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We classify nondegenerate plane configurations by attaching, to each such con- 
figuration of n points, a periodic sequence of permutations of { 1,2,..., n} which 
satisfies some simple conditions; this classification turns out to be appropriate for 
questions involving convexity. In 1881 Perrin stated that every sequence satisfying 
these conditions was the image of some plane configuration. We show that this 
statement is incorrect by exhibiting a counterexample, for n = 5, and prove that for 
n < 5 every sequence essentially distinct from this one is realized geometrically by 
giving a complete classification of configurations in these cases; there is 1 com- 
binatorial equivalence class for n = 3, 2 for n = 4, and 19 for n = 5. We develop 
some basic notions of the geometry of “allowable sequences” in the course of prov- 
ing this classification theorem. Finally, we state some results and an open problem 
on the realizability question in the general case. 

1. INTR~DuC~~N 

An outstanding problem of combinatorial geometry has long been to 
classify, in a reasonable and effective way, nondegenerate configurations of n 
points in the plane-indeed in Euclidean space of any dimension-into 
finitely many “essentially distinct” classes. Any classification scheme can be 
described by mapping the set of nondegenerate configurations of iz points 
into some finite set A and identifying configurations with the same image. 
The utility of such a scheme depends of course on (1) how faithfully and 
simply properties of interest are represented by the objects of A, and (2) how 
well we know the image of the map, i.e., which objects of A are 
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geometrically realizable. What makes a property interesting, in turn, is deter- 
mined by what kinds of problems one wants to resolve. 

Our primary concern is with problems related to convexity, such as the 
Erdos-Szekeres conjecture [ 1,2]. Suppose, for example, one wanted to ask a 
computer to test each nondegenerate plane configuration of 17 points to 
determine whether it contained the vertices of a convex hexagon. How could 
the computer, even in principle, generate fkiteIy many l7-tuples of points 
such that any two were “essentially distinct,” and any 17-tuple “essentially 
the same” as one of those generated? For this purpose, a natural classifica- 
tion scheme would be to associate with a configuration of points I’,,..., P, all 
those subsets {i , ,..., ik} of [ 1, n], called semispaces, for which Pi, ,..., P, lie 
on one side of a line and to consider two configurations equivalent if, after a 
possible relabeling of the points, they each have the same family of 
semispaces. Here A can be taken to be the family of subsets of ]I, n]. While 
it is not hard to see that all questions pertaining to convexity are easily read 
off from a realizable element of A, it is far from clear which elements of A 
are realizable. We shall ‘return to the question of the reahzabihty of 
semispaces in a subsequent paper [3]. In this paper, which is the first in a 
series on the classification problem, we shall examine a finer classification 
scheme for which the question of realizability is somewhat more tractable 
and which also sheds light on the realizability question for semispaces. 

This classification results from the assignment, to each nondegenerate 
configuration of n points in the Euclidean plane, a periodic sequence of 
permutations of the set [ 1, n] which is determined by projecting the points of 
the configuration orthogonally onto a rotating directed line. The sequence 
determines the semispaces as initial or final segments of the various 
permutations and thus reflects the convexity properties of the configuration, 
as well as the classification by semispaces; we shall call two configurations 
“combinatorially equivalent” if--possibly after renumbering or reflec- 
ting-they give rise to the same sequence of permutations. Sequences 
obtained in this way satisfy a simple necessary condition (see Remark 2.31, 
and we call any sequence satisfying this condition an “allowable sequence of 
permutations.” Our main concern in this paper is with the question of the 
geometric realizability of these allowable sequences. 

In [S], Perrin, writing on the “problime des aspects” which had been 
proposed by Halphen, asserted-in reference to the sequnce of permutations 
associated to a nondegenerate configuration-“L’ordre dans lequel ces per- 
mutations se presenteront n’est pas completement arbitraire, puisque, pour 
passer d’un aspect au suivant, on ne peut permuter que deux nombres con- 
tigus; mais c’est la seule condition d remplir, comme iE est facile de s’en 
assurer...” [italics ours]. The condition he refers to is essentially what we 
call allowability, and so he asserts that all allowable sequences are 
realizable. 
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This assertion, which has apparently gone unchallenged for nearly 1OC 
years, is in fact false. We shall give an example, for n = 5, of an allowablE 
sequence which is not realizable (Theorem 3.3), for an amusing geometric 
reason, and establish a further necessary condition for realizability 
(Corollary 3.2 of Theorem 3.1). On the other hand, all allowable sequences 
for n ,< 5 which are essentially distinct from this one are realizable, and 
are-it turns out-realized by precisely 1, 2, 19 combinatorially distinct 
configurations for n = 3, 4, 5, respectively (Theorem 4.1). Along the way 
toward proving Theorems 3.3 and 4.1, we are led naturally to develop some 
notions of the geometry of nondegenerate configurations purely in terms of 
their associated sequences (Section 2); this offers an interesting subject for 
further investigation. 

We would like to express our gratitude to William Sit for several valuable 
conversations while this work was in its formative stages, and to Thomas 
Zaslavsky for making us aware of another assault on the classification 
problem-one involving oriented matroids. Finally, we would like to thank 
Herman Hanisch for coming up with a proof (we now have four in all!) of 
the “amusing geometric fact” mentioned above, which we were later able to 
generalize to Theorem 3.1. 

For an excellent bibliography on configurations of points, see [4], in 
particular the comments on p. 112. 

Added in proo$ The classification of nondegenerate configurations 
presented here can be extended to a classification of arbitrary plane 
configurations, and this turns out to be a key step in settling the conjecture 
of B. Griinbaum that every arrangement of eight pseudolines is stretchable; 
see our forthcoming paper “Proof of Griinbaum’s conjecture on the 
stretchability of certain arrangements of pseudolines,” to appear in J. 
Combinatorial Theory, Ser. A. 

2. SOME GEOMETRY OF ALLOWABLE SEQUENCES 

DEFINITION 2.1. A nondegenerate configuration of II points is an ordered 
n-tuple of distinct points in the plane with no three points collinear and no 
two pairs of points lying on parallel lines. We shall think of the points of the 
configuration as labeled by the numbers 1,2,..., n. Given a configuration C 
of n points and a directed line 1 which is not orthogonal to any line deter- 
mined by two points of C, the orthogonal projection of C on 1 determines a 
permutation of 1,2,..., n in an obvious way. As the line I rotates counter- 
clockwise about a fixed point we obtain a sequence of permutations of period 
2 . .Cz = n(n - l), which we shall call the circular sequence of the 
con&w-ation. 
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EXAMPLE 2.2. Associated with the quadrilateral of Fig. 1 we have the 
circular sequence 

..’ 1432 32 1423 42 1243 12 2143 ft.? 2134 !.?.23~4.!! 

(2.1) 
2341 ~3241~3421~3412 ~4312~4132%432-. 

Were we have indicated which “switches” take us from each permutation to 
the next. (We distinguish the ordered switch ij from the ordered switch ji in 
that the former indicates that i originally precedes j.) Note that the sequence 
of ordered switches in line (2.1) is nothing more than the sequence of vectors 
$ in Fig. 2 arranged in counterclockwise order. 

4 

-l A 2 

FIGURE 1 

Remark 2.3. In the circular sequence of a configuration, (1) successive 
permutations differ only by having the order of two adjacent numbers 
switched, and (2) any & consecutive permutations make use of all ,$Zz 
possible switches in passing from each to the next. Property (1) corresponds 
to the switching of the projections of i and j on 1 as 1 rotates through the 
direction orthogonal to the line through i and j, while property (2) stems 
from the fabt that as the line E rotates through an angle of n it passes 
orthogonally to each of the ,C, lines determined by the points of C. It is an 
immediate consequence of (1) and (2) that the ordered switch occurring ,C2. 
steps after ij must be ji, and that the permutation .Cz steps after a given one 
must be its reverse. 

DEFINXTION 2.4. A sequence (..., P- 1, P, , P, ,...) of permutations of the 
numbers l,..., II which satisfies properties (I) and (2) of Remark 2.3 (hence is 
automatically of period n(n - 1)) is called an allowable circdar sequence. 
We sa? that two allowable circular sequences (..., P_ I, P,, P, ,...) and 
(-.., Q-,, Qo, Q ,,...) are equal if, for some k, Qj+,=Pi for ah i. 

DEFINITION 2.5. The restriction of an allowable circular sequence S to a 
subset i, < i, < ... < ik of [ 1, n] will mean the sequence of ~rm~tations 
obtained by (1) deleting the numbers not in this subset from each 
permutation of 5, (2) omitting repeated permutations, and (3) renaming ii 
(j = I,..., k) simply j. This clearly yields an allowable sequence, and the 
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result corresponds to the subconliguration {ii,..., ik} of [ 1, n] if S is 
realizable. 

Clearly the circular sequence of a configuration is allowable. Equally 
clearly, an allowable circular sequence determines its periodic sequence of 
ordered switches. Our first proposition shows that the converse is also true. 

PROPOSITION 2.6. An allowable circular sequence is determined by its 
sequence of ordered switches. 

Proof We use induction on n, If n = 3 (the cases n = 1 and n = 2 being 
trivial), there are only two allowable sequences: 

. . . 123122131323123321213123L13232123 . . . (2.2) 

and 

. . . 1232313213312123213223131213u123 . . . . (2.3) 

and their sequences of ordered switches are distinct. Suppose n > 3 and 
consider any switch involving It, say in. If K is the preceding permutation, it 
is sufficient to reconstruct n, for the sequence of switches-applied one at a 
time---will then determine the rest of the sequence. But if we restrict the 
sequence of switches to [ 1, y1- 11, the induction hypothesis allows us to 
determine the restricted sequence, hence the restriction 7~~ of z To get rc, we 
just insert n after i in no. 

Remark 2.7. If a nondegenerate configuration is reflected about a line, 
the sequence of switches of the new configuration is the reverse of that of the 
old; hence the same is true of the sequence of permutations. It is clear that 
this operation, henceforth called reflection, when applied to any allowable 
sequence, yields another allowable one. 

Since we do not wish to distinguish between configurations which are 
merely numbered differently, nor between those which are reflections of each 
other, we choose not to make the corresponding distinctions among 
sequences either. Hence 

DEFINITION 2.8. Two allowable circular sequences are combinatorially 
equivalent if, by a suitable permutation of the numbers l,..., n or a reflection 
or both, one is transformed into the other. Two configurations are com- 
binatorially equivalent if they have combinatorially equivalent circular 
sequences. 

We now introduce some geometric language which will facilitate our 
discussion of allowable sequences; it is motivated, of course, by the 
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corresponding terminology for the configurations from which some of our 
sequences arise. 

DEFINITION 2.9. The numbers in our permutations will generally be 
referred to as points. An allowable sequence invoIving n points will often be 
called simply an n-seqzlence. If S is an n-sequence and j, ii ,..., i, E [ 1, n], we 
say j is in the convex hull of ii ,..., i,, written jE conv(i,, . . . . ik), ifj is one of 
lI,.‘., i, or ifj is preceded, in each permutation of S, by one of i, ,..‘, i, (hence 
followed as well). We say j is an extreme point of S if j occupies position 1 
in some permutation of S, i.e., if j is not in the convex hull of the other 
points of S. (Note that every sequence with n > 3 has at least three extreme 
points.) If the extreme points of an n-sequence S occupy position I in the 
(circular) order . . . . i, ,..., i,, i, ,... we call that the counterclockwise order of 
the extreme points. The set of points in any initial (hence in any terminal) 
segment of a permutation of S is called a semispace of S. If ii,, iz] is a 
semispace of S consisting of two extreme points, we call {i1, iz} an edge of 
S. A triangle, (convex) quadrilateral,..., (convex) k-gon is an n-sequence with 
n = 3, 4,“.., k, respectively, all of whose points are extreme; the points are 
called the vertices. The 2-point subsets of a k-gon which are not edges are 
called diagonals. If the vertices of a k-gon are i i ,..., i, in counterclockwise 
order, we say that the edge or diagonal (i =, is) js paraEIel to the edge or 
diagonal {i,-,, i4+V } (with the indices read module k). 

:Remark 2.10. If j E conv(i i ,..., ik) in an n-sequence S, then the same is 
true in any restriction or extension of S to a set containing j and iI,>..., i,. 
Hence if j is an extreme point of S, it is an extreme point of any restriction 
of S to a set containing j. Similarly, the intersection of any semispace of 
with a subset (i 1 ,..., ik} gives a semispace of the restriction of S so that 
subset. 

