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ABSTRACT

A A-design as introduced by Ryser [3]is a (0, 1)-square matrix with constant column
inner products but nor all column sums equal. Ryser has shown such a matrix to have
two row sums and he constructs an infinite family of A-designs called H-designs. This
paper does three things: (/) generalizes Ryser's H-design construction to an arbitrary
(v, k, N)-configuration, (2) establishes some additional general properties of A-designs,
and (3} determines all 4-designs.

I. INTRODUCTION
A A-design is a (0, 1)-matrix 4 of size n by n such that
A'A = A + diaglk, — A,..., k, — A (1.D

where A' denotes the transpose of 4, J is the #n X n matrix of ones,
k; > A > 0, and not all the £,’s are equal.

First definitively studied by de Bruijn and Erdos with A = 1 [1], they
have received new interest with the following theorem of Ryser {3] and
Woodall [4]:

A (0, 1)-square matrix A satisfying (1.1) with k; > A > 0 either has all
its row and column sums equal or has precisely two row sums r, and r,
with vy +r, =n -+ 1,

Along with this result Ryser established that there is precisely one
2-design. This design, of order 7, is of a class of A-designs called H-designs,
constructed from the symmetric block design [2] with parameters (4A — 1,
2, A).

In the present paper, we do three things: (/) generalize Ryser’s H-design
construction to an arbitrary (v, &k, A)-configuration; (2) establish some
additional general properties of A-designs; and (3) determine all 4-designs.
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2. Type-1 A-DESIGNS
THEOREM 2.1. If there exists a (v, k, X') configuration [not of the form
(@A — 1,24 — 1, A — 1)), then there exists a A-design with A = k — X' and

row sums v — k and k + 1.

Proor: Let B be the incidence matrix of the (v, k, X'y configuration
written so that column one has its k ones in rows 1 through 4, i.e.,

Let 4," denote the complement of the matrix 4, , and it is trivial to verify
that the matrix 4 givean by

0
Y
0
A=
1
' 4,

is the desired A-design.

We call a A-design derived in this way a fype-1 A-design. Note that
Ryser’s H-designs are type-1 designs derived from a (42 — 1,27, A)-
configuration.

3. SOME PROPERTIES OF A-DESIGNS

Let A = (a;;) be a A-design. We follow Ryser and denote the row sums
of A:

n-+1 n-+1

r > 3

and re <

Let the first e; rows of 4 have sum #, and the remaining e, have sum #,.
Further, let k;/ denote the sum of those entries of column j in rows 1
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through e;, k; denote the full j-th column sum, and k;* = k;
With p = (r; — )/(r, — 1) we have

— k.
k* = X~ plk;” — A). 3.h
With
B [ =1 Ty — 12
u\-)\1—1(”~1)—{~e2( 1)
we have from Ryser [3]:
Lol 1 1 Ml 4pF—p
= — - — = 3.2
]{\:1 ky — A A u Ap (-2)
1f x; = (s; — 1)/(n — 1) where s, is the i-th row sum of 4, then
< didy NN
) kj — )\ - Sil u Fl (33)

where §;; is Kronecker’s delta. Note that, if & = (r, — 1)/(n — 1) and
&y = (ry — 1)/(n — 1), then

B, R Y
u -1

=, ” . (3.9
So the right side of (3.3) is one of the five values 1 + p, p, 1 + 1/p, 1/p, 1
We also have

o, _pn—1 o, _n—1
" 1——————-P+1, ry 1_p+1’ 3.5

so that the relation e;ry(r; — 1) 4 epro(r, — 1) = An(n — 1) can be written
as

oML = (p )
- .

po— (3.6)
Finally, if 4 = det 4, 4 is integral and

A2=1+A2r£7 IT s — M. (3.7)
j=1 "3 =1

THEOREM 3.1. A A-design with e, = 1 has A = 1.

ProoF: With e; = 1, the matrix 4 has two column types from (3.1):
k' =1, k*=2Ap~p—+A
ky =0,

ko* = X1+ p), ©3-8)



SOME RESULTS ON A-DESIGNS 353
and (3.6) yields
(=D =(p+DR —p+I, (3.9)
so we may compute from (3.5)
F,=AMl4+p) —p+1=k. 3.10)

Also note that from (3.8) p = k,* — k;* is integral. Normalize the
matrix A to the form

Then (3.3) with i = 1 and / > 1 shows that the matrix B has constant
row sums k; — A. Since r, = k; (3.10), this means C has row sums A,
We now further normalize within the matrices B and C to bring 4 to the
form

P ky=A1+p), Gl

B, ¢ |

where C, has an initial zero column. We suppose C, is not vacuous. Let o
denote the sum of row 1 of B,, = the sum of row 1 of C;. Then (3.3)
with / = 2 and / = k, - 2 becomes

T 1
— =, 3.12
e, (3.12)

v
Ap —p+ 1

which may be written
Ao(o + 1) = Mp + (p — Dz — A).

Since p > 1 and 7 < A,
o+ T <A (3.13)

Now (3.12) can also be written

PR —MNo+7+1D+11=7—2<0.
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Hence, > — A(g -7 -2 1)+ 7 <20, 0r -~ 7 I Mo -7+ 1) < A%in
view of (3.13). Thus, we must conclude that C; is vacuous, and (3.11),
(3.8), and (3.9) umply k; = n — 1 and A = 1 as asserted.

THEOREM 3.2. A A-desigu has ¢ == 2.

Proor: From (3.5) and (3.6) with ¢; = 2 we have

n= @A —2)pt - QA= 1) p + (AL 2),
=M= 2pL (A +2), (3.14)
=G —2p+ A+ Dp+ L

The possibilities for &;" are 0, 1, 2 and the corresponding column types are

displayed:
k) 0 I 1 2 |
|
ki* /\+/\p!A+Ap—p A+ Ap — 22 }
k, A+Apj)\+xp_p+1 /\+)\p—2p—§-2j
Number ' f
of columns Jo f f ; fe i

We have the relations

Sot it = A= pt+ QA= Dp+A+2,
Ar2%h=20—2p +20+1Dp+2

(3.15)

From 2f; = n and 2k, = e;r; and (3.14). Now (3.3) withi = 1,/=2

yields

Hence from (3.15)

Thus, p is integral and p

fi =0 —2)p+ 2p. (3.16)

fi=2A—~1Dp+2
Sfo=A—p.

(3.17)

< A
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Now write A4 in the form:
111

fo...() ‘ 0--0

100 1
|

A o4 o4 4

and let o, denote the sum of row one of A, . Then use (3.3) with { = 1,

I = 3 and again with / = 2, / = 3. The resulting equations force o, = o,

and

! O
= 1. 3.18
)\p——2p+2+Ap—-p+1 (3.18)
Now (3.3) withi =7/ = 31is
oy 20, 04 1
—=14- 3.19
/\p—-2p—i—2+hp——p—§—l+)\p +p (3.19)
so that (3.18) and (3.19) imply
A — 1
01+02=Ap+2p+3_( +(PAP )(74).

Hence m = [A 4 (p — 1) 0,]/Ap is a positive integer, but (3.17) implies
o4 << A whence m << 1. This contradiction denies the existence of a
A-design with e; = 2.

We remark that the corresponding statements to Theorems 3.1 and 3.2
for the parameter e, are almost immediate.

The next three lemmas will be used in the study of 4-designs and
we sketch briefly the arguments establishing their validity.

LEmMMA 3.3, Let A > 1.
(1) A Mdesign with a column with k; = 2X — 1 has p = A(A — 1).
(2) A A-design with p = MA — 1 is an H-design.

Proor: (1) The corresponding k;* is A — p(A — 1); hence, p <
A(A — 1), but p(A — 1) is integral and p << 1, s0 p = A/(A — 1).

(2) From (3.5) we deduce that 2A — 1 divides » — 1 and have for a
positive integer ¢

n—1=tQx—1), rn—1=2A, r,—1=1tA—1). (3.18)
Then (3.6) becomes
e, = —tA—12— A1)+ 221 — D). 3.19)
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The two preceding theorems insure e, .- 3, which forcest == |, 2.1ft = 1,
(3.19) implies ¢; = A%, while (3.18) gives n = 2A and e¢; <. nforces A =- 1.
Hence, + = 2 and (3.18) shows we have the replication numbers of an
H-design which Ryser [3] has shown to be sufficient.

