI I I K  = {(L, K)IL  ~ L, K ~ DIIIKL}, and N ( L ,  K)  c_ R L for any 
L ~ L .  

2.5. Principles of Ampliative Possibilistic Inference 

DEFINITION 2.11 We define the following principles of  ampliative possi- 
bilistic inference, which are analogous to those introduced by Paris and 
Vencovska in [14, 15]: 

Existence. For any L ~ L and any K ~ H I I K  L, one has NL(K) ~ 0. 
(Justification: It should be possible to infer possibility values from 
consistent knowledge bases.) 

Compatibility. I l L  ~ L and K ~ H H K L ,  then NL(K) c_ HHL(K) .  
(Justification: The belief values inferred from the knowledge base K 
should be consistent with K.) 

Equivalence. I f  L ~ L and K1, K 2 ~ H I I K  L and H H L ( K  1) = 
HI-[L(K2)  , then NL(K 1) = NL(K2). 
(Justification: Only the content o f  the knowledge base should determine 
N, not the way in which it is expressed.) 
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Uniqueness. For any L ~ L and every K ~ H I I K  L, 0 ~ SL, the set 
NL( K)(-O ) is a singleton. 
(Justification: Inferred beliefs can be adequately represented by a single 
number.) 

If N satisfies uniqueness, then N L ( K ) =  {r} for some r ~ R L. In this 
situation, we shall abuse notation by writing NL(K) to mean 7r r rather 
than {r}. 

Language invariance. I f  L, U ~ L, L c 1 J ,  and K ~ H I I K  L, then 
NL(K)(-O) = NL,(K)(O) for any -0 ~ -ffL. 
(Justification: Inferred beliefs should be independent of the choice of 
overlying language.) 

Relevance. I f  L 1, L 2 ~ L and L I • L 2 = 0 ,  and K 1 ~ H I I K L ,  and 
K 2 E HIIKL2 , then N L u L2 (K1 to K2)(01) = NLI(K1)(O1) for every 
01 ~ S L  1. (Note that if  K 1 ~ HIIKL,  and K 2 ~ HIIKL2, then 
K1 tO K2 NIIKL,  u/~.) 
(Justification: Irrelevant information shouM not alter inferred beliefs.) 

Obstinacy. Suppose that L ~ L and K 1, K 2 ~ H H K  L. I f  NL(K x) satis- 
fies K 2, that is, NL(K 1) c_ HIIL(K2) , then NL(K 1 u K 2) = NL(K1). 
(Justification: I f  K 2 is already inferred by K 1, then K 2 is providing no 
new information. So adding K 2 to the knowledge base should not alter 
inferred beliefs.) 

Relativization. Suppose that L ~ L, 0 ~ SL, 0 < -0 < 1, that K 1 is 

= (1 i n), 

~ ( ~ )  = a ,  

=/3,  

and that K 2 is 

~r(~-'&-g~i ) =/3,  (1 < j < m),  

where 4ai, ~. ~ SL and ai, /3j, oe, /3 ~ [0, 1] for any 1 < i < n and 

1 <_ j <_ m. I f  K 1 tO K 2 E H'IIKL, then NL(K 1 tO K2)(O A ok) = 
NL(K1)(O A 40) for any cb ~ SL. Justification: Assume that 0 holds. 
Then, since K2 only concerns the case when 0 doesn't hold, it is 
providing no additional information to that given by the knowledge base 
K 1. Hence adding K 2 to K 1 shouldn't alter inferred beliefs about 
conjuncts with 0.) 

Strong symmetry. / f  L ~ L, g ~ Aut(SL), K ~ HI IKL,  and 0 ~ SL, 
then NL(g(K))(g(O)) = NL(K)(-O), where g (K)  is just K with Oi, 4~j, 

replaced by g( Oi), g( ~bj), g( ~.) respectively. 
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(Justification: g ( K )  and g(O) are just renamed versions of  K and -0 
respectively. Inferred beliefs should be invariant under renaming.) 

Symmetry. I f  L ~ L, g ~ Aut(SL), and g_(p) ~ {El,-1 qlq ~ L} for any 
p ~ L, then NL(g(K))(g(-O)) = NL(K)(O) for every 0 ~ SL, K 
H F I K  c. 
(Justification: Renaming of  literals should cause no change in inferred 
beliefs.) 

Atomicity. Suppose that L, L' ~ L and p ~ L. Suppose that K ~ HFIK L 
and K ° is K with p replaced everywhere by O, some sentence in L' (where 
L, L' are disjoint and 0 < 0 < 1). Let IZ' = L U L' \ {p}. Then, for any 

~b ~ SL, NL(K) (~ )  = NL,,(K°)(O°). 
(Justification: Reexpressing a proposition as a logical combination of  
simpler propositions should not alter inferred beliefs. In practice, there is 
a limit to the depth of  analysis of  a proposition, but in principle any 
proposition can be decomposed indefinitely.) 

(Note that if K ~ H I I K  L then K ° E HIIKL,,.) 

Before continuing, we need the following preliminary definitions and 
notation. 

DEFINITION 2.12 Suppose that L is a finite propositional language. Sup- 
pose that d L is the Euclidean metric o n  R atL. Note that R L c_ RAtL. Now 
[0, 1] AtL is compact, and it is readily verified that R L is closed. Hence, R L 
is compact. For any 6 > 0 and any S c_ RL, define 

D ~ ( S )  = {r ~ R t  [dL(r, r') < 6 for some r' ~ S}. 

Define pL :pOw(Rc) × pow(R L) ~ R+by 

PL(S1, S 2) = inf{61 + 62131 c DLal(S2 ) and S 2 c D~=(S1) }. 

For any 6 > O, S c_ [0, 1], define 

D~(S) = {y ~ [0, 111 Ix -Yl  < 6 f o r s o m e x  ~ S}. 

Define p : pow([0, 1]) × pow([0, 1]) --* R+by 

p ( S  1 , S 2) = inf{61 + 621S 1 --C D~I(S 2) andS2 ___ D~2($1) }. 

DEFINITION 2.11 (Continued) 

Continuity. I f  L ~ L, K n ~ H I I K  L for every n ~ N +, K ~ H I I K  L, 
and PL(HHL(Kn), HIlL(K)) ~ 0, then pL(NL(K,), NL(K)) ~ O. 
(Justification: Microscopic changes in the knowledge base should not 
result in macroscopic changes in inferred beliefs.) 

Open-mindedness. I l L  ~ L, K ~ HI IKL ,  0~S---L, e >  0, and K U 
{Tr(0) = e} is consistent, then NL(K)(O) 4: {0}. 
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(Justification: I f  0 is possible according to K, we shouldn't infer that 0 is 
impossible.) 

Analogous principles may be defined for Dempster inference processes. 

3. CHARACTERIZATION OF MAXIMUM U-UNCERTAINTY 

3.1. The Hisdal Maximum-U-uncertainty Inference Process 

DEFINITION 3.1 We define the Hisdal maximum-U-uncertainty inference 
process, denoted HMU, as follows: 

F o r a n y L  ~ L, K ~  HIIKL,  HMUL(K) = arg max {U/"(r)}, 
r~HFIL(K) 

i.e., HMUL(K) is the set of  those r ~ HIIL(K)  that maximize UL(r). 

LEMMA 3.1 Suppose that C c R/" and satisfies: 

(1) if rl, r e ~ C then max{r 1, r 2} ~ C; 

(2) if (rn)n~N+C C such thatrn < Lr,+l for every n ~ N ÷ a n d r  N --* r as 
n ~ %  t h e n r ~ C .  

Then there is some unique r* ~ C such that arg maxr~c{UL(r)} = {r*}. 

Proof For every ~ ~ AtL, let s(~/) = sup {r(~)[r ~ C}. Then, for each 
n ~ N ÷, there is some r~ ~ C such that 

1 
s ( ~ / ) -  -- < r ~ ( ~ )  < s ( ~ )  for every n ~ N  +. 

n 

Let rn = m a x { r ~ [ ~  At/.}. Then (r,)n~N+c_ C by (1). Now, for every 
n ~ N +, let r', = max{r 1, r 2 . . . .  ,rn}. Then, (r',)n~N+_c C by (1). Further- 
more, obviously, r', -----L r',+l for every n ~ N +. 

Clearly, r', ~ r* as n --* % where r*(~) = s(~) for every ~ ~ At/.. 
Then, by (2), r* ~ C. Now, for any r ~ C, r(~) < s(~) = r*(~/) for every 

~ At/.. Hence, r < / . r *  for any r c C ,  and if r ~ r *  then r < / . r * .  
Hence, UL(r) < UL(r*) for every r ~ C \ {r*}, and the result follows. • 

PROPOSITION 3.1 HMU satisfies all o f  the stated principles in Definition 
2.11. 

Proof It is straightforward to verify that HMU satisfies equivalence 
and compatibility [since HMUL(K) ___ HI IL(K)  by definition]. 

