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A Universal Context-Free Grammar 
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Kitashirahawa, Kyoto, Japan 

In this report we show that, for each alphabet 27, there exists a context-free 
grammar G which satisfies the property that for each context-free language 
L C 27* a regular control set C can be found such that Lc(G) = L. 

The notion of control set was first introduced by Ginsburg and Spanier 
(1968), and farther investigated by Moriya (1973a, 1973b), Salomaa (1970) 
and Mayer (1972). The reader is referred to Salomaa (1973) for background 
material and additional details. 

The language generated by a grammar G with control set C, denoted 
by Lc(G), is the set of those words generated by leftmost derivations in G 
whose corresponding string of productions is an element of C. A context-free 
grammar G over an alphabet X is said to be universal if for every context-free 
language L over l * ,  there exists a regular control set C such that Lc(G ) = L.  
In this paper we show that there exists a universal context-free grammar G 
for each alphabet I .  

First we shall need some definitions. 

DEFINITION. Let G = (N, I ,  P, S)  be a context-free grammar with the 
set of nonterminal symbols AT, the set of terminal symbols 27, the set of 
productions P and the initial symbol S. We conventionally denote N L/Z' 
by V. Let 

~71 ~7 2 ~7 k 

/'Jr: W 0 ::~ W 1 =:~ - . .  ::> 7/J k 

be a leftmost derivation in G, where in the transition from w~_ 1 to 
wi (1 ~ i ~ k) the production ~r~ is applied. Then the word 7rlrr ~ "'" ~r n is 
called the associate of H. I f / - / i s  a derivation of length zero (i.e., k = 0), 
then the associate of 17 will be considered to be the empty word e. 
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For  x and y in V* and ~ in P*,  the notation x ~ y means that  there exists 

a leftmost derivation 

~rl ~2 ~r/~ 

~ g,O 0 =:~ W 1 :=~ • . .  ==> W k ~ 

such that  ~ ~ 7r1~ 2 "'" 7r n . Thus ,  x :~ x for all x in V*. Let  C be a subset  
of P*.  Let  

L(G) = { w i n Z * [ S ~ w , ~ i n P * } ,  

A(a) = {~ in P* I S ~ w, w in 2"},  and 

Lc(G)  = {w in Z* l S ~ w, a in C}. 

T h e  set L(G) is the  context-free language generated by G. The  set A(G)  
will be called the associate language of G. Lc (G ) