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Bacterial adhesion to glycosylated surfaces is a key issue in human health and disease. Inhibition of
bacterial adhesion by suitable carbohydrates could lead to an anti-adhesion therapy as a novel
approach against bacterial infections. A selection of five a-mannosides has been evaluated as inhib-
itors of bacterial adhesion to the polysaccharide mannan, as well as to the surface of live human HT-
29 cells. Cell toxicity studies were performed to identify the therapeutic window for a potential
in vivo-application of the tested carbohydrates. A previously published mannosidic squaric acid dia-
mide was shown to be exceptionally effective as inhibitor of the bacterial lectin FimH.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Carbohydrates are involved in numerous important biological
events such as in cell recognition and cell adhesion [1]. They are
found as part of cell surface glycoconjugates, making up a charac-
teristic layer that is surrounding a eukaryotic cell and called its gly-
cocalyx. There is an overwhelming molecular complexity of the
glycocalyx which is interrogated by a class of specialized proteins,
namely the lectins [2]. To learn more about carbohydrate–lectin
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interactions, synthetic glycosides and glycomimetics, respectively,
have been utilized as modulators and inhibitors of the occurring
molecular recognition processes [3–8]. As also adhesion of mi-
crobes to the surface of their target cells is frequently mediated
by carbohydrate–protein interactions, its inhibition by suitable
glycosides could provide means against, i.e., bacterial colonization
and biofilm formation [9–12].

Bacteria use long hairy organelles, called fimbriae or pili, to
facilitate adhesion to cell surfaces. One of the best characterized
fimbriae are type 1 fimbriae, that comprise an a-D-mannoside-spe-
cific lectin at their tips, named FimH [13]. Type 1 fimbriae are crit-
ical virulence factors in uropathogenic Escherichia coli (UPEC) and
widely distributed among Enterobacteriaceae [14]. A large collec-
tion of different mannosides and mannose conjugates, respectively,
have been made and tested as inhibitors of type 1 fimbriae-medi-
ated bacterial adhesion, primarily in vitro [15]. Only few examples
have been published, where mannoside inhibitors of type 1 fimb-
riae-mediated bacterial adhesion have been tested with cells or
in animal models, respectively [16–21]. Here, it has become our
goal to examine a selection of most promising inhibitors of man-
nose-specific bacterial adhesion with live human cells (Fig. 1A)
and test their cytotoxicity, in order to assess the therapeutic poten-
tial of these compounds.
lsevier B.V. All rights reserved.
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Fig. 1. Five synthetic a-mannoside inhibitors of bacterial adhesion to eukaryotic cells. (A) The cartoon illustrates fimbriae-mediated adhesion of bacteria to the glycocalyx of
cells and its prevention by suitable a-mannoside inhibitors and (B) structures and names (abbreviations and IUPAC nomenclature) of tested a-mannoside inhibitors.
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In the past, we have typically tested and ranked synthetic man-
nosides as inhibitors of bacterial adhesion to the polysaccharide
mannan [15,22]. Owing to the known structure of the type 1 fimb-
rial lectin FimH [17,23,24], the affinity of a-D-mannoside ligands
can be greatly improved by variation of the aglycone moiety,
whereas the mannose glycone part must not be changed. Recently,
we have added a very potent low-molecular weight mannoside to
the collection (SAMan, Fig. 1B), which has the potential to serve as
a lead structure for the development of FimH antagonists [25,26].
Hence, it is important to evaluate its inhibitory potency with hu-
man cells as well as to test its cytotoxicity. In addition, a novel azo-
benzene mannoside (AzoMan, Fig. 1B) was tested as anti-adhesive
and both mannosides, SAMan and AzoMan, were compared to
known inhibitors of type 1 fimbriae-mediated bacterial adhesion
[27], namely methyl a-D-mannoside (MeMan), p-nitrophenyl a-D-
mannoside (pNPMan), and heptyl mannoside (HepMan). The latter
has recently been described as high-affinity ligand for FimH
[17,28,29].