We now show that HMU satisfies uniqueness (and hence also existence). 
Suppose that K ~ H H K  L. Then K is of the form 

"B'(Oi) = O/i (1 __< i <  n), 

~'(~l~jj) = 13, (1 < j < m). 
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So, by Hisdal's definition of conditional possibility, r c HIIL(K)  if and 
only if ~r r satisfies 

g r r ( o / )  : a i (1 __<i __< n), 

= < a , )  {J 

(where J = {jl/3j < 1} and J '  = {jl/~y = 1}). It is straightforward to verify 
that C = H U t ( K )  satisfies conditions (1) and (2) of Lemma 3.1 and hence 
that 

HMUL(K) = {r*} 

for some unique r* ~ HIlL(K).  So HMU satisfies uniqueness. 
It follows that HMUL(K)(0) = rrr*(0) = max{Ir'(0)lr ~ HIIL(K)} for 

any 0 ~ S--L 
Suppose that L ~ L and K~, K 2 E HIIKL,  and HMUL(K 1) satisfies K2, 

that is, ~ =g HMUL(K 1) _c HIIL(K2). Hence HMUL(K 1) _c HUL(K1) 
HIIL(K 2) = HIIL(K 1 tO K2) ___ HIIL(K1) , and so, 

max {UL(r)} < max {UL(r)} < max {UL(r)} 
r ~  HMUL(K 1 ) r ~  H HL(K1)r~ H HL(K 2 ) r ~  H HL(K 1 ) 

Hence, max, ~ HnL~K,)n HIIL(K2){UL (r )}  = m a x ,  ~ HnL{/~,) {UL(r)}. So HMU L 
(K~ tO K 2) = HMUL(K1) , and so HMU satisfies obstinacy. 

We now show that HMU satisfies relativization. Assume the notation of 
that principle. Suppose that r 2 ~ HUL(K 1 <9 K2). If r ~ HIlL(K1), define 
r '  ~ R  L by 

{ r (~ )  for every ~ ~ AtL(0) , 

r ' ( ~ )  = r2(y) for every ~, e AtL(~-0). 

Then r '  ~ H[IL(K 1 to K2). So, for any ~ ~ AtL(0) , 

{r(~)]r ~ HIIL(K1)} = {r ' (~) l r '  ~ H H L ( K  1 w K2)}. 

Hence, HMUL(K1)(~,) = HMUL(K1 u K2)(~) for any ~, e AtL(0), and the 
result follows. 

We have shown (Lemma 2.2) that if r e R/. and g e Aut(SL), then 
I~e(g(r) )  = ~,~(r) and so Ue(g ( r ) )  = UL(r). So HMU satisfies strong sym- 
metry and hence symmetry. 

We now show that HMU satisfies relevance (and hence language invari- 
ance also). Suppose that L~, L 2 are disjoint and that L = L I to L 2. 
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Suppose  that  K 1 • HI IKL~,  K 2 E H I I K L  . T h e n  K 1 U K 2 E H H K  L. 
Suppose  tha t  r 1 • HrlL(K1) and r 2 ~ HIIL2(K2) .  

Def ine  r • [0, 1] AtL as follows: 

r(yl-----~y~) = min{rl(T-[),  r2(Y-2z)} for  every T--~ • AtL I 72 e AtL 2. 

It  is readily verified that  r c H I I L ( K  1 u K2). Also, for  any 91 • AtL,, 
7rr(~l)  = r1(~1). I f  r • H I I L ( K  1 U K2), then  define r l (~l )  = ~ ' r (~  1) for  
any 91 • AtL¢ T h e n  r 1 • HIIL~(K1). Hence ,  {1rr(~a)lr • H I I L ( K  ~ U Kz)} 
= { r l ( ~ l ) l r l  E H I I L I ( K 1 ) } .  H e n c e ,  H M U r ( K  1 I J K 2 ) ( ~ l  ) = 
HMUL~(K1)(~I)  for  any ~/1 c AtL~, as required.  

Next  we show that  H M U  satisfies atomicity.  Assume  the no ta t ion  of  the 
s t a t emen t  of  that  principle.  

I f  r ~ H I I L ( K ) ,  define r"  ~ [0, 1] Ate' as follows: 

r " ( ~ - )  = r ( ~ )  f o r e v e r y  y'---r•atL,,(y °) and ~ A t  L. 

Hence ,  ~r"(yo) = r ( ~ )  for  every ~ • A t  L and so r" • HI IL , , (K° ) .  Now, if 
r" ~ HI IL , , (K° ) ,  define r '  • [0, 1] AtL as follows: 

r'(~) = ~rr"(y °) for  every ~ c At  L. 

T h e n  r '  ~ H I I L ( K ) .  W e  have shown that,  for  every ~ ~ At  L, 

and hence  that  H M U L ( K ) ( ~ )  = HMUL,,(K°)(y°), as required.  
Next  we show that  H M U  satisfies continuity.  Suppose  that  (Kn)  . ~ N+_c 

H I I K  L and that  K ,  ~ K as n --, 0% where  K • H I I K  L. So H I I L ( K  n) 
HI lL (K) ,  and hence  

p({r(~)lr ~ H I I L ( K , ) } ,  { r ( ~ ) l r  ~ H I I L ( K ) } )  ~ 0 as n ~ oo 

for  any ~ ~ At  L. Hence ,  

Imax{r(~/)lr  • H I I c ( K , ) }  - m a x { r ( ~ ) l r  • H H L ( K ) } I  ~ 0, 

and so I - I M U L ( K , X ~ )  ~ H M U L ( K ) ( ~ )  as n ~ ~. So H M U  satisfies conti-  

nuity. 
Finally, H M U  satisfies open-mindedness ,  since if 0 c S-L-, • > 0, K 

H I I K  L, and K U {Tr(0) = e} is consistent,  then  

H M U L ( K ) ( O )  = max  {wr(O)} > • > O. [] 
r~ HHL(K) 
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W e  now demons t r a t e  that  a small subset  of  these  principles is sufficient 
to charac ter ize  H M U  uniquely. 

Le t  RKL be  the set o f  condi t ional - f ree  possibilistic knowledge  bases on 
L. Tha t  is, R K  L = {K ~ H I I K L [ m  = 0}. 

LEMMA 3.2 I f  N is a Hisdal inference process and satisfies compatibility, 
equivalence, uniqueness, obstinacy, and strong symmetry, then 

NL $ RKL = H M U  L $ R K L .  

P roo f  Firstly, note  that,  by Propos i t ion  3.1, H M U  satisfies all of  the 
s ta ted principles.  Suppose  that  K ~ R K  L. So K is a consistent  set o f  
equat ions  

7r(-ffii ) = a i for  1 < i < n ,  

where  Oi~SL,  a i ~ [ O , 1 ] f o r l  < i < n ,  and n ~ N  ÷. 
W e  can assume,  wi thout  loss of  generali ty,  that  

O~ 1 ___ 19/2 ___ - . .  _<< O/n. 

Suppose  that  q = I{al, a 2 . . . .  , an}l. 
Le t  a(1) = 1. Le t  a(k) = min{a(k  - 1) < i < nlaa{ k_l) < ai} for  2 _< k 

< q .  Fo r  l _ < k _ < q -  1, let A ( k ) = { a ( k )  . . . . .  a ( k +  1 ) -  1}, and let 
A(q)  = { a ( q ) , . . . ,  n}. 

Le t  ~k = V 0 t for  1 < k _< q. Let  /3 k = aa{,). So, if i1, i 2 ~ A(k )  then  
leA(k) 

ai, = ai2 = ilk. Let  K'  be  the knowledge  base  

 (ak) for 1 _< _< q 

Note  that  /31 </32  < "'" < /3q. 
Suppose  that  r ~ H I I L ( K ) .  Then  

7"i'r(--~kk) : 'B'r( V -~i) 
~iEA(k) I 

= max  (~-r(Oi)} = max  {a i} =/3~ 
iEA(k) i~A(k) 

for  every 1 _< k _< q. H e n c e  r ~ H I I L ( K ' ) ,  and we have shown that  
H I I L ( K )  ___ H I I L ( K ' ) ,  and so K'  is consistent.  

Suppose  that  /3q < 1. For  each 1 < k < q, let ~k = ~k A ~(Vi_<j< k ~j) ,  

and l e t  ~ q + l  = ~(~l<_j_<q ~zj). Clearly, V l _ < j < q +  1 ~j  ~--- 1 and Ok A $~= 0 
f o r k o l .  Also,  0h < ~ k  f o r l  < k < q .  

Now, let K"  be the knowledge  base  

7r(t-~k) = /3 k for  l < k < q ,  
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It is easy to verify that HI-IL(K') _c H H e ( K " ) .  Now, by compatibility and 
uniqueness, NL(K") ~ HIIL(K") .  