DEFINITION 2.11. If the ordered switches i, j, ,..., i, j, occur in that order 
in S, with i, j, not recurring before i, j,, we shall write (il j, < < ikjJ. 
Note that if this holds in a sequence S it holds in any restriction or extension 
of S to a subset containing the points in question. 

DEFINITION 2.12. Suppose 1, 2, 3, 4 are the vertices of a quadrilateral, 
in counterclockwise order. We say that lines 12 and 43 meet on the side of 
points 2 and 3 if (43 < 12 < 34); otherwise they meet in the side ofpoints I 
and 4. 

DEFINITION 2.13. If 1, 2, 3, 4 are the points of a 4-sequence, we that say 
line 34 separates points 1 and 2, or cuts 12, if the following segment 
semispaces exist: {l}, {l, 3}, {l, 41, and { 1, 3,4 1. (Since the complement of 
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one semispace is another, this condition is obviously symmetric in the points 
1 and 2.) 

In the rest of this section we give some “geometric” properties of 
allowable sequences which are needed for the classification theorem in 
Section 4. The proofs of all but Proposition 2.18 follow immediately from the 
definitions. 

Remark 2.14. Suppose the extreme points of an n-sequence S are i, ,..., i, 
in counterclockwise order. Since in order to get from position 1 to position II 
such a point must make 12 - 1 interchanges, each with a point initially to its 
right, it is clear that each extreme point moves monotonically left-to-right 
until it is in position n, then returns monotonically to position 1. It therefore 
makes sense to talk about the direction that the extreme point is moving in at 
some stage when it is not at either end of a permutation; by convention we 
shall also say it is moving to the left when it occupies position 1 or position 
n. Because of the monotonic motion in each direction, it is clear that no two 
extreme points moving in the same direction can change places; hence i, ,..., i, 
follow each other in their back-and-forth motion, changing places with each 
other only when two are moving in opposite directions. (Note: This 
“monotonicity in a half-period” does not hold, of course, for the nonextreme 
points, since if a point is in position p at its leftmost extreme, with p > 1, it 
must makep - 1 moves to the left and n -p moves to the right by the end of 
a half-period.) 

PROPOSITION 2.15. Suppose the extreme points of an n-sequence are 
i, ,..., i, in counterclockwise order. Then 

(a) (ii i, < i,i, < . +. < ikil < i, iJ. 

(b) (i,i,<i,i,<... <i,ik<izi,). 

(c) Every ij belongs to exactly two edges-{ij-,, ij} and {ii, ij+I}. 

PROPOSITION 2.16. (a) (iI j, < . . < ik jk) G- (j, i, < . . ’ <j, ik). 

(b) If (iI j, -C . . . < i, j, <j, iJ, (ikjk < f,,, j,, 1 <j&J, and (il j, < 
ik+,jk+l<... <i,j,<j,i,), then (iIj,<... <i,j,<j,i,). 

(c) (ij < jk < ji) =S (ij < ik < jk < ji). 

(d) (i, j, < i, j, < . . < i, j, <j, i,) =r (i, j, < . . h < i,j, <j, i, <j, iz). 

PROPOSITION 2.17. If 1, 2, 3 are the extreme points, in counterclockwise 
order, of a 4-sequence, then the sequence must be 

. . . - 1423-1243-2143-2413-2431-2341-3241-.... (2.4) 

The next proposition says that the convex hull of an n-sequence may be 
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“‘triangulated” by joining any one of the extreme points to each of the others; 
each nonextreme point will then belong to precisely one of the triangles 
formed. 

PROPOSITION 2.18 (“Triangulation lemma”). Suppose the extreme p&rats 
of an n-sequence S are i,,..., k i in counterclockwise order, and suppose 
1 < a < k. Ifj is any point other than i 1 ,..., i,, there is a unique /3 (1 < /.I < k, 
/I’ f a, /I + 1 # a) such that j E conv(i,, i,, is+ 1). (p $ 1 is understood 
modulo k, of course.) 

