Some Results on λ -Designs

W. G. BRIDGES

California Institute of Technology, Pasadena, California 91109 Communicated by H. J. Ryser Received September 5, 1968

Abstract

A λ -design as introduced by Ryser [3] is a (0, 1)-square matrix with constant column inner products but *not* all column sums equal. Ryser has shown such a matrix to have two row sums and he constructs an infinite family of λ -designs called *H*-designs. This paper does three things: (1) generalizes Ryser's *H*-design construction to an arbitrary (v, k, λ)-configuration, (2) establishes some additional general properties of λ -designs, and (3) determines all 4-designs.

I. INTRODUCTION

A λ -design is a (0, 1)-matrix A of size n by n such that

$$A'A = \lambda J + \operatorname{diag}[k_1 - \lambda, ..., k_n - \lambda]$$
(1.1)

where A^t denotes the transpose of A, J is the $n \times n$ matrix of ones, $k_j > \lambda > 0$, and not all the k_j 's are equal.

First definitively studied by de Bruijn and Erdös with $\lambda = 1$ [1], they have received new interest with the following theorem of Ryser [3] and Woodall [4]:

A (0, 1)-square matrix A satisfying (1.1) with $k_j > \lambda > 0$ either has all its row and column sums equal or has precisely two row sums r_1 and r_2 with $r_1 + r_2 = n + 1$.

Along with this result Ryser established that there is precisely one 2-design. This design, of order 7, is of a class of λ -designs called *H*-designs, constructed from the symmetric block design [2] with parameters $(4\lambda - 1, 2\lambda, \lambda)$.

In the present paper, we do three things: (1) generalize Ryser's *H*-design construction to an arbitrary (v, k, λ) -configuration; (2) establish some additional general properties of λ -designs; and (3) determine all 4-designs.

2. Type-1 λ -Designs

THEOREM 2.1. If there exists a (v, k, λ') configuration [not of the form $(4\lambda - 1, 2\lambda - 1, \lambda - 1)$], then there exists a λ -design with $\lambda = k - \lambda'$ and row sums v - k and k + 1.

PROOF: Let B be the incidence matrix of the (v, k, λ') configuration written so that column one has its k ones in rows 1 through k, i.e.,

Let A_1' denote the complement of the matrix A_1 , and it is trivial to verify that the matrix A given by

$$A = \frac{\begin{array}{c} 0\\ \vdots\\ 0\\ \end{array}}{\begin{array}{c} 1\\ \vdots\\ 1 \end{array}} A_2$$

is the desired λ -design.

We call a λ -design derived in this way a *type-1* λ -design. Note that Ryser's *H*-designs are type-1 designs derived from a $(4\lambda - 1, 2\lambda, \lambda)$ -configuration.

3. Some Properties of λ -Designs

Let $A = (a_{ij})$ be a λ -design. We follow Ryser and denote the row sums of A:

$$r_1>rac{n+1}{r}$$
 and $r_2<rac{n+1}{2}$.

Let the first e_1 rows of A have sum r_1 and the remaining e_2 have sum r_2 . Further, let k_j' denote the sum of those entries of column j in rows 1 BRIDGES

through e_1 , k_j denote the full *j*-th column sum, and $k_j^* = k_j - k_j'$. With $\rho = (r_1 - 1)/(r_2 - 1)$ we have

$$k_j^* = \lambda - \rho(k_j' - \lambda). \tag{3.1}$$

With

$$u = -\lambda + e_1 \left(\frac{r_1 - 1}{n - 1}\right)^2 + e_2 \left(\frac{r_2 - 1}{n - 1}\right)^2$$

we have from Ryser [3]:

$$\sum_{j=1}^{n} \frac{1}{k_j - \lambda} = -\frac{1}{\lambda} - \frac{1}{u} = \frac{\lambda(1+\rho)^2 - \rho}{\lambda\rho}.$$
(3.2)

If $x_i = (s_i - 1)/(n - 1)$ where s_i is the *i*-th row sum of A, then

$$\sum_{j=1}^{n} \frac{a_{ij}a_{lj}}{k_j - \lambda} = \delta_{il} - \frac{X_i X_l}{u}, \qquad (3.3)$$

where δ_{il} is Kronecker's delta. Note that, if $\hat{x}_1 = (r_1 - 1)/(n - 1)$ and $\hat{x}_2 = (r_2 - 1)/(n - 1)$, then

$$\frac{\hat{x}_1\hat{x}_2}{u} = -1, \qquad \frac{-\hat{x}_1^2}{u} = \rho, \qquad \frac{-\hat{x}_2^2}{u} = \frac{1}{\rho}.$$
 (3.4)

So the right side of (3.3) is one of the five values $1 + \rho$, ρ , $1 + 1/\rho$, $1/\rho$, 1. We also have

$$r_1 - 1 = \frac{\rho(n-1)}{\rho+1}, \quad r_2 - 1 = \frac{n-1}{\rho+1},$$
 (3.5)

so that the relation $e_1r_1(r_1-1) + e_2r_2(r_2-1) = \lambda n(n-1)$ can be written as

$$e_1 = \frac{\lambda(1+\rho)^2 - (\rho+n)}{\rho^2 - 1}.$$
 (3.6)

Finally, if $\Delta = \det A$, Δ is integral and

$$\Delta^2 = \left\{ 1 + \lambda \sum_{j=1}^n \frac{1}{k_j - \lambda} \right\} \prod_{j=1}^n (k_j - \lambda).$$
(3.7)

THEOREM 3.1. A λ -design with $e_1 = 1$ has $\lambda = 1$.

PROOF: With $e_1 = 1$, the matrix A has two column types from (3.1):

$$k_{1}' = 1, \quad k_{1}^{*} = \lambda \rho - \rho + \lambda,$$

 $k_{2}' = 0, \quad k_{2}^{*} = \lambda(1 + \rho),$
(3.8)

352

and (3.6) yields

$$(n-1) = (\rho+1)(\lambda\rho - \rho + \lambda), \qquad (3.9)$$

so we may compute from (3.5)

$$r_2 = \lambda(1+\rho) - \rho + 1 = k_1. \tag{3.10}$$

Also note that from (3.8) $\rho = k_2^* - k_1^*$ is integral. Normalize the matrix A to the form

$$A = \frac{1 \cdots 1}{B} \begin{array}{|c|c|} 0 \cdots 0 \\ \hline C \end{array}$$

Then (3.3) with i = 1 and l > 1 shows that the matrix *B* has constant row sums $k_1 - \lambda$. Since $r_2 = k_1$ (3.10), this means *C* has row sums λ . We now further normalize within the matrices *B* and *C* to bring *A* to the form

where C_1 has an initial zero column. We suppose C_1 is not vacuous. Let σ denote the sum of row 1 of B_1 , τ the sum of row 1 of C_1 . Then (3.3) with i = 2 and $l = k_2 + 2$ becomes

$$\frac{\sigma}{\lambda\rho - \rho + 1} + \frac{\tau}{\lambda\rho} = \frac{1}{\rho}, \qquad (3.12)$$

which may be written

$$\lambda \rho(\sigma + \tau) = \lambda^2 \rho + (\rho - 1)(\tau - \lambda).$$

Since $\rho > 1$ and $\tau < \lambda$,

$$\sigma + \tau < \lambda. \tag{3.13}$$

Now (3.12) can also be written

 $\rho\{\lambda^2 - \lambda(\sigma + \tau + 1) + \tau\} = \tau - \lambda < 0.$

353

BRIDGES

Hence, $\lambda^2 - \lambda(\sigma + \tau + 1) + \tau < 0$, or $\lambda^2 - \tau < \lambda(\sigma + \tau + 1) \le \lambda^2$ in view of (3.13). Thus, we must conclude that C_1 is vacuous, and (3.11), (3.8), and (3.9) imply $k_2 = n - 1$ and $\lambda = 1$ as asserted.

THEOREM 3.2. A λ -design has $e_1 \neq 2$.

PROOF: From (3.5) and (3.6) with $e_1 = 2$ we have

$$n = (\lambda - 2) \rho^{2} + (2\lambda - 1) \rho + (\lambda + 2),$$

$$r_{1} = (\lambda - 2) \rho + (\lambda + 2),$$

$$r_{2} = (\lambda - 2) \rho^{2} + (\lambda + 1) \rho + 1.$$
(3.14)

The possibilities for k_j are 0, 1, 2 and the corresponding column types are displayed:

k_{j}'	0	1	2
k_j*	$\lambda + \lambda \rho$	$\lambda + \lambda ho - ho$	$\lambda + \lambda ho - 2\lambda$
k_{j}	$\lambda + \lambda \rho$	$\lambda + \lambda \rho - \rho + 1$	$\lambda + \lambda \rho - 2\rho + 2$
Number of columns	f_0	f_1	f_2

We have the relations

$$f_{0} + f_{1} + f_{2} = (\lambda - 2) \rho^{2} + (2\lambda - 1) \rho + \lambda + 2,$$

$$f_{1} + 2f_{2} = 2(\lambda - 2) \rho^{2} + 2(\lambda + 1) \rho + 2.$$
(3.15)

From $\Sigma f_i = n$ and $\Sigma k_i' = e_1 r_1$ and (3.14). Now (3.3) with i = 1, l = 2 yields

$$f_2 = (\lambda - 2)\,\rho^2 + 2\rho. \tag{3.16}$$

Hence from (3.15)

$$f_1 = 2(\lambda - 1) \rho + 2,$$

$$f_0 = \lambda - \rho.$$
(3.17)

Thus, ρ is integral and $\rho \leq \lambda$.

Now write A in the form:

<i>A</i> ₁	 A_2	A_3	A ₄
1 … 1	0 … 0	1 … 1	0 … 0
1 … 1	1 … 1	0 … 0	0 … 0

and let σ_i denote the sum of row one of A_i . Then use (3.3) with i = 1, l = 3 and again with i = 2, l = 3. The resulting equations force $\sigma_2 = \sigma_3$ and

$$\frac{\sigma_1}{\lambda\rho - 2\rho + 2} + \frac{\sigma_2}{\lambda\rho - \rho + 1} = 1.$$
(3.18)

Now (3.3) with i = l = 3 is

$$\frac{\sigma_1}{\lambda\rho - 2\rho + 2} + \frac{2\sigma_2}{\lambda\rho - \rho + 1} + \frac{\sigma_4}{\lambda\rho} = 1 + \frac{1}{\rho}$$
(3.19)

so that (3.18) and (3.19) imply

$$\sigma_1 + \sigma_2 = \lambda \rho + 2\rho + 3 - \left(\frac{\lambda + (\rho - 1)\sigma_4}{\lambda \rho}\right)$$

Hence $m = [\lambda + (\rho - 1) \sigma_4]/\lambda\rho$ is a positive integer, but (3.17) implies $\sigma_4 < \lambda$ whence m < 1. This contradiction denies the existence of a λ -design with $e_1 = 2$.

We remark that the corresponding statements to Theorems 3.1 and 3.2 for the parameter e_2 are almost immediate.

The next three lemmas will be used in the study of 4-designs and we sketch briefly the arguments establishing their validity.

LEMMA 3.3. Let $\lambda > 1$.

- (1) A λ -design with a column with $k_i' = 2\lambda 1$ has $\rho = \lambda/(\lambda 1)$.
- (2) A λ -design with $\rho = \lambda/\lambda 1$ is an H-design.

PROOF: (1) The corresponding k_i^* is $\lambda - \rho(\lambda - 1)$; hence, $\rho \leq \lambda/(\lambda - 1)$, but $\rho(\lambda - 1)$ is integral and $\rho < 1$, so $\rho = \lambda/(\lambda - 1)$.

