Some Results on λ-Designs
W. G. Bridges
California Institute of Technology, Pasadena, California 91109
Comnumicated by H. J. Ryser
Received September 5, 1968

Abstract

A λ-design as introduced by Ryser [3] is a $(0,1)$-square matrix with constant column inner products but not all column sums equal. Ryser has shown such a matrix to have two row sums and he constructs an infinite family of λ-designs called H-designs. This paper does three things: (I) generalizes Ryser's H-design construction to an arbitrary (v, k, λ)-configuration, (2) establishes some additional general properties of λ-designs, and (3) determines all 4 -designs.

I. Introduction

A λ-design is a $(0,1)$-matrix A of size n by n such that

$$
\begin{equation*}
A^{1} A=\lambda J+\operatorname{diag}\left[k_{1}-\lambda, \ldots, k_{n}-\lambda\right] \tag{1.1}
\end{equation*}
$$

where A^{t} denotes the transpose of A, J is the $n \times n$ matrix of ones, $k_{j}>\lambda>0$, and not all the k_{j} 's are equal.

First definitively studied by de Bruijn and Erdös with $\lambda=1$ [1], they have received new interest with the following theorem of Ryser [3] and Woodall [4]:

A (0,1)-square matrix A satisfying (1.1) with $k_{j}>\lambda>0$ either has all its row and column sums equal or has precisely two row sums r_{1} and r_{2} with $r_{1}+r_{2}=n+1$.

Along with this result Ryser established that there is precisely one 2 -design. This design, of order 7 , is of a class of λ-designs called H-designs, constructed from the symmetric block design [2] with parameters (4 $\lambda-1$, $2 \lambda, \lambda$).

In the present paper, we do three things: (I) generalize Ryser's H-design construction to an arbitrary (v, k, λ)-configuration; (2) establish some additional general properties of λ-designs; and (3) determine all 4-designs.

2. Type-1 λ-Designs

Theorem 2.1. If there exists a $\left(v, k, \lambda^{\prime}\right)$ configuration [not of the form ($4 \lambda-1,2 \lambda-1, \lambda-1$)], then there exists a λ-design with $\lambda=k-\lambda^{\prime}$ and row sums $v-k$ and $k+1$.

Proof: Let B be the incidence matrix of the (v, k, λ^{\prime}) configuration written so that column one has its k ones in rows 1 through k, i.e.,

$$
B=\begin{array}{c|c}
1 & \\
\vdots & A_{1} \\
1 & \\
\hline 0 & \\
\vdots & A_{2} \\
0 &
\end{array}
$$

Let $A_{1}{ }^{\prime}$ denote the complement of the matrix A_{1}, and it is trivial to verify that the matrix A given by

$$
A=\begin{gathered}
\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\vdots \\
1
\end{array} \\
\hline
\end{gathered} A_{1}^{\prime}
$$

is the desired λ-design.
We call a λ-design derived in this way a type- 1λ-design. Note that Ryser's H-designs are type-1 designs derived from a ($4 \lambda-1,2 \lambda, \lambda$)configuration.

3. Some Properties of λ-Designs

Let $A=\left(a_{i j}\right)$ be a λ-design. We follow Ryser and denote the row sums of A :

$$
r_{1}>\frac{n+1}{r} \quad \text { and } \quad r_{2}<\frac{n+1}{2} .
$$

Let the first e_{1} rows of A have sum r_{1} and the remaining e_{2} have sum r_{2}. Further, let k_{j}^{\prime} denote the sum of those entries of column j in rows 1
through e_{1}, k_{j} denote the full j-th column sum, and $k_{j}{ }^{*}=k_{j}-k_{j}{ }^{\prime}$. With $\rho=\left(r_{1}-1\right) /\left(r_{2}-1\right)$ we have

$$
\begin{equation*}
k_{j}^{*}=\lambda-\rho\left(k_{j}^{\prime}-\lambda\right) \tag{3.1}
\end{equation*}
$$