ProoJ Let P be the permutation of S immediately preceding the switch 
i, j, and let i, and i,, 1 be the successive left-moving extreme points (see 
Remark 2.14) which surround j in P; they exist, by virtue of our convention 
about the endpoints of P. (Note that i, cannot be the initial point of P 
because of the switch that is about to take place: j is not an extreme point.) 
In other words, P has the form 

where the arrow indicates the direction in which the corresponding extreme 
point is moving. We claim j E conv(i a, i,, i,, i). It is sufficient to show that 
one of i,, i,, iD+1 is always to the left of j. Since the (circular) order in 
which these three points reach position 1 is i,, i,, ig+ $, we can argue as 
follows: For the half-sequence immediately preceding the switch i, j, i, is to 
the left of j. From that switch until i, returns to j and the switch iSj takes 
place, i, is to the left of j. When the switch i, j occurs, i,, 1 is still to the left 
of j, since it is “following” i,, and it remains so until the end of the half- 
sequence, for the position then is exactly the reverse of the one shown in 
(2.5). To prove uniqueness, consider an index y =A-/% If j is always 
surrounded by two of i, , i,, i,, 1, then since i, switches with j as we go from 
P to the next permutation, P must have the form 

which is impossible since i,, 1 is the successor of i, among the left-moving 
extreme points in P. 

COROLLARY 2.19 (Caratheodory’s theorem in the plane). -pf 
j E conv(i, ,..., ik) then for some a, p, y we have j E conv(i,, i,, i,). 

Remark 2.20. It may be shown, using the above, that if a line passes 
through a point inside a triangle, it cuts one side of the triangle; that any line 
cutting one side cuts a second side; and that no line cuts all three sides. This 
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is Pasch’s axiom, and we mention this fact to show that some standard 
theorems of ordered geometry can be proven for our “generalized con- 
figurations.” 

3. UNREALIZABLE SEQUENCES 

THEOREM 3.1. If 1, 2 ,..., n are the vertices of a convex n-gon (numbered 
modulo n) listed in counterclockwise order, and if a, k > 0 and a + 2k < n, 
then it is impossible that the diagonals (or edges) i, i + a and the “parallel” 
diagonals (or edges) i - k, i f a + k intersect on the side of points i + a and 
i + a + k for all i (Fig. 2). 

FIGURE 2 

ProoJ: Let w  be a unit vector normal to the plane of the polygon, 
respecting the counterclockwise order of the vertices. Let us denote by Vi 

(i = l,..., II) the vector i - 1,: Suppose i, i + a and i - k, i + a + k meet on 
the side of points i + a and i + a + k for all i. Then i - k is farther from line 
i, i + a than i + a + k is, i.e., 

, , d 
i-k,i.i,i+aXw)>i+a+k,i+a.(i,i+aXo) 

for i = l,..., n. Rewriting, we have 

or 

( i VP x ;g VP + y$+‘+‘: VP x ;g VP) .co>o. 

i-k+1 

Rewriting the last two sums in descending order, we get 

i vp+i-kX $,vg+i+i, ‘i+a+k+l-Px$, ‘i+=+l-q) O>‘y 
p4 
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which yields 

( i it i: VP+l-kXv~+i+vi+a+&+l~pXV~+~+~-9) ’ W>O 
i=l p=1 q=1 

when we sum over i. If we interchange the order of summation we have 

‘P+i-k x “g+i+ i Vi+a+&+l-pX vi,,;,,) .w>o. 

i=l 

Since the numbering is modulo n, we may add p + q - a - k - I to each 
subscript in the second summation, getting 

i i (? vp+i-kXZtq+i+ ,$ Vq+iXVp+i-k) .W>o, 
p=19=1 i=l i=l 

which contradicts the fact that this sum obviously vanishes. 

COROLLARY 3.2. If an allowable circular sequence S is a convex n-gon 
with points l,..., n in counterclockwise order, and if-for each i = l,..., n-the 
diagonal (or edge) ii, i + a) and the diagonal (or edge) {i - k, i + a f kJ 
intersect on the side ofpoints i + a and i + a + kfor ail i, where a, k > 5 and 
a + 2k < n, then S is not geometrically realizable. 

We can now give a counterexample, in the case y1= 5, to Perrin’s assertion 
[S, p. 1191 that every allowable sequence is geometrically realizable: 

THEOREM 3.3. The allowable sequence 

is not geometrically realizable. 