Highly glycosylated HT-29 mammalian colon cells were chosen
to study bacterial adhesion, its inhibition, and cytotoxicity of the
mannosidic inhibitors. The inhibitory potencies determined using
HT-29 cells were compared to the results from a test, where the
polysaccharide mannan was used as the adhesive layer.
2. Materials and methods

2.1. Synthetic mannosides (Fig. 1B)

Methyl a-D-mannoside (MeMan) and para-nitrophenyl a-D-
mannoside (pNPMan) were purchased from Sigma–Aldrich and
Senn Chemicals, respectively. For the synthesis of the squaric acid
diamide conjugate SAMan, pNPMan was reduced to the corre-
sponding amine and subsequently coupled to squaric acid diethy-
lester to obtain the respective squaric acid monoamide [25]. This
was in turn converted into the target squaric acid diamide SAMan
by reaction with ethylamine [26]. Mannosides HepMan and Azo-
Man were synthesized by standard glycosylation of heptanol and
ortho-(para-hydroxyphenylazo)benzoic acid methyl ester, respec-
tively, according to the trichloroacetimidate method [30] followed
by final deprotection. Purity of the synthesized mannosides was
confirmed by analytical HPLC and/or elemental analysis.

2.2. Cultivation of bacteria

The GFP-tagged type 1 fimbriated E. coli strain PKL1162 was
grown as published [22]. Details are described in the Supplemen-
tary material.



Fig. 2. Bacterial adhesion-inhibition assay on mannan. Type 1 fimbriae-mediated
adhesion of E. coli bacteria to a mannan-coated surface is prevented by mannosides,
which inhibit the respective lectin–carbohydrate interaction. Each line represents
the sigmoidal concentration–effect curves fitted by non-linear regression from 2 to
8 independent experiments. Single data points are not shown for better clarity.
Complete data are presented in the Supplementary material.
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2.3. Mammalian cell culture

HT-29 cells (human colon adenocarcinoma grade II cell line)
(DSMZ, Braunschweig, Germany) were kept in culture medium
consisting of DMEM/high glucose (PAA) supplemented with 10%
heat inactivated FBS (PAA), 2 mM l-glutamine (PAA), and 1 �MEM
non-essential amino acids (PAA). For the experiments, HT-29 cells
were seeded into 96-well microtiter plates (0.32 cm2/well) at a
seeding density of 300000 cells/cm2 in 313 ll/cm2 medium. For
the toxicity assays (Lowry and MTT test) clear flat bottom microti-
ter plates (Falcon�, Becton Dickinson, Heidelberg, Germany) and
for the adhesion-inhibition assay black wall, flat clear-bottom
plates (Corning Incorporated Life Sciences, MA, USA) were used.
For fluorescence microscopy cells were seeded on medium cham-
ber containing glass slides (LabtecTM). Cells were kept at 37 �C
and 5% CO2.

2.4. Treatment of HT-29 cells with a-mannosides

For the adhesion-inhibition assay and the cytotoxicity assays
HT-29 cells were seeded into culture plates and after 48 h treated
with different concentrations of the respective mannoside inhibi-
tors. Stock solutions and solutions of the final concentrations were
made up in HT-29 cell culture medium. Mannoside inhibitors were
applied in the following concentration ranges: MeMan (1 lM–
1000 mM), pNPMan (0.1 lM–15 mM), HepMan (0.1 lM–10 mM),
SAMan (0.01 lM–1.5 mM), and AzoMan (0.01 lM–2 mM). The
concentration of SAMan solutions could not be increased over
10 mM due to its limited solubility in PBS. Fluorescence readout
in the adhesion-inhibition assay was performed after 45 min, cyto-
toxicity measurements were performed after 24 h.

2.5. Inhibition of adhesion of E. coli PKL1162 to mannan

Mannosides MeMan, pNPMan, HepMan, SAMan, and AzoMan
were tested as inhibitors of type 1 fimbriae-mediated adhesion of
E. coli to the polysaccharide mannan as published [22]. Details are
described in the Supplementary material.

2.6. Inhibition of adhesion of E. coli PKL1162 to HT-29 cells

HT-29 cells were grown in black wall, clear flat bottom plates
without change of culture medium for 72 h until a confluent
monolayer was formed. Then, cells were washed with 37 �C tem-
pered DMEM and their intact state was checked under the micro-
scope. Then, serial dilutions of the tested mannosides in DMEM at
37 �C (50 ll/well) and bacterial suspension in DMEM at 37 �C
(50 ll/well) were added to the wells. For blanks to determine max-
imal fluorescence values cells were treated only with DMEM
(50 ll/well) and bacterial suspension (50 ll/well). The control
wells were filled with DMEM and the plate was incubated for
45 min at 37 �C. All wells were washed 3 times with PBS (150 ll/
well) and filled with PBS (100 ll/well). Then, fluorescence of the
GFP-tagged bacteria was read out (Tecan microplate reader GENios
Pro, excitation wavelength, 485 nm, emission wavelength 535 nm).

2.7. Phase contrast and fluorescence microscopy showed binding of
PKL1162 to HT-29 cells

See details in the Supplementary material (Fig. S3).

2.8. Cytotoxicity assays with mannoside inhibitors on HT-29 cells

2.8.1. Cell protein (Lowry assay)
To determine total protein amounts, cells were washed 3 times

with PBS and incubated for 45 min with 0.5 N NaOH (60 ll/well).
Cell protein contents were measured by colorimetric determina-
tion at 620 nm (photometer 340 ATTC, SLT Labinstruments),
according to the method described by Lowry [31]. Bovine serum
albumin was used as standard.

2.8.2. Cell viability (MTT test)
Cells were washed once with PBS before it was replaced with

100 ll fresh growth medium per well. Cell viability was determined
by means of the MTT assay [32,33]. In brief, 25 ll MTT [3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] solution (1 mg/ml
medium) was added to each well (37 �C, 7.8% CO2) and 100 ll solubi-
lization solution (20% (w/v) SDS, 2.5% (v/v) 1 N HCl and 2.5% (v/v) ace-
tic acid (80%) in 50% (v/v) DMF, pH 2) was added 15 min later.
Production of formazan by viable cells was assessed after 90 min
(37 �C, 7.8% CO2) by measuring the absorbance at a wavelength of
570 nm (photometer 340 ATTC, SLT Labinstruments, Germany).

2.9. Phase contrast microscopy with mannoside inhibitors on HT-29
cells

Morphological changes of HT-29 cell monolayers (in clear-bot-
tom microtiter plates) were examined in parallel to cytotoxicity as-
says employing an inverted phase contrast microscope (IMT-2,
Olympus, Hamburg, Germany) equipped with a digital camera
(E-300, Olympus, Hamburg, Germany); cf. Supplementary material
(Fig. S4).

2.10. Statistics

Statistics were calculated as described in the Supplementary
material.

3. Results

Five a-D-mannosides were selected (Fig. 1B) and tested as
inhibitors of type 1 fimbriae-mediated bacterial adhesion in two
different scenarios: (i) employing mannan-coated microtiter wells
and (ii) HT-29 cellular surfaces. All tested compounds could reduce
binding of E. coli to both surfaces.

3.1. Effect of a-mannoside inhibitors on adhesion of E. coli to the
polysaccharide mannan

Inhibitory potencies were deduced from the results of 4–5 inde-
pendent assays for each compound. Sigmoidal dose–response
curves were derived to determine IC50 values of each tested



Fig. 3. Bacterial adhesion-inhibition assay on HT-29 cells. Mannose-specific
inhibition of type 1 fimbriae-mediated adhesion of E. coli bacteria to a HT-29 colon
carcinoma cell monolayer. Each line represents the sigmoidal concentration–effect
curves fitted by non-linear regression from 3 to 4 independent experiments. Single
data points are not shown for better clarity. Complete data are presented in the
Supplementary material.
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mannoside (Fig. 2). Relative inhibitory potencies (RIP values) were
calculated based on the inhibitory potency of MeMan, with
IPMeMan � 1, to gain better comparability of the testing results.
Thus, increasing RIP values were identified in the order
MeMan < pNPMan < HepMan < AzoMan < SAMan (Table 1). The
two reference mannosides MeMan and pNPMan clearly had the
lowest inhibitory potency, whereas HepMan and AzoMan per-
formed in the same range. SAMan, however, showed the best value
as inhibitor of bacterial adhesion to mannan, surpassing the inhib-
itory potency of AzoMan by a factor of two.

3.2. Effect of a-mannoside inhibitors on adhesion of E. coli to HT-29
cell monolayers

To test bacterial adhesion to eukaryotic cells, type 1 fimbriated
bacteria PKL1162 were allowed to adhere to a HT-29 human colon
carcinoma cell monolayer, which is highly mannosylated. After
incubation of the fluorescent bacterial suspension in DMEM over
HT-29, PKL1162 E. coli were firmly adhered to the cell monolayer
and could not be removed by washing with buffer. This was con-
firmed by phase contrast and fluorescence microscopy (Supple-
mentary material, Fig. S3). Incubation of human primary
fibroblast cell monolayers with bacteria, on the other hand, did
not lead to reliable adhesion of bacteria.

In analogy to the results obtained on mannan, MeMan and
pNPMan were the weakest inhibitors of bacterial adhesion to HT-
29 cells, followed by HepMan. HepMan, however, performed sig-
nificantly weaker in this assay than when bacterial adhesion to
mannan was inhibited. Furthermore, the performance of AzoMan
and SAMan as inhibitors of bacterial adhesion differed with HT-
29 cells compared to mannan as adhesive layer. On cells, they
showed very similar inhibitory potencies with a slight advance
for AzoMan. Thus, ranking of these two mannosides was reversed
as compared to bacterial adhesion to mannan. Also, the MeMan-
based RIP value of AzoMan is more than twofold as big when
bacterial adhesion to cells was tested than in the mannan case.
Overall, the inhibitor concentrations, which were required to effect
50% inhibition of bacterial adhesion to HT-29 cells were approxi-
mately one order of magnitude lower than in case of bacterial
adhesion to mannan (Fig. 3, Table 1).

3.3. Effect of a-mannoside inhibitors on human HT-29 cells

To determine the toxicity of mannoside inhibitors, total cell
protein, cell viability and the morphology of confluent cell mono-
layers were examined. For both parameters, cell protein and viabil-
ity, a concentration-dependent toxicity could be induced for four of
the five tested substances (Fig. 4) with their toxic potencies
decreasing in the order AzoMan > HepMan > pNPMan >> MeMan
according to their half-maximal effective concentrations (EC50 val-
ues) shown in Table 2. Due to the limited solubility of SAMan,
which could not be concentrated higher than 1.5 mM in aqueous
buffer, no toxic effect could be induced by this mannoside at all.
On the other hand, SAMan is one of the most potent known inhib-
Table 1
Half-maximal inhibitory concentrations (IC50) and relative inhibitory potencies of a-manno
29 human colon carcinoma cells.

a-Man inhibitor E. coli adhered to mannan

IC50 (mM) (mean ± SEM) RIP

MeMan 10.67 ± 1.26 IP �
pNPMan 0.19 ± 0.04 57
HepMan 0.025 ± 0.004 427
AzoMan 0.024 ± 0.003 445
SAMan 0.012 ± 0.001 889
itors of type 1 fimbriae-mediated bacterial adhesion. Taken that to-
gether with its obviously non-critical toxicity, SAMan appears to be
an ideal lead structure for the design of FimH antagonists.

Morphological changes of the confluent HT-29 monolayer-like
formation of round shaped cells and disruption of the cell layer
were examined using light microscopy (Supplementary material,
Fig. S4). At concentrations around the EC50 values, no cytotoxic ef-
fects were observed for any of the inhibitors but MeMan. In case of
MeMan destructive changes of the cell monolayer became obvious
already at a concentration of 500 mM (EC50 = 656 mM). This find-
ing could well correspond to the particularly steep slopes of the
viability curve of MeMan (Fig. 4B).

3.4. Correlation of the anti-adhesive effect of mannoside inhibitors on
bacteria with their toxicity on HT-29 cells

To compare the anti-adhesive effect of the tested mannoside
inhibitors on bacteria and their toxicity on HT-29 cells, their EC50

values were calculated and compared to the IC50 values (Table 2).
For all five substances the concentration range inducing 50% inhi-
bition of bacterial adhesion is clearly lower than the concentration
that induces 50% cell death. The therapeutic ratios of EC50/IC50 re-
veal a narrow range (from 507 to 1133) for all tested substances,
with that of SAMan even lying beyond 1250. For comparison rea-
sons EC50/IC50 quotients for E. coli adhered to mannan are also
listed in Table 2.

4. Discussion

The obtained results allow to compare the data about the anti-
adhesive potential of synthetic mannosides that were recorded
with a ‘simulated high-mannose type’ carbohydrate surface
(namely mannan-coated) with those resulting from tests with live
highly mannosylated cells. Type 1 fimbriated E. coli bind to termi-
nal a-D-mannosyl units on many cell types, but not on all. For
sides as inhibitors of bacterial adhesion to an artificial mannan test surface and to HT-

E. coli adhered to HT-29 cells

MeMan IC50 (mM) (mean ± SEM) RIPMeMan

1 0.69 ± 0.23 IP � 1
0.013 ± 0.006 74

0.0058 ± 0.0035 166
0.0009 ± 0.0005 1067
0.0012 ± 0.0003 800



Fig. 4. Total cell protein and cell viability curves of two toxicity assays. Effect of five different mannoside inhibitors on total cell protein (A) and the viability (B) of HT-29 colon
carcinoma cells after 24 h of incubation. Each symbol represents the mean ± SE of 3–4 independent experiments. Sigmoidal concentration–effect curves were fitted by non-
linear regression.

Table 2
Effective concentrations of cytotoxicity (EC50) of a-mannoside inhibitors and their
half-maximal correlation indices deduced from correlation of their anti-adhesive and
their cytotoxic effects (EC50/IC50 ratio).

a-Man
inhibitor

HT-29 cells
(toxicity, MTT)

E. coli adhered to
HT-29 cells

E. coli adhered to
mannan

EC50 (mM)
(mean ± SEM)

EC50/IC50 EC50/IC50

MeMan 656 ± 101 951 61
pNPMan 11.49 ± 0.50 884 60
HepMan 2.94 ± 0.11 507 118
AzoMan 1.02 ± 0.03 1133 43
SAMan >1.5 >1250 >125
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example, mannose-specific adhesion of bacteria to human primary
fibroblast cells did not occur, since these cells do not have the
appropriate glycosylation pattern. On the contrary we have suc-
cessfully utilized HT-29 human colon carcinoma cells to test inhi-
bition of bacterial adhesion. It particularly valuable to compare
these data that were obtained with colon cells with literature data
on inhibition of bacterial adhesion to human epithelial bladder
cells [17,20,21], as E. coli residing in the intestine can cause cystitis
once they reach the urogenital tract.

As it is easier and less expensive, many synthetic mannosides
have been tested as inhibitors of E. coli adhesion to mannan-coated
surfaces or to more elaborated glycoarrays [22,34]. These studies
have revealed that the molecular details of the carbohydrate deco-
ration of a test surface are critical in bacterial adhesion. Hence, it
has been asked to which extent such rather artificial glyco-surfaces
can resemble the glycocalyx of a eukaryotic cell in an adhesion as-
say. From the results depicted in Table 1 it can be seen that the rel-
ative inhibitory potencies of the tested mannosides do not differ to
a large extent when the physiological surface (HT-29 cells) is com-
pared to mannan. Thus, mannan can be considered as a reasonable
model for the glycosylated cell surface in this case. Nevertheless it
should be pointed out, that the anti-adhesive potential of a specific
mannoside that was found in a mannan-based assay does not nec-
essarily parallel with its potency in a cell-based test. For example,
the relative inhibitory potency of HepMan on mannan is �2.5
times higher than on HT-29 cells; on the other hand, in case of Azo-
Man the situation is nearly reversed. However, strikingly, all IC50

values which were determined for bacterial adhesion to HT-29
cells were lower by a factor of �10 when compared to the IC50 val-
ues deduced on mannan. An obvious interpretation of this result is
that bacterial binding to HT-29 cells is weaker than to mannan.
This could be explained by comparison of the glycosylation pattern
of HT-29 cells and yeast mannan. Whereas mannan from Saccharo-
myces cerevisiae comprises a multitude of a1,3-linked mannosyl
residues, this epitope is diluted by other mannosidic linkages in
case of the high-mannose type glycoproteins on HT-29 cells, dis-
playing lower affinity to FimH. The most striking discrepancy in
the inhibition data obtained on mannan versus HT-29 cell adhesive
layer is the relative behavior of HepMan and AzoMan. While these
two mannosides showed almost the same RIP as inhibitors of adhe-
sion to mannan, AzoMan is approximately 6 times more potent as
inhibitor of bacterial adhesion to HT-29 cells than HepMan. To
facilitate the interpretation of this finding, computer-aided dock-
ing studies were performed to assess complexation of both syn-
thetic mannosides by the bacterial lectin FimH. As described
earlier [25,26], two extreme conformations of FimH were taken
as starting point for the simulation, one with the tyrosine gate at
the entrance of the carbohydrate binding site in a closed conforma-
tion [24], and the other with an open-gate conformation [35].
Docking reveals scoring values, more negative values correlating
with predicted high affinities, and higher scores reflecting dimin-
ished binding potency. The obtained scores for HepMan are
�21.5 for the closed-gate structure of FimH and �19.7 for the
open-gate structure; AzoMan on the other hand scores much bet-
ter with the respective values being �35.6 and �33.5, respectively.
The docked mannoside conformations suggest that pp-stacking of
the azobenzene aglycon with the tyrosine gate at the entrance of
the FimH carbohydrate binding site is more favorable to enhance
affinity than the interactions that can be established by HepMan
(details see Supplementary material, Figs. S5 and S6).

This computer-aided assessment of the affinities of FimH for
HepMan and AzoMan parallels nicely with the experimental find-
ings obtained in the HT-29 cell assay, but not with the results ob-
tained on mannan. A possible interpretation could be found in
multivalency effects that might dominate inhibition of bacterial
adhesion in case of the less sensitive scenario on mannan, whereas
in case of the cell-based adhesion assay the individual complexa-
tion event between a mannosidic inhibitor and type 1 fimbrial
FimH might gain more importance. This hypothesis receives some
support by the clear multivalency effects that have been found
with multivalent HepMan conjugates [36,37].

HepMan is known as a promising high-affinity FimH antagonist
[17,20,24] and has been tested earlier with humen epithelial blad-
der 5637 cells in a flow cytometry-based assay [21]. In this assay,
HepMan performed 64 times better than MeMan (based on IC50

determination). In another report a 100-fold lower concentration
of HepMan (1 mM), in comparison to MeMan, was enough to com-
pletely inhibit bacterial binding to bladder cells [17]. In our study
with HT-29 human carcinoma cells, the relative performance of
HepMan and MeMan was similar: here the inhibitory potency of
HepMan surpassed that of MeMan by even 166-fold, suggesting
an even better effect of HepMan in the intestine. A 5.8 lM concen-
tration of HepMan led to 50% inhibition of bacterial adhesion to
HT-29 cells and �1 mM HepMan led to 90% reduction of bacterial
adhesion (Table 3).