Fix 1 < k < q + 1. Now, Ne(K")(~)  = maxv ~ At,~k){Ne(K")(~)} = /3k. 
t! - -  - -  So there is some ~ AtL(~b r )  such that NL(K X3')=/3~.  But if 3'1, 

Y2 ~ AtL(tP~), define g :At  L -+ At L by 

g(Y2) = 9 1  a n d g ( 9 1 )  = 9 2  and g ( 6 )  = 6 for every 6 ~ A t  L \  

{ 9 2 '  9 1 } "  

Let g* be the unique automorphism of S£ such that g* SAt L = g. Then 
g*( t~)  = tpk for 1 < k < q + 1 and hence HHL(g*(K") )  = HI lL(K") .  So 
by equivalence, NL(g*(K" ))(g*(91)) = NL( K" )(92). But by strong symme- 
try, NL(g*(K" ))(g *(;/1)) = NL(K" )(91), and so NL(K" X91) = NL(K" )(92). 
Hence, NL(K")(~) =/3  k for every 9 e Ate(t~k), and this holds for each 
l _ < k < q + l .  

But for any 9 ~ AtL, there is a unique 1 _ k < q + 1 such that 9 < ~k. 
Hence, for any r e HHL(K") ,  we have r (~)  = ~rr(9) < 7rr(~k) = / 3  k = 
NL(K"X 9) for each 9 ~ Ate- Hence, r < LNL(K ") for every r ~ H I lL (K )  
_c HIIL(K") .  Furthermore,  NL(K") ~ HIlL(K) ,  since for 1 < i _< n, there 
is some unique 1 < k < q such that i ~ A(k). 

Now, NL(K"X-O i) <_ NL(K")(Vi~A{k)-Oi) = NL(K")(T*~) = fl~ = ar So 
NL(K")('O i) < a i. However, r < L NL(K") for every r ~ HHL(K) .  Hence, 
Ol i ~ 7]'r(oi ) ~ NL(K"XO i) for 1 < i < n. Hence, NL(K"X-O i) = ct i for 1 _ i 
< n, and so NL(K")~  HHL(K) .  Since H I l L ( K ) _  HIIt . (K"),  it follows 
from obstinacy that NL(K) = NL(K") and so r < LNL(K) for every r 
HI lL(K) .  So if r E HI IL(K)  \ {NL(K)}, then r < LNL(K) and hence 

UL(r) < UL(NL(K)). 

Hence, NL(K) = HMUL(K),  as required. 
The case when 13q = 1 is similar, except that in this case we define 

~q = -7 ( V1 _< k < q ~ )  and we define K" to be the knowledge base 

~-(~k) = /3k for l < k < q .  

Then the proof goes through as before. • 

DEFINITION 3.2 Let H I l K *  L = {K ~ HllKLI/3j  < 1 for every 1 < j  < 
m}. 

THEOREM 3.1 If  N is a Hisdal inference process and satisfies compatibil- 
ity, equivalence, uniqueness, obstinacy, and strong symmetry, then 

N~ SHIlK~ = H M U  L S H I I K ~ .  
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Proof Suppose that K ~ H H K ~ .  So K is consistent and of the form 

~'(0i) = c~ i for l < i < n ,  

~r(0jl~) =/3j for 1 _< j _< m, 

where /3j < 1 for 1 < j < m. Then, by Hisdal's definition of conditional 
possibility, r ~ HIIL(K)  if 

i = O'i f o r  l < i < n ,  

r - -  7r (~b jA~)= /3 j  for l < j < m ,  

7rr(~) > /3j for l < j < m .  

Let K '  be the knowledge base 

~(Oi) = ai for 1 < i < n ,  

~ - ( ~ )  =/3j for 1 < j < m .  

Now, clearly HI lL(K)  c_ HIIL(K' )  , and so K '  is consistent. By Lemma 3.2, 
NL(K')(O ) = HMUL(K')(0) = max{Trr(0)lr ~ HIlL(K')}. 

Fix 1 < j _< m. Then, since K is consistent, there is some r ~ HI lL(K)  
such that 

3Tr(~jj .) ~ ]3j. 

But r ~ HI lL(K ' )  also. So /3j < 7rr(~) < NL(K')(t, Oj). Since this holds for 
each 1 < j  < m, it follows that NL(K')~  HIlL(K).  So, by obstinacy, 
NL(K) = NL(K' ). 

Now, r' <_LNL(K ') for any r ~ HIIL(K') ,  and so r <_LNL(K) for any 
r ~ HIIL(K).  Hence, NL(K) = HMUL(K), as required. • 

This theorem is not quite adequate, since it doesn't apply to knowledge 
bases containing conditionals with possibility 1. We conjecture that this 
theorem still holds if we replace HI IK~  by H I l K  L. 