Proof. Suppose (3.1) were realizable. Since each point is extreme, the 
configuration would be a convex pentagon. Moreover sinee ( 1,2), {2,3,): 
{3,4), {4, S}, and {S, 11 are the edges of (3.I), they are the edges of the 
pentagon as well, and the vertices appear in the counterclockwise order 1, 2? 
3, 4, 5 (in both senses). Finally, since (12 < 53 < 21),’ (23 < 14 < 32) 
(34 < 25 < 43), (45 < 31< 54), and (5 1 < 42 < 15), each side and ita 
“parallel” diagonal must meet as in Fig. 3, i.e., 12 meets 53 on the side of 1 
and S,..., 51 meets 42 on the side of 5 and 4, again in both senses (set 
Definitian 2.12). Corollary 3.2 therefore yields the result. 



230 GOODMANANDPOLLACK 

FIGURE 3 

This gives us a great many unrealizable sequences for n > 5, since we have 
only to extend the “impossible pentagon” sequence in an arbitrary way to an 
allowable sequence, in order to get another unrealizable sequence: 

COROLLARY 3.4. If the restriction of an allowable N-sequence S to any 
subset of n points satispes the conditions of Corollary 3.2, then S is not 
realizable. 

We believe it is not the case, however, that the possession, by an allowable 
N-sequence S, of an n-subsequence in which two systems of “parallel” 
diagonals and/or edges meet as in Corollary 3.2 is the only obstruction to the 
realizability of S. We therefore pose the following problem, whose solution 
seems essential, to us, for a thorough understanding of plane configurations: 

PROBLEM 3.5. What further obstructions, if any, are there to the 
geometric realizability of an allowable sequence of permutations, besides 
those given by Corollary 3.4? 

4. COMBINATORIAL CLASSIFICATION FOR n<5 

THEOREM 4.1. For n = 1, 2, 3, 4, 5 there are precisely 1, 1, 1, 2, 20 
(respectively) combinatorial equivalence classes of allowable sequences, of 
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which 1, 1, I, 2, 19 (respectively) are geometrically recdizable; the 
realizations for n = 4 and 5 are as shown (schematically) In Fig. 4. 

Proof. In order to prove that for a certain IZ there are precisely N(n) 
combinatorial equivalence classes, of which precisely R(n) are realizable, we 

A Fo 
1 realization c 1 realization 

JQaL 

@I 

a / \ 
1 realization 

6) 

,,: 
I \ 

2 realizations 
Cd) 

8 realizations 
(e) 

0 /’ \ I 

A a’ ’ 
4 realizationB 

1 realization 
6) 

1 reaIization 
(h) 

1 realization 
(8) 

1 realization 
6) 

FIGURE 4 

(no realization) 
(kf 

In (d), (e), and (9, lines x and x’ can meet in either direction; in (h), (i), (j), and (k), each 
side meets the “parallel” diagonal in the direction indicated. 

must do three things: (1) give N(n) n-sequences and show that any n- 
sequence is equivalent to one of them, (2) show that they are pairwise’ 
inequivafent, and (3) show that at ieast R(n) of them are realizable and at 
least N(n) - R(n) unrealizable. Since in our case all but one of them (for 
n = 5) will be realizable and we will actually give the realizations, (2) will be 
immediate by inspection of the pictures. It is therefore enough to do (1) and 
(3). 
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For n = 1 and 2 there is nothing to do, and for t2.= 3 there are only the 
two (equivalent) sequences (2.2) and (2.3), each of which is realized by an 
appropriately numbered triangle. 

For IZ = 4, there may be either three or four extreme points. In the first 
case Proposition 2.17 shows there is only one equivalence class (see Fig. 4a), 
while in the second case-after renumbering so that 12 and 43 meet on the 
side of 2 and 3, and 23 and 14 on the side of 3 and 4 (see 
Definition 2.12)---Propositions 2.15 and 2.6 show that only the sequence 
realized in Fig. 5 is possible. 

If n = 5 there are either three, four, or five extreme points. 