With

$$
u=-\lambda+e_{1}\left(\frac{r_{1}-1}{n-1}\right)^{2}+e_{2}\left(\frac{r_{2}-1}{n-1}\right)^{2}
$$

we have from Ryser [3]:

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{1}{k_{j}-\lambda}=-\frac{1}{\lambda}-\frac{1}{u}=\frac{\lambda(1+\rho)^{2}-\rho}{\lambda \rho} \tag{3.2}
\end{equation*}
$$

If $x_{i}=\left(s_{i}-1\right) /(n-1)$ where s_{i} is the i-th row sum of A, then

$$
\begin{equation*}
\sum_{\mathrm{j}=1}^{n} \frac{a_{i j} a_{l j}}{k_{j}-\lambda}=\delta_{i l}-\frac{x_{i} x_{l}}{u} \tag{3.3}
\end{equation*}
$$

where $\delta_{i l}$ is Kronecker's delta. Note that, if $\hat{x}_{1}=\left(r_{1}-1\right) /(n-1)$ and $\hat{x}_{2}=\left(r_{2}-1\right) /(n-1)$, then

$$
\begin{equation*}
\frac{\hat{x}_{1} \hat{x}_{2}}{u}=-1, \quad \frac{-\hat{x}_{1}^{2}}{u}=\rho, \quad \frac{-\hat{x}_{2}^{2}}{u}=\frac{1}{\rho} \tag{3.4}
\end{equation*}
$$

So the right side of (3.3) is one of the five values $1+\rho, \rho, 1+1 / \rho, 1 / \rho, 1$. We also have

$$
\begin{equation*}
r_{1}-1=\frac{\rho(n-1)}{\rho+1}, \quad r_{2}-1=\frac{n-1}{\rho+1} \tag{3.5}
\end{equation*}
$$

so that the relation $e_{1} r_{1}\left(r_{1}-1\right)+e_{2} r_{2}\left(r_{2}-1\right)=\lambda n(n-1)$ can be written as

$$
\begin{equation*}
e_{1}=\frac{\lambda(1+\rho)^{2}-(\rho+n)}{\rho^{2}-1} \tag{3.6}
\end{equation*}
$$

Finally, if $\Delta=\operatorname{det} A, \Delta$ is integral and

$$
\begin{equation*}
\Delta^{2}=\left\{1+\lambda \sum_{j=1}^{n} \frac{1}{k_{j}-\lambda}\right\} \prod_{j=1}^{n}\left(k_{j}-\lambda\right) \tag{3.7}
\end{equation*}
$$

Theorem 3.1. $A \lambda$-design with $e_{1}=1$ has $\lambda=1$.
Proof: With $e_{1}=1$, the matrix A has two column types from (3.1):

$$
\begin{array}{ll}
k_{1}^{\prime}=1, & k_{1}^{*}=\lambda \rho-\rho+\lambda \\
k_{2}^{\prime}=0, & k_{2}^{*}=\lambda(1+\rho) \tag{3.8}
\end{array}
$$

and (3.6) yields

$$
\begin{equation*}
(n-1)=(\rho+1)(\lambda \rho-\rho+\lambda) \tag{3.9}
\end{equation*}
$$

so we may compute from (3.5)

$$
\begin{equation*}
r_{2}=\lambda(1+\rho)-\rho+1=k_{1} . \tag{3.10}
\end{equation*}
$$

Also note that from (3.8) $\rho=k_{2}{ }^{*}-k_{1}{ }^{*}$ is integral. Normalize the matrix A to the form

$$
A=\begin{array}{c|c}
1 \cdots 1 & 0 \cdots 0 \\
\hline B & C
\end{array}
$$

Then (3.3) with $i=1$ and $l>1$ shows that the matrix B has constant row sums $k_{1}-\lambda$. Since $r_{2}=k_{1}(3.10)$, this means C has row sums λ. We now further normalize within the matrices B and C to bring A to the form

where C_{1} has an initial zero column. We suppose C_{1} is not vacuous. Let σ denote the sum of row 1 of B_{1}, τ the sum of row 1 of C_{1}. Then (3.3) with $i=2$ and $l=k_{2}+2$ becomes

$$
\begin{equation*}
\frac{\sigma}{\lambda \rho-\rho+1}+\frac{\tau}{\lambda \rho}=\frac{1}{\rho}, \tag{3.12}
\end{equation*}
$$

which may be written

$$
\lambda \rho(\sigma+\tau)=\lambda^{2} \rho+(\rho-1)(\tau-\lambda)
$$

Since $\rho>1$ and $\tau<\lambda$,

$$
\begin{equation*}
\sigma+\tau<\lambda \tag{3.13}
\end{equation*}
$$

Now (3.12) can also be written

$$
\rho\left\{\lambda^{2}-\lambda(\sigma+\tau+1)+\tau\right\}=\tau-\lambda<0 .
$$

Hence, $\lambda^{2}-\lambda(\sigma \div \tau+1) \div \tau<0$, or $\lambda^{2} \ldots \tau<\lambda(\sigma \div \tau+1) \leqslant \lambda^{2}$ in view of (3.13). Thus, we must conclude that C_{1} is racuous, and (3.11), (3.8), and (3.9) imply $k_{2}=n-1$ and $\lambda=1$ as asserted.

Theorem 3.2. A-design has $e_{1} \neq 2$.
Proof: From (3.5) and (3.6) with $e_{1}=2$ we have

$$
\begin{align*}
n & =(\lambda-2) \rho^{2}+(2 \lambda-1) \rho+(\lambda+2) \\
r_{1} & =(\lambda-2) \rho+(\lambda+2) \tag{3.14}\\
r_{2} & =(\lambda-2) \rho^{2}+(\lambda+1) \rho+1
\end{align*}
$$

The possibilities for $k_{j}{ }^{\prime}$ are $0,1,2$ and the corresponding column types are displayed:

k_{j}^{\prime}	0	1	2
k_{j}^{*}	$\lambda+\lambda \rho$	$\lambda+\lambda \rho-\rho$	$\lambda+\lambda \rho-2 \lambda$
k_{j}	$\lambda+\lambda \rho$	$\lambda+\lambda \rho-\rho+1$	$\lambda+\lambda \rho-2 \rho+2$
Number of columns	f_{0}	f_{1}	f_{2}

We have the relations

$$
\begin{align*}
f_{0}+f_{1}+f_{2} & =(\lambda-2) \rho^{2}+(2 \lambda-1) \rho+\lambda+2 \tag{3.15}\\
f_{1}+2 f_{2} & =2(\lambda-2) \rho^{2}+2(\lambda+1) \rho+2
\end{align*}
$$

From $\Sigma f_{i}=n$ and $\Sigma k_{j}^{\prime}=e_{1} r_{1}$ and (3.14). Now (3.3) with $i=1, l=2$ yields

$$
\begin{equation*}
f_{2}=(\lambda-2) \rho^{2}+2 \rho \tag{3.16}
\end{equation*}
$$

Hence from (3.15)

$$
\begin{align*}
& f_{1}=2(\lambda-1) \rho+2, \tag{3.17}\\
& f_{0}=\lambda-\rho .
\end{align*}
$$

Thus, ρ is integral and $\rho \leqslant \lambda$.