LemmA 3.4, Let A be a A-design with two column sums ky and k.
Suppose further that ky occurs precisely once. Then A is a type-1 A-design.

Progr: If A has two column sums, write

Ay Ax
A=
As i Ay

where [4,4,] has e; rows with sum r; . Then (3.3) with i == [ <C ¢; shows
A, has constant row sums, and similarly one shows 4, does also. In the
present case, A; and A4, are column vectors, and the only possibility is
that one is a zero vector, the other a vector of ones. Then surely
ko = k,* = A, and it is clear A4 is a type-1 design.

LEMMA 3.5. A A-design with e; = X\ has p < X\ with QA — D p an
integer (A > 1).

ProoF: Let x denote the number of columns with k;/ = k;* = A;
then x <{ (n — A)/A. From (3.6) we deduce

n—1=@QA— Dp+1) (3.20)

and (3.5) yields r, = 2A so that », == n+ 1 — 2A. Hence, the first
A tows of A contain AM2A — 1) zeros, and, if n > A2A — 1), then
x = n— AM2Ax — 1). This forces n <X A(2A 4+ 1). Hence, in any case
n < AM23 -+ 1) and (3.20) gives p = (1 — 2X)/2A — 1} << A

Before proceeding to 4-designs, we note that Ryser remarks that for
fixed A there are at most a finite number of A-designs with some k; << 2A.
We note that (3.6) written as n = (A — &) p? - QA — 1) p + (e, + A)
makes it clear that for fixed A there are at most a finite number of A-designs
with e; > A, while Lemma 3.5 extends this to ¢, = Al

4. 4-DEsIGNS
THEOREM 4.1.  All 4-designs are type-1.2

1 D. Woodall [4] has obtained p < A so that Theorem 3.2 implies n < A* — > - 3
regardless of the value of ¢, .
2 The corresponding result for 3-designs has been obtained by E. Kramer and the

author and appears in this journal.
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Proor: We first list the parameters of the type-1 4-designs with those
of the (v, k, A)-configurations from which they are derived (Table I).
From (3.1) it is clear that k;/ << 2XA — 1. With some &/ = 2A — 1.
Lemma 3.3 tells us we have a type-1 design (here, number 5 in Table I).

TABLE I

PARAMETERS FOR TYPE-1 4-DESIGNS

(v, k, 2) n r e P
| (21,5,1) 21 16 5 3
2 (21, 16, 12) 21 17 5 4
3 (16,6, 2) 16 10 6 3/2
4 (16, 10, 6) 16 11 6 2
5 (15,8, 4) 15 9 7 4/3

We suppose a 4-design has some k; = 6. Thenk;* =4 — 2psop =2
or p=23/2. If p=3/2 since n —3 > e, =6, we have 13 < n < 16.
Further, 5, = 3n+ 2 from (3.5), so n = 16, ¢; = 6, r, = 10. Here,
k;/ = 6 implies k;* = 1; hence, all remaining columns have k;” = 3, 4;
k;' = 3 is not possible since p is not integral. Thus, Lemma 3.4 applies.
(We note here that in what follows we will stop once we have established
that if the design exists it is type-1 without remarking, as we might in the
preceding, that the design does not exist.) If p = 2, k;/ = 6 means k;* = 0
and 6 < e <n—3 forces 11 <n <16, and, since 3r, = 2n + 1,
n =13 or n = 16. With n = 13, ¢; = 7, so we have just one k;/ = 6
with remaining k,”s either 4 or 5; in fact, r, = 9, so we have 9 columns
with k;/ = 5 and three with k; = 4. But then (3.7) gives 42 == 28 - 311;
hence, no such design exists. With » = 16, e, = 6 and we obviously
have the design from line 4 of Table I.