FIGURE 5 

Case 1. Three Extreme Points 

We have seen (Proposition 2.17) that-up to relabeling-there is only one 
possible restriction to those three points plus either “inside” point. Thus if 1, 
2, 3 are extreme, the orders of all switches are determined with the exception 
of 45, and i4 vs i5 (and of course 4i vs 59. Clearly 45 can be inserted 
anywhersand 54 at the corresponding position, as is shown by the fact that 
the line 45 in Fig. 6 can have any desired direction; by Proposition 2.16(c), 
this choice determines i4 vs i5 for all i. Now apply Proposition 2.6 to 
determine a sequence. This argument shows at the same time that every such 
sequence is realizable, and it is clear that by a cyclic relabeling of points 1, 
2, 3, followed by a reflection if necessary, we may transform any realization 
into the one shown in Fig. 6. This gives one equivalence class in Case 1. 

3 
& 4 5 

1 2 

FIGURE 6 

Case 2. Four Extreme Points 

We have already seen that up to relabeling, any 4-sequence with four 
extreme points must be unique and is realized by Fig. 5 above. Then point 5 
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must be in one of the four regions the quadrilateral is cut into by its 
diagonals, in the following sense: By the triangulation lemma, 
5 E conv(l,2,3) or 5 E conv(l,3,4); dS0 5 E conv(2,3,4) or 
5 E conv(2,4, 1). By reflecting and renumbering, if necessary, making use of 
the symmetry about the diagonal 13 apparent from Fig. 5, we may assume 
5 E conv(l,2,3). 

Case 2a. Suppose 5 E conv(2,3,4). Then the position of switch 5i in 
relation to the remaining switches is determined, by Proposition 2.17, except 
for 53 vs 14. It is clear from Fig. 5 that point 5 can be chosen so that 53 and 
14 meet either on the side of 3 and 4 or on the side of 5 and 1 (for the 
former near line 23, for the latter near line 13); hence there are precisely two 
inequivalent sequences in this case, and both are realizable. 

Case 2b. Suppose 5 E conv(2,4, 1) (see Fig. 7). Then only the position 
of switch 5 1 is determined relative to the rest (namely, (21 < 5 1 < 3 l)), 
while 52 vs 43, 53 vs 14, and 54 vs 23 are all undetermined. What is not 
clear from Fig. 7, however, is that all three pairs of alternatives may be 

FIGURE I 

realized independently, i.e., that there are as many as eight inequivalent 
sequences in this case. That this is so, and that in fact all eight sequences are 
geometrically realizable, follows from Fig. 8, in which the four locations of 
point 5 with (23 < 54 < 32) are indicated by the dots in Fig. 8(a), while the 
dots in 8(b) give the four locations for which (54 < 23 < 45). (The dotted 
lines in Fig. 8 are parallels.)’ Case 2 thus yields a total of 10 inequivalent 
sequences, all realizable. 

FIGURE 8 

1 Figure 8 also shows an interesting property of realizations, and one which makes the 
whole question of realizability so difficult: Figures 8(a) and (b) are each realizations of the 
same 4-sequence; yet one allows a fifth point to be placed so as to realize certain extensions of 
that sequence, while the other does not. 
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Case 3. A Convex Pentagon 

Here we must distinguish a certain type of vertex. We shall call vertex 1 of 
pentagon 1, 2, 3, 4, 5 (numbered counterclockwise) special if edges 23 and 
54 meet on the side of points 2 and 5. 

The proof in this case proceeds by a breakdown into the number of special 
vertices; it is not hard to see, using Propositions 2.15 and 2.16, that a convex 
pentagon can have no more than two special vertices, and that if it has two 
they must be adjacent. The case of only one special vertex resolves itself into 
the four realizations shown schematically in Fig. 4f, that of two special 
vertices into the realization of Fig. 4g, and that of no special vertices into 
Fig, 4h-which is realized by the configuration { (0,9), (1, 0), (10, 0), 
(10, 3), (2, lo)}, 4iwhich is realized as in Fig. 9, 4j-which is realized as 

2 
1 

m 

5 

3 4 

FIGURE 9 

in Fig. 10, and 4k-which is the sequence of Theorem 3.3 and therefore has 
no realization, In every case, Propositions 2.15 and 2.16 turn out to be all 
that is needed to enumerate all the possibilities; we omit the details, which 

4 
3 

w 

2 

5 1 

FIGURE 10 

are similar to those of Cases 1 and 2 above. This gives a total of 20 
sequences, of which all but one are realizable, and completes the proof of the 
theorem. 
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