3.2. The Dempster Maximum-U-Uncertainty Inference Process 

DEFINITION 3.3 We define the Dempster maximum-U-uncertainty in- 
ference process, denoted DMU, as follows: 

foranyL ~ L, K ~  DII IK L, DMUL(K) = arg max {UL(r)}. 
r~DIIL(K) 

LEMMA 3.3 Given xl, Yl, a, b ~ [0, 1] and x2, Y2 ~ (0, 1], 

xl Yl max{x1, Yl} 
- - , - -  ~ [a,b] then max{x2 ,ye} ~ [ a ,b ] .  if X2 Y2 
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Proof Suppose, without loss of generality, that x I < Yl- Then, if x 2 < 
Y2, 

max{x1, Yl} Yl 
= - -  ~ [a, b]. 

max{x2, Y2} Y2 

Otherwise, x 2 > y: ,  so a < x l / x :  < y l / x :  < Yl /Y:  < b, and so 

max{x1, Yl} Yl 
- = - -  ~ [ a , b ] .  • 

max{x2, Y2} x2 

PROPOSITION 3.2 D M U  satisfies all of the principles in Definition 2.11. 

Proof This is very similar to the proof for H M U  (Proposition 3.1) Note 
that, for any K ~ DIIIKL,  DIIL(K) satisfies condition (1) of I,emma 3.1 
by Lemma 3.3. • 

DEFINITION 3.4 Let RIK L = {K ~ DIIIKLIm = 0}. 

LEMMA 3.4 Using the notation of Theorem 3.2 (see below), 

D I I L ( " ~ L )  = {DIIL(R)IR ~q~L} 

is compact with respect to the metric PL" 

Proof For any R ~ L ,  and any ~ ~ AtL(~T ' ) ,  let R(~)  be the 
knowledge base 

rr(Y -7) ~ [ a " ( 7 ) ,  b " ( 7 ) ] ,  7r(~) = 1. 

Then DIlL(R)  = [ J  DnL(R(~/)). 
~ AtL(-. y') 

Let 5~L(~) = {R(~)IR ~ ' L } "  Then DIIL(R(~))  _ R L is closed, convex, 
and nonempty for every R ~ ~q~L and ~ ~ AtL( -7 y ') .  It is easy to show that 
{DHL(R(Y))IR ~ L ( Y ) }  is closed for any ~ ~ AtL(-, y ' ) .  We noted ear- 
lier that RL is compact, so .9~L(~) is compact. 

Suppose now that (Rn) n ~ N +-  J~'L" Then, for any ~/~ At L(-1 y ' )  one has 
(Rn(~)) n ~ N+C~'L(~). SO there is some (R ,  (Y))k~V)~ N +c (R , (~) ) ,  ~ N+C - -  k ( ~ )  - -  - -  

~'L(Y) and R(~/) ~ ' L ( ~ / )  such that &(DIIL(R . (~)), DIlL(R(~)))  ---> 0 
_ . k ( ~  

as k(y)  -~ ~. Hence, there is some (Rnk)k~N+C__ '(R~)~N+ and R ~ L  
such that, for every ~ ~ AtL( -~ y ' ) ,  one has pL(DIIL(Rn~(~,)), DIIL(R(~))  
- ~ 0 a s k - ~ a n d s o  

I,.J D H L ( R , , ( ~ )  ) ~ (.J DIIL(R(~/))  as k ~ o ~ .  
~ AtL(-. y') ~ AtL(~ y') 

That is, DI IL(R. , )  ~ DIlL(R)  as k --, 0% and hence DIILCq~' L) is compact, 
as required. • 
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THEOREM 3.2 Suppose that N is a Dempster inference process. If N 
satisfies compatibility, equivalence, uniqueness, obstinacy, relativization, 
symmetry, and continuity, then N = DMU. 

Proof Note that by Proposition 3.2, DMU satisfies all of the stated 
principles. Suppose that L ~ L. Define R : D H I K  c ~ RIK L as follows: 
For any K ~ DI I IK  c, let R(K) be the knowledge base 

cr(~) E [a(~) ,  b(~)] for every ~ ~ At L, 

where a(~) = inf{r(~/)lr ~ DIlL(K)} and b(~/) = max{r(~)lr ~ DIIL(K)} 
for every ~ ~ At L. Hence DIlL(K)  _c DHL(R(K)).  

Given K ~ DI I IK L, denote R(K)  by R. Since DHL(K) _c RL, there is 
some ~/~ At L such that b(~/) = 1. 

Now, choose any 3" ~ AtL. There are two cases (1) b(y') = 1 and (2) 
b(3,') < 1. 

Case (1): Let R 1 be 

7 r ( 7  ) ~ [a(-y-7), 1] 

~-(-~TT') ~ [ a (~ -~ ' ) ,  11, 

~-(~) ~ [a(~) ,  b(~)]  for every ~/:~ Y', 

where a(--13'') = max~.  7{a(~)}. Then DIlL(R) = DIlL(R1). So by equiv- 

alence, NL(R)(3'') = NL(R1)(3''). If b(~) < 1 for every ~/¢  3'', then r(3'') 
= 1 for every r ~ DIlL(R), and hence NL(R)(3'') = 1 by compatibility and 
uniqueness. 

If b(~) = 1 for some ~ e 3" , then consider the knowledge base R' 1 
given by 

rr(y -v) ~ [a(-y-7), 11, 

~.(~7~,) ~ [a ( -~T ' ) ,  1]. 

Then, by relativization, NL(R 1)(3" ') = NL(R' 1X3" '). 
Suppose that L = {Pl, P2 . . . . .  Pn}, 3'1 = p f l  A "'" A p2 n, and 3'2 = 

p~lA .-. A ~o Pn , where __8, • ~ {0, 1} n. Define g by 

g(~/,,) = p/S---S and g(~/s,) = ~ for 1 < i < n. 

Then g can be uniquely extended to an automorphism g* ~ Aut(SL) such 
that DI/L(g*(E)) = DIlL(E),  where E is the empty knowledge base, g* 
satisfies the conditions of the symmetry principle, and g*(~a) = 72 and 
g*(Y2) = ~1- So, by symmetry, NL(g*(E)Xg*(~2))= NL(E)(~,2). But by 
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equivalence, NL(E)(~1) = NL(g*(E))(g*(~,2)). So NL(E)(~ q) = NL(E)(~2) 
for any Yl, Y2 ~ AtL. However, since NL(E) ~ R L (by compatibility and 
uniqueness), there must be some ~/~ At L such that NL(E)(~,)= 1. It 
follows that NL(E)(~) = 1 for every ~ ~ At L. 

Now, DIIL(R' 1) G DIIL(E) = RL and NL(E) ~ DII__L(R'I). So, byobsti-  
nacy, NL(R' 1) = NL(E). Hence, NL(R)(T') = NL(R'I)(V') = N~(E)(T') = 1. 
So, if b(7 ' )  = 1, NL(R)(v') = 1 also. 

Case (2): Suppose now that b(y ' )  < 1, where y ' ~  At L. Then R is 
equivalent to the knowledge base, R' given by 

[a(7), 

~'(~/) ~ [a(~) ,  b(~/)] for every ~ ~ V'. 

Let R" be the knowledge base 

[a(7), 
~ ' ( -~7 ' )  = 1. 

Then,  by  relati__vization, N L ( R ' ) ( y ' ) =  NL(R"__)(y'). Suppose that  
NL(R")(~,') < b(y ') ,  and__let e = b(___V') - NL(R")(Y') > O. Let ~L  = {R c 
RIKLJR is of form ~r(~/') ~ [a"('y'), b"(~/')], 1r(-~ ~/') = 1}. 

By continuity and Lemma 3.4, N L is uniformly continuous on ~'L. So 
there is some 8 > 0 such that if pL(DIIL(R1), DIIL(R2)) < 8 then 

dL(NL(R1), NL(R2)) < • for every R 1, R 2 ~ L .  ~ (*)  

Now, choose M ~ N + such that M > [1 - b ( y ' ) ] / &  Then, for each 
i ~ N ÷ such that 0 _< i _< M, define R'~ to be the knowledge base 

"a- ( ~ - 7 ' )  = 1. 

Then DIIL(R") = DIIL(R' ~) c DIlL(R1") c .-- c D I] L( R'~4 ). For all i 
such that 1 _ i < M, 

1 - b ( 7 )  
PL(DIIL(R'-I) '  DI1L(R'))  M < 8 

and so dL(NL(R'~_I), NL(R~)) < • by (*). Now, from dL(NL(R'~), NL(R'~)) 
< e, we can deduce that NL(R' ~) ~ DHL(R'~). This follows because if 
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NL(R' [) ~ DIIL(R'~), then NL(R'~XT') > b(y') ,  and so 

dL(NL(R'~), NL(R'~)) > NL(R'~)(-y v) - NL(R'~)(--y; ) > b(--y;) 

- N L ( R " o ) ( - - ~  ) = e ,  

a contradiction. Since DIIL(R' ~) c DIIL(R,~) , by obstinacy we can deduce 
that NL(R'[) = NL(R"o). We apply the above argument M times to deduce 
that NL(R' [) = NL(R ~) for every 1 _< i < M. Hence, NL(R") = NL(R"M). 
But NL(E) ~ DII/(R'~t), and so NL(R" M) = NL(E) by obstinacy. 

However, NL(E) ~ DHL(R"), since NL(E)(~)  = 1 > b(-y -7) by assump- 
tion. So we have shown that the supposition that NL(R")(__T') < b(y ') leads 
to a contradiction, and it must be that NL(R")(T') = b(y') and hence that 
NL(R)(T') = b(y'). We have demonstrated that, for any ~ / e  At L, NL(R)(~/) 
= b(~). 

Now, by Lemma 3.1, there is some r* ~ DIIL(K) such that r*(~) = b(~) 
for every ~/~ At L. So NL(R) ~ DIIL(K), and hence, by obstinacy, NL(K) 
= NL(R). 

Now, for any r ~ DIlL(K), we have r(~,) < b(~/) = NL(K)(~) for any 
~ At L, and so NL(K) = DMUL(K) for any K ~ D H I K  L. That is, N L = 

DMUL, as required. • 

4. CONCLUSIONS 

From purely logical considerations, we have derived the maximum- 
U-uncertainty inference process, thus giving a logical justification for 
preferring it to, say, a maximum-fuzziness inference process. This result 
has been shown for both Hisdal's and Dempster's definitions of conditional 
possibility. However, we note that the maximum-U-uncertainty inference 
process, deCMU, does not satisfy uniqueness when we use deCampos, 
Lamata, and Moral's definition of conditional possibility. A simple example 
is K defined as follows (L = {p, q}): 

1 
7r(plz/) - 

l og  2 3 ' 

, ~ ( p - - X ~  q) = 0. 

Then deCMUL(K) = {r ~ deCIIL(K)lr(  p A q) < r( ~ p A ~ q), r( ~ p A q) 
= 1 } .  

Some open problems remain: 
• Does Theorem 1 remain valid when HI IK~  is replaced by HIIKL? 
• There are alternative definitions of conditional possibility (e.g. [25]). 

Does the characterization result still hold using these definitions? 
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° Are the results optimal in the sense that all the principles assumed in 
each proof are actually necessary? 

In comparison with ampliative probabilistic reasoning, we note that the 
maximum-entropy inference process satisfies analogs of all the stated 
principles, except atomicity. It is shown in [14] that atomicity is inconsis- 
tent with uniqueness, compatibility, equivalence, relevance and strong 
symmetry, i.e., no probabilistic inference process satisfies all of these six 
principles. The problem is that in the case of complete ignorance (i.e. an 
empty knowledge base), we are forced by strong symmetry, uniqueness, 
and compatibility to allocate equal probabilities to all atomic propositions. 
This problem arises from the inability of probability measures to model 
lack of knowledge correctly. The maximum-U-uncertainty inference pro- 
cess, on the other hand, satisfies all of the stated principles. 

We note also that computing nontrivial approximations to the maxi- 
mum-entropy inference process is NP-hard, as shown in [16]. Furthermore, 
any probabilistic inference process satisfying uniqueness, compatibility, 
equivalence, and strong symmetry is NP-hard, as shown in [26]. Unfortu- 
nately, although apparently much simpler, computing a nontrivial approxi- 
mations to HMU or DMU is also NP-hard and hence probably infeasible 
in general [27]. In fact, the theorem shown in [26] is also valid for 
possibilistic inference processes [27]. 

Note that since U-uncertainty is identical to unspecificity of Dempster- 
Shafer theory (see Section 2.2), it is of interest to ask if the above results 
hold also for the minimum-specificity inference process applied to general 
evidential knowledge bases. The answer is negative, since it doesn't satisfy 
uniqueness (see[27]). Also of interest is the problem of updating possibilis- 
tic knowledge bases with new but conflicting information. It may be 
possible to derive logically a unique updating process using ideas similar to 
those developed here. 

It is also possible that, assuming a different definition of conditional 
possibility, an alternative inference process can be characterized by the 
logical axioms--e.g, maximization of strife or discord, or minimization of 
an alternative measure of specificity. 
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