(2) From (3.5) we deduce that $2\lambda - 1$ divides n - 1 and have for a positive integer t

$$n-1 = t(2\lambda - 1), r_1 - 1 = \lambda t, r_2 - 1 = t(\lambda - 1).$$
 (3.18)

Then (3.6) becomes

$$e_1 = -t(\lambda - 1)^2 - (\lambda - 1) + \lambda(2\lambda - 1).$$
 (3.19)

BRIDGES

The two preceding theorems insure $e_1 \ge 3$, which forces t = 1, 2. If t = 1, (3.19) implies $e_1 = \lambda^2$, while (3.18) gives $n = 2\lambda$ and $e_1 < n$ forces $\lambda = 1$. Hence, t = 2 and (3.18) shows we have the replication numbers of an *H*-design which Ryser [3] has shown to be sufficient.

LEMMA 3.4. Let A be a λ -design with two column sums k_1 and k_2 . Suppose further that k_1 occurs precisely once. Then A is a type-1 λ -design.

PROOF: If A has two column sums, write

$$A = \frac{A_1 \mid A_2}{A_3 \mid A_4},$$

where $[A_1A_2]$ has e_1 rows with sum r_1 . Then (3.3) with $i = l \leq e_1$ shows A_1 has constant row sums, and similarly one shows A_3 does also. In the present case, A_1 and A_3 are column vectors, and the only possibility is that one is a zero vector, the other a vector of ones. Then surely $k_2' = k_2^* = \lambda$, and it is clear A is a type-1 design.

LEMMA 3.5. A λ -design with $e_1 = \lambda$ has $\rho \leq \lambda$ with $(2\lambda - 1)\rho$ an integer $(\lambda > 1)$.

PROOF: Let x denote the number of columns with $k_j' = k_j^* = \lambda$; then $x \leq (n - \lambda)/\lambda$. From (3.6) we deduce

$$n - 1 = (2\lambda - 1)(\rho + 1) \tag{3.20}$$

and (3.5) yields $r_2 = 2\lambda$ so that $r_1 = n + 1 - 2\lambda$. Hence, the first λ rows of A contain $\lambda(2\lambda - 1)$ zeros, and, if $n \ge \lambda(2\lambda - 1)$, then $x \ge n - \lambda(2\lambda - 1)$. This forces $n \le \lambda(2\lambda + 1)$. Hence, in any case $n \le \lambda(2\lambda + 1)$ and (3.20) gives $\rho = (n - 2\lambda)/(2\lambda - 1) \le \lambda$.

Before proceeding to 4-designs, we note that Ryser remarks that for fixed λ there are at most a finite number of λ -designs with some $k_i < 2\lambda$. We note that (3.6) written as $n = (\lambda - e_1) \rho^2 + (2\lambda - 1) \rho + (e_1 + \lambda)$ makes it clear that for fixed λ there are at most a finite number of λ -designs with $e_1 > \lambda$, while Lemma 3.5 extends this to $e_1 \ge \lambda$.¹

4. 4-DESIGNS

THEOREM 4.1. All 4-designs are type-1.²

¹ D. Woodall [4] has obtained $\rho \leq \lambda$ so that Theorem 3.2 implies $n \leq \lambda^3 - \lambda^2 + 3$ regardless of the value of e_1 .

² The corresponding result for 3-designs has been obtained by E. Kramer and the author and appears in this journal.

PROOF: We first list the parameters of the type-1 4-designs with those of the (v, k, λ) -configurations from which they are derived (Table I). From (3.1) it is clear that $k_j' \leq 2\lambda - 1$. With some $k_j' = 2\lambda - 1$. Lemma 3.3 tells us we have a type-1 design (here, number 5 in Table I).

TA	BL	E	I
		_	_

PARAMETERS FOR TYPE-1 4-DESIGNS

	(v, k, λ)	n	<i>r</i> ₁	e_1	ρ
1	(21,5,1)	21	16	5	3
2	(21, 16, 12)	21	17	5	4
3	(16, 6, 2)	16	10	6	3/2
4	(16, 10, 6)	16	11	6	2
5	(15, 8, 4)	15	9	7	4/3