Now write A in the form:

$1 \cdots 1$	$1 \cdots 1$	$0 \cdots 0$	$0 \cdots 0$
$1 \cdots 1$	$0 \cdots 0$	$1 \cdots 1$	$0 \cdots 0$
A_{1}	A_{2}	A_{3}	A_{4}

and let σ_{i} denote the sum of row one of A_{i}. Then use (3.3) with $i=1$, $l=3$ and again with $i=2, l=3$. The resulting equations force $\sigma_{2}=\sigma_{3}$ and

$$
\begin{equation*}
\frac{\sigma_{1}}{\lambda \rho-2 \rho+2}+\frac{\sigma_{2}}{\lambda \rho-\rho+1}=1 \tag{3.18}
\end{equation*}
$$

Now (3.3) with $i=l=3$ is

$$
\begin{equation*}
\frac{\sigma_{1}}{\lambda \rho-2 \rho+2}+\frac{2 \sigma_{2}}{\lambda \rho-\rho+1}+\frac{\sigma_{4}}{\lambda \rho}=1+\frac{1}{\rho} \tag{3.19}
\end{equation*}
$$

so that (3.18) and (3.19) imply

$$
\sigma_{1}+\sigma_{2}=\lambda \rho+2 \rho+3-\left(\frac{\lambda+(\rho-1) \sigma_{4}}{\lambda \rho}\right)
$$

Hence $m=\left[\lambda+(\rho-1) \sigma_{4}\right] / \lambda \rho$ is a positive integer, but (3.17) implies $\sigma_{4}<\lambda$ whence $m<1$. This contradiction denies the existence of a λ-design with $e_{1}=2$.

We remark that the corresponding statements to Theorems 3.1 and 3.2 for the parameter e_{2} are almost immediate.

The next three lemmas will be used in the study of 4-designs and we sketch briefly the arguments establishing their validity.

Lemma 3.3. Let $\lambda>1$.
(1) $A \lambda$-design with a column with $k_{j}{ }^{\prime}=2 \lambda-1$ has $\rho=\lambda /(\lambda-1)$.
(2) $A \lambda$-design with $\rho=\lambda / \lambda-1$ is an H-design.

Proof: (1) The corresponding k_{j}^{*} is $\lambda-\rho(\lambda-1)$; hence, $\rho \leqslant$ $\lambda /(\lambda-1)$, but $\rho(\lambda-1)$ is integral and $\rho<1$, so $\rho=\lambda /(\lambda-1)$.
(2) From (3.5) we deduce that $2 \lambda-1$ divides $n-1$ and have for a positive integer t

$$
\begin{equation*}
n-1=t(2 \lambda-1), \quad r_{1}-1=\lambda t, \quad r_{2}-1=t(\lambda-1) \tag{3.18}
\end{equation*}
$$

Then (3.6) becomes

$$
\begin{equation*}
e_{1}=-t(\lambda-1)^{2}-(\lambda-1)+\lambda(2 \lambda-1) \tag{3.19}
\end{equation*}
$$

The two preceding theorems insure $e_{1}=3$, which forces $t=1,2$. If $t=1$, (3.19) implies $e_{1}=\lambda^{2}$, while (3.18) gives $n=2 \lambda$ and $e_{1}<n$ forces $\lambda=1$. Hence, $t==2$ and (3.18) shows we have the replication numbers of an H-design which Ryser [3] has shown to be sufficient.

Lemma 3.4. Let A be a λ-design with two column sums k_{1} and k_{2}. Suppose further that k_{1} occurs precisely once. Then A is a type- 1λ-design.

Proof: If A has two column sums, write

$$
A==\begin{array}{c:c}
A_{1} & A_{2} \\
\hdashline A_{3} & A_{4}
\end{array}
$$

where $\left[A_{1} A_{2}\right]$ has e_{1} rows with sum r_{1}. Then (3.3) with $i=l \leqslant e_{1}$ shows A_{1} has constant row sums, and similarly one shows A_{3} does also. In the present case, A_{1} and A_{3} are column vectors, and the only possibility is that one is a zero vector, the other a vector of ones. Then surely $k_{2}{ }^{\prime}=k_{2}{ }^{*}=\lambda$, and it is clear A is a type-1 design.

Lemma 3.5. A-design with $e_{1}=\lambda$ has $\rho \leqslant \lambda$ with $(2 \lambda-1) \rho$ an integer $(\lambda>1)$.