Next, suppose a 4-design has some k;' = 5. Then p is 2, 3, or 4.
Proceeding as above using 5 < e; <X n — 3 with each possible p value,
we produce the candidates in Table II for a 4-design with some k" = 5.
In each case the column structure can be uniquely determined. There are
only three cases in which an admissible column structure exists and
produces 42 an integral square; III, V, and VI. The design VI is clearly
type-1, namely, line 2 of Table I. Designs IIT and V are similar and we
illustrate with case III. Let f; denote the number of columns with &;” = 7.
We clearly have f; = 1 and f; + f; + f; = 18, 2f;, + 3f; + 4f, = 60,
T+ 314+ LA+ Ly =14 This yields the solution f;, = 1, f; = 10,
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TABLE 11
Case p n ry 3
1 2 13 9 7
1 2 16 11 6
11 2 19 13 S
v 3 13 10 6
v 3 21 16 5
V1 4 21 17 5

fi =1, and 42 = 2183451° does not exclude the design. We look at
a row of A with sum r; = 13 and a zero in the column with &," = 2.
Let 7 be the number of ones in this row in columns with k;” = 3 and use
(3.3) with i = / obtaining

T 12 — =

=,

which implies 7 is not integral. Case V is similarly eliminated.

We are thus left to consider 4-designs with all £/ <{ 4 and we have the
column Table I1I.

TABLE 111
% 0 1 2 3 4
ky* 4+ 4p 4+ 3p 4+ 2 4+ 4
k; 4+ 4p 543 6+ 2p T+0p 8

Suppose e; == 7. Then from (3.6) and the fact that n > 12 we may
deduce

with some ip integral for / = 1, 2, 3, 4 and » such that r; will be integral,
all of which reduces to three easily eliminated possibilities: (/) n = 13,
p=2,rn=29, e =7T—but e, =6 forces f; =1, f; = 12; hence,
Lemma 3.4 applies. (2) n = 12, p = 7/4, e, = 4—from Table III, only
k' = k;* == 4 1is possible. (3) n = 15, p = 4/3——here, Lemma 3.3 applies.

We next take the case e, = 6. Here, (3.6) becomesn = —2p* 4 7p + 10
so that p << 31 and 2p is integral. This yields four possibilities: (1) p = 2,



SOME RESULTS ON A-DESIGNS 359

n = 16, r; = l1—here, we would need some k;” > 4 since e;r; = 66.
(2) p=3, n=13, r, = 10—Table IIl shows f; =1, f; = 12, and
Lemma 3.4 applies. (3) p = 3/2, n = 16, r, = 10—here we deduce
fo=1,f, =15 Thisis line 3 of Table I. (4) p = 5/2, n = 15, r, = 11—
e,r; = 66 forces some k;" > 4.

The case e; = 5 proceeds in the same manner. One obtains p integral
p < 6. There are then five possible designs corresponding to these p values.
The column structure of each can be determined and the design eliminated
with the exception of p = 3, which yields the design (1) of Table I.

For e, = 4, Lemma 3.5 applies and p < 4. Also, 7p is integral as well
as one of p, 2p, 3p, and 4p so that p is integral and we obtain just three
candidates: (I) p =4, n =36,r, =29, () p = 3,n = 29, r, = 22; and
3) p =2, n=22, r, = 15. In each case the column structure can be
determined and the design eliminated.

This then leaves only the case e, = 3. We have here from (3.6) and (3.5)
n=p*+Tp+7,r=p"+6p+4 1,and r, = p -+ 7. Since k;” < 3, we
have three equations in fy , f1, 2, f5 ¢

T S e 'Y
p+1 2p + 2 p+3 4p

So+h+h+fi=pP+T+7,

+

and
fi 2+ ¥y =362+ 18p + 3.

It is easily verified that this is a rank-3 system and has the following
one-parameter solution:

42+ 7p* — (U +4fy)p + 12

Jo= 03 (4.1)
—3Cp + D"+ 20 —3 — /)
fi= e (42)
_ S+ DG +3p —fy)
fu= i (4.3)
From (4.2), p®> + 2p — 3 — f; << 0 so that
(11 -+ 4£) p > 4p° + 8p2 — p. (4.4)
On the other hand, from (4.1)
(11 +4f) p < 4p® + 7% + 12. 4.5)

582/8/4-2
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Thus, (4.4) and (4.5) yield
pt—=p— 12 <0, whence p I 4.

This means there are three designs to consider corresponding to p = 2, 3, 4.
Using equations (4.1), (4.2), and (4.3) one can determine the column
structures of these candidates and systematically eliminate them.
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