To relate the anti-adhesive potential of the tested manno-
side inhibitors to their cytotoxicity, the respective half-maximal



Table 3
Biocompatibility index: EC10/IC90 quotients of a-mannoside inhibitors of bacterial adhesion based on their cytotoxicity determined with HT-29 cells and their inhibitory potencies
in adhesion of bacteria to mannan and human cells, respectively.

a-Man inhibitor HT-29 cells (toxicity, MTT) E. coli adhered to HT-29 cells E. coli adhered to mannan

EC10 (mm) (mean ± SE) IC90 (mM) (mean ± SE) RIPMeMan EC10/IC90 IC90 (mM) (mean ± SE) RIPMeMan EC10/IC90

MeMan 501 ± 59 61.0 ± 46.9 IP � 1 8.2 495 ± 131 IP � 1 1.01
pNPMan 4.26 ± 0.53 1.11 ± 1.07 55 3.8 11.2 ± 5.1 44 0.38
HepMan 1.17 ± 0.09 0.96 ± 1.34 64 1.2 1.37 ± 0.52 361 0.85
AzoMan 0.52 ± 0.04 0.15 ± 0.17 407 3.5 0.63 ± 0.20 786 0.83
SAMan >1.5 0.022 ± 0.015 2773 >68.2 0.34 ± 0.08 1447 >4.41
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correlation indices were calculated (EC50/IC50, Table 2). According
to these therapeutic ratios, AzoMan and SAMan are leading com-
pounds in the tested library. We have considered that for a reason-
able medical application 50% cell death is too high and otherwise
50% inhibition of adhesion not sufficient for an anti-adhesion treat-
ment. Thus, EC10/IC90 ratios were calculated for a more ambitious
estimate of a possible therapeutic window (Table 3). As the EC10

reflects those concentrations leading to only 10% cell death and
the IC90 value corresponds to 90% inhibition of bacterial adhesion
the ratio EC10/IC90 can be taken as a robust biocompatibility index
and considered as measure for the therapeutic window of an anti-
adhesive compound. The EC10/IC90 ratios follow a different course
than EC50/IC50 ratios, resulting from the specific slopes of the fitted
dose–response curves at different concentrations. The determined
EC10/IC90 ratios indicate increasing cell biocompatibility in the or-
der of HepMan < AzoMan/pNPMan < MeMan << SAMan. According
to this analysis SAMan shows by far the best biocompatibility leav-
ing even MeMan far behind.

Surprisingly, HepMan appears less biocompatible according to
the herein reported toxicity studies. The EC50 value determined
for HepMan is �3 mM, however it has been reported that no acute
toxicity of HepMan was assessed when HepMan was administered
to mice even at 50 mM concentrations [16,17,24,29]. Possibly, the
animal organism can cope with harmful effects, which cannot be
compensated by a confluent cell layer applied in vitro.

Interestingly the rather unusual azobenzene mannoside Azo-
Man shows no extreme toxicity when compared to the less foreign
glycoside MeMan, for example. This is in accordance with reports
on biocompatibility of azobenzene dyes [38]. Thus this compound
becomes a promising candidate for the development of photo-
switchable anti-adhesive surfaces [39]. Isomerization of the azo-
benzene N@N double bond allows to manipulate the orientation
of the attached mannose portion for binding, an approach which
is currently under investigating in our laboratory.

In conclusion, in this study inhibition of bacterial adhesion to
HT-29 human carcinoma cells by five different mannosides was
compared to data obtained in a mannan-based assay and to litera-
ture-known results obtained with human epithelial bladder cells.
In addition, cytotoxicity studies were performed to assess the bio-
compatibility of the anti-adhesive mannosides. The mannosidic
squaric acid derivative SAMan [26] turned out to be a particularly
potent inhibitor of type 1 fimbriae-mediated bacterial adhesion
with the potential to be developed and employed in in vivo-stud-
ies, owing to its advantageous biocompatibility index. This manno-
side comes close to a 3000-fold higher potency when compared to
MeMan to effect 90% inhibition of bacterial adhesion to human co-
lon cells. Moreover, SAMan did not cause any cytotoxicity effects
even when a saturated solution was applied to the cells.
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