Proof: Let x denote the number of columns with $k_{j}{ }^{\prime}=k_{j}{ }^{*}=\lambda$; then $x \leqslant(n-\lambda) / \lambda$. From (3.6) we deduce

$$
\begin{equation*}
n-1=(2 \lambda-1)(\rho+1) \tag{3.20}
\end{equation*}
$$

and (3.5) yields $r_{2}=2 \lambda$ so that $r_{1}=n+1-2 \lambda$. Hence, the first λ rows of A contain $\lambda(2 \lambda-1)$ zeros, and, if $n \geqslant \lambda(2 \lambda-1)$, then $x \geqslant n-\lambda(2 \lambda-1)$. This forces $n \leqslant \lambda(2 \lambda+1)$. Hence, in any case $n \leqslant \lambda(2 \lambda+1)$ and (3.20) gives $\rho=(n-2 \lambda) /(2 \lambda-1) \leqslant \lambda$.

Before proceeding to 4 -designs, we note that Ryser remarks that for fixed λ there are at most a finite number of λ-designs with some $k_{j}<2 \lambda$. We note that (3.6) written as $n=\left(\lambda-e_{1}\right) \rho^{2}+(2 \lambda-1) \rho+\left(e_{1}+\lambda\right)$ makes it clear that for fixed λ there are at most a finite number of λ-designs with $e_{1}>\lambda$, while Lemma 3.5 extends this to $e_{1} \geqslant \lambda .{ }^{1}$

4. 4-Designs

Theorem 4.1. All 4-designs are type-1. ${ }^{2}$

[^0]Proof: We first list the parameters of the type-1 4-designs with those of the (v, k, λ)-configurations from which they are derived (Table I). From (3.1) it is clear that $k_{j}^{\prime} \leqslant 2 \lambda-1$. With some $k_{j}^{\prime}=2 \lambda-1$. Lemma 3.3 tells us we have a type- 1 design (here, number 5 in Table I).

TABLE I
Parameters for Type-1 4-Designs

	(v, k, λ)	n	r_{1}	e_{1}	ρ
1	$(21,5,1)$	21	16	5	3
2	$(21,16,12)$	21	17	5	4
3	$(16,6,2)$	16	10	6	$3 / 2$
4	$(16,10,6)$	16	11	6	2
5	$(15,8,4)$	15	9	7	$4 / 3$

We suppose a 4 -design has some $k_{j}^{\prime}=6$. Then $k_{j}{ }^{*}=4-2 \rho$ so $\rho=2$ or $\rho=3 / 2$. If $\rho=3 / 2$ since $n-3 \geqslant e_{1} \geqslant 6$, we have $13 \leqslant n \leqslant 16$. Further, $5 r_{1}=3 n+2$ from (3.5), so $n=16$, $e_{1}=6, r_{1}=10$. Here, $k_{j}{ }^{\prime}=6$ implies $k_{j}{ }^{*}=1$; hence, all remaining columns have $k_{j}{ }^{\prime}=3,4$; $k_{j}{ }^{\prime}=3$ is not possible since ρ is not integral. Thus, Lemma 3.4 applies. (We note here that in what follows we will stop once we have established that if the design exists it is type-1 without remarking, as we might in the preceding, that the design does not exist.) If $\rho=2, k_{j}{ }^{\prime}=6$ means $k_{j}{ }^{*}=0$ and $6 \leqslant e_{1} \leqslant n-3$ forces $11 \leqslant n \leqslant 16$, and, since $3 r_{1}=2 n+1$, $n=13$ or $n=16$. With $n=13, e_{1}=7$, so we have just one $k_{j}^{\prime}=6$ with remaining k_{j} 's either 4 or 5 ; in fact, $r_{1}=9$, so we have 9 columns with $k_{j}^{\prime}=5$ and three with $k_{j}^{\prime}=4$. But then (3.7) gives $\Delta^{2}=2^{8} \cdot 3^{11}$; hence, no such design exists. With $n=16, e_{1}=6$ and we obviously have the design from line 4 of Table I.

Next, suppose a 4-design has some $k_{j}^{\prime}=5$. Then ρ is 2 , 3 , or 4. Proceeding as above using $5 \leqslant e_{1} \leqslant n-3$ with each possible ρ value, we produce the candidates in Table II for a 4-design with some $k_{j}{ }^{\prime}=5$. In each case the column structure can be uniquely determined. There are only three cases in which an admissible column structure exists and produces Δ^{2} an integral square; III, V, and VI. The design VI is clearly type-1, namely, line 2 of Table I. Designs III and V are similar and we illustrate with case III. Let f_{i} denote the number of columns with $k_{j}{ }^{\prime}=i$. We clearly have $f_{5}=1$ and $f_{2}+f_{3}+f_{4}=18,2 f_{2}+3 f_{3}+4 f_{4}=60$, $\frac{1}{3}+\frac{1}{6} f_{2}+\frac{1}{5} f_{3}+\frac{1}{4} f_{4}=\frac{17}{4}$. This yields the solution $f_{2}=1, f_{3}=10$,

TABLE 11

Case	ρ	n	r_{1}	e_{1}
I	2	13	9	7
II	2	16	11	6
III	2	19	13	5
IV	3	13	10	6
V	3	21	16	5
VI	4	21	17	5

$f_{4}=7$, and $\Delta^{2}=2^{163^{4}} 5^{10}$ does not exclude the design. We look at a row of A with sum $r_{1}=13$ and a zero in the column with $k_{j}^{\prime}=2$. Let τ be the number of ones in this row in columns with $k_{j}{ }^{\prime}=3$ and use (3.3) with $i=l$ obtaining

$$
\frac{1}{3}+\frac{\tau}{5}+\frac{12-\tau}{4}=3
$$

which implies τ is not integral. Case V is similarly eliminated.
We are thus left to consider 4 -designs with all $k_{j}^{\prime} \leqslant 4$ and we have the column Table III.

TABLE III

	0	1	2	3	4
k_{i}^{\prime}	$4+4 \rho$	$4+3 \rho$	$4+2 \rho$	$4+\rho$	4
$k_{j^{*}}$	$4+4 \rho$	$5+3 p$	$6+2 \rho$	$7+\rho$	8
k_{j}					

Suppose $e_{1} \geqslant 7$. Then from (3.6) and the fact that $n \geqslant 12$ we may deduce

$$
\rho<2 \frac{13}{72}
$$

with some $i \rho$ integral for $i=1,2,3,4$ and n such that r_{1} will be integral, all of which reduces to three easily eliminated possibilities: (1) $n=13$, $\rho=2, r_{1}=9, e_{1}=7$-but $e_{2}=6$ forces $f_{3}=1, f_{4}=12$; hence, Lemma 3.4 applies. (2) $n=12, \rho=7 / 4, e_{2}=4$-from Table III, only $k_{j}{ }^{\prime}=k_{j}{ }^{*}=4$ is possible. (3) $n=15, \rho=4 / 3$--here, Lemma 3.3 applies.

We next take the case $e_{1}=6$. Here, (3.6) becomes $n=-2 \rho^{2}+7 \rho+10$ so that $\rho<3 \frac{1}{5}$ and 2ρ is integral. This yields four possibilities: (l) $\rho=2$,
$n=16, r_{1}=11$-here, we would need some $k_{j}^{\prime}>4$ since $e_{1} r_{1}=66$. (2) $\rho=3, n=13, r_{1}=10$-Table III shows $f_{3}=1, f_{4}=12$, and Lemma 3.4 applies. (3) $\rho=3 / 2, n=16, r_{1}=10$-here we deduce $f_{0}=1, f_{4}=15$. This is line 3 of Table I. (4) $\rho=5 / 2, n=15, r_{1}=11$ $e_{1} r_{1}=66$ forces some $k_{j}^{\prime}>4$.

The case $e_{1}=5$ proceeds in the same manner. One obtains ρ integral $\rho \leqslant 6$. There are then five possible designs corresponding to these ρ values. The column structure of each can be determined and the design eliminated with the exception of $\rho=3$, which yields the design (1) of Table I.

For $e_{1}=4$, Lemma 3.5 applies and $\rho \leqslant 4$. Also, 7ρ is integral as well as one of $\rho, 2 \rho, 3 \rho$, and 4ρ so that ρ is integral and we obtain just three candidates: (l) $\rho=4, n=36, r_{1}=29$; (2) $\rho=3, n=29, r_{1}=22$; and (3) $\rho=2, n=22, r_{1}=15$. In each case the column structure can be determined and the design eliminated.

This then leaves only the case $e_{1}=3$. We have here from (3.6) and (3.5) $n=\rho^{2}+7 \rho+7, r_{1}=\rho^{2}+6 \rho+1$, and $r_{2}=\rho+7$. Since $k_{j}{ }^{\prime} \leqslant 3$, we have three equations in $f_{0}, f_{1}, f_{2}, f_{3}$:

$$
\begin{gathered}
\frac{f_{0}}{4 \rho}+\frac{f_{1}}{3 \rho+1}+\frac{f_{2}}{2 \rho+2}+\frac{f_{3}}{\rho+3}=\frac{4 \rho^{2}+7 \rho+4}{4 \rho} \\
f_{0}+f_{1}+f_{2}+f_{3}=\rho^{2}+7 \rho+7
\end{gathered}
$$

and

$$
f_{1}+2 f_{2}+3 f_{3}=3 \rho^{2}+18 \rho+3
$$

It is easily verified that this is a rank-3 system and has the following one-parameter solution:

$$
\begin{align*}
& f_{0}=\frac{4 \rho^{3}+7 \rho^{2}-\left(11+4 f_{3}\right) \rho+12}{\rho+3}, \tag{4.1}\\
& f_{1}=\frac{-3(3 \rho+1)\left(\rho^{2}+2 \rho-3-f_{3}\right)}{\rho+3}, \tag{4.2}\\
& f_{2}=\frac{6(\rho+1)\left(\rho^{2}+3 \rho-f_{3}\right)}{\rho+3} . \tag{4.3}
\end{align*}
$$

From (4.2), $\rho^{2}+2 \rho-3-f_{3} \leqslant 0$ so that

$$
\begin{equation*}
\left(11+4 f_{3}\right) \rho \geqslant 4 \rho^{3}+8 \rho^{2}-\rho \tag{4.4}
\end{equation*}
$$

On the other hand, from (4.1)

$$
\begin{equation*}
\left(11+4 f_{3}\right) \rho \leqslant 4 \rho^{3}+7 \rho^{2}+12 \tag{4.5}
\end{equation*}
$$

Thus, (4.4) and (4.5) yield

$$
\rho^{2}-\rho-12 \leqslant 0, \quad \text { whence } \rho \leqslant 4 .
$$

This means there are three designs to consider corresponding to $\rho=2,3,4$. Using equations (4.1), (4.2), and (4.3) one can determine the column structures of these candidates and systematically eliminate them.

References

1. N. G. de Bruinn and P. Erdös, On a Combinatorial Problem, Indagationes Math. 10 (5948), 421-423.
2. H. J. Ryser, Combinatorial Mathematics (Carus Monograph 14), Wiley, New York, 1963.
3. H. J. Ryser, An Extension of a Theorem of de Bruijn and Erdös on Combinatorial Designs, J. Algebra 10 (1968), 246-261.
4. D. R. Woodall, Square λ-Linked Designs (to be published).

[^0]: ${ }^{1}$ D. Woodall [4] has obtained $\rho \leqslant \lambda$ so that Theorem 3.2 implies $n \leqslant \lambda^{3}-\lambda^{2}+3$ regardless of the value of e_{1}.
 ${ }^{2}$ The corresponding result for 3-designs has been obtained by E. Kramer and the author and appears in this journal.