We suppose a 4-design has some $k_j' = 6$. Then $k_j^* = 4 - 2\rho$ so $\rho = 2$ or $\rho = 3/2$. If $\rho = 3/2$ since $n - 3 \ge e_1 \ge 6$, we have $13 \le n \le 16$. Further, $5r_1 = 3n + 2$ from (3.5), so n = 16, $e_1 = 6$, $r_1 = 10$. Here, $k_j' = 6$ implies $k_j^* = 1$; hence, all remaining columns have $k_j' = 3$, 4; $k_j' = 3$ is not possible since ρ is not integral. Thus, Lemma 3.4 applies. (We note here that in what follows we will stop once we have established that if the design exists it is type-1 without remarking, as we might in the preceding, that the design does not exist.) If $\rho = 2$, $k_j' = 6$ means $k_j^* = 0$ and $6 \le e_1 \le n - 3$ forces $11 \le n \le 16$, and, since $3r_1 = 2n + 1$, n = 13 or n = 16. With n = 13, $e_1 = 7$, so we have just one $k_j' = 6$ with remaining k_j ''s either 4 or 5; in fact, $r_1 = 9$, so we have 9 columns with $k_j' = 5$ and three with $k_j' = 4$. But then (3.7) gives $\Delta^2 = 2^8 \cdot 3^{11}$; hence, no such design exists. With n = 16, $e_1 = 6$ and we obviously have the design from line 4 of Table I.

Next, suppose a 4-design has some $k_j' = 5$. Then ρ is 2, 3, or 4. Proceeding as above using $5 \le e_1 \le n-3$ with each possible ρ value, we produce the candidates in Table II for a 4-design with some $k_j' = 5$. In each case the column structure can be uniquely determined. There are only three cases in which an admissible column structure exists and produces Δ^2 an integral square; III, V, and VI. The design VI is clearly type-1, namely, line 2 of Table I. Designs III and V are similar and we illustrate with case III. Let f_i denote the number of columns with $k_j' = i$. We clearly have $f_5 = 1$ and $f_2 + f_3 + f_4 = 18$, $2f_2 + 3f_3 + 4f_4 = 60$, $\frac{1}{3} + \frac{1}{6}f_2 + \frac{1}{5}f_3 + \frac{1}{4}f_4 = \frac{17}{4}$. This yields the solution $f_2 = 1$, $f_3 = 10$,

Case	ρ	п	<i>r</i> ₁	e_1
1	2	13	9	7
П	2	16	11	6
Ш	2	19	13	5
IV	3	13	10	6
v	3	21	16	5
V1	4	21	17	5

TABLE II

 $f_4 = 7$, and $\Delta^2 = 2^{16}3^{4}5^{10}$ does not exclude the design. We look at a row of A with sum $r_1 = 13$ and a zero in the column with $k_j' = 2$. Let τ be the number of ones in this row in columns with $k_j' = 3$ and use (3.3) with i = l obtaining

$$\frac{1}{3} + \frac{\tau}{5} + \frac{12 - \tau}{4} = 3,$$

which implies τ is not integral. Case V is similarly eliminated.

We are thus left to consider 4-designs with all $k_j' \leq 4$ and we have the column Table III.

TABLE III

k_{i}'	0	1	2	3	4
k_{j}^{*}	$4 + 4\rho$	$4 + 3\rho$	$4 + 2\rho$	$4 + \rho$	4
k_{i}	$4 + 4\rho$	5 + 3p	$6 + 2\rho$	$7 + \rho$	8

Suppose $e_1 \ge 7$. Then from (3.6) and the fact that $n \ge 12$ we may deduce

$$ho < 2\,rac{13}{72}$$

with some $i\rho$ integral for i = 1, 2, 3, 4 and n such that r_1 will be integral, all of which reduces to three easily eliminated possibilities: (1) n = 13, $\rho = 2$, $r_1 = 9$, $e_1 = 7$ —but $e_2 = 6$ forces $f_3 = 1$, $f_4 = 12$; hence, Lemma 3.4 applies. (2) n = 12, $\rho = 7/4$, $e_2 = 4$ —from Table III, only $k_j' = k_j^* = 4$ is possible. (3) n = 15, $\rho = 4/3$ —here, Lemma 3.3 applies.

We next take the case $e_1 = 6$. Here, (3.6) becomes $n = -2\rho^2 + 7\rho + 10$ so that $\rho < 3\frac{1}{5}$ and 2ρ is integral. This yields four possibilities: (1) $\rho = 2$, $n = 16, r_1 = 11$ —here, we would need some $k_j' > 4$ since $e_1r_1 = 66$. (2) $\rho = 3, n = 13, r_1 = 10$ —Table III shows $f_3 = 1, f_4 = 12$, and Lemma 3.4 applies. (3) $\rho = 3/2, n = 16, r_1 = 10$ —here we deduce $f_0 = 1, f_4 = 15$. This is line 3 of Table I. (4) $\rho = 5/2, n = 15, r_1 = 11$ — $e_1r_1 = 66$ forces some $k_j' > 4$.

The case $e_1 = 5$ proceeds in the same manner. One obtains ρ integral $\rho \leq 6$. There are then five possible designs corresponding to these ρ values. The column structure of each can be determined and the design eliminated with the exception of $\rho = 3$, which yields the design (1) of Table I.

For $e_1 = 4$, Lemma 3.5 applies and $\rho \leq 4$. Also, 7ρ is integral as well as one of ρ , 2ρ , 3ρ , and 4ρ so that ρ is integral and we obtain just three candidates: (1) $\rho = 4$, n = 36, $r_1 = 29$; (2) $\rho = 3$, n = 29, $r_1 = 22$; and (3) $\rho = 2$, n = 22, $r_1 = 15$. In each case the column structure can be determined and the design eliminated.

This then leaves only the case $e_1 = 3$. We have here from (3.6) and (3.5) $n = \rho^2 + 7\rho + 7$, $r_1 = \rho^2 + 6\rho + 1$, and $r_2 = \rho + 7$. Since $k_j' \leq 3$, we have three equations in f_0 , f_1 , f_2 , f_3 :

$$\frac{f_0}{4\rho} + \frac{f_1}{3\rho+1} + \frac{f_2}{2\rho+2} + \frac{f_3}{\rho+3} = \frac{4\rho^2 + 7\rho + 4}{4\rho},$$
$$f_0 + f_1 + f_2 + f_3 = \rho^2 + 7\rho + 7,$$

and

$$f_1 + 2f_2 + 3f_3 = 3\rho^2 + 18\rho + 3.$$

It is easily verified that this is a rank-3 system and has the following one-parameter solution:

$$f_0 = \frac{4\rho^3 + 7\rho^2 - (11 + 4f_3)\rho + 12}{\rho + 3},$$
 (4.1)

$$f_1 = \frac{-3(3\rho+1)(\rho^2+2\rho-3-f_3)}{\rho+3},$$
 (4.2)

$$f_2 = \frac{6(\rho+1)(\rho^2+3\rho-f_3)}{\rho+3}.$$
 (4.3)

From (4.2), $\rho^2 + 2\rho - 3 - f_3 \leq 0$ so that

$$(11 + 4f_3) \rho \ge 4\rho^3 + 8\rho^2 - \rho. \tag{4.4}$$

On the other hand, from (4.1)

$$(11+4f_3)\,\rho\leqslant 4\rho^3+7\rho^2+12. \tag{4.5}$$

Thus, (4.4) and (4.5) yield

 $ho^2 -
ho - 12 \leqslant 0$, whence $ho \leqslant 4$.

This means there are three designs to consider corresponding to $\rho = 2, 3, 4$. Using equations (4.1), (4.2), and (4.3) one can determine the column structures of these candidates and systematically eliminate them.

REFERENCES

- 1. N. G. DE BRUIJN AND P. ERDÖS, On a Combinatorial Problem, *Indagationes Math.* 10 (5948), 421–423.
- 2. H. J. RYSER, Combinatorial Mathematics (Carus Monograph 14), Wiley, New York, 1963.
- 3. H. J. RYSER, An Extension of a Theorem of de Bruijn and Erdös on Combinatorial Designs, J. Algebra 10 (1968), 246–261.
- 4. D. R. WOODALL, Square λ -Linked Designs (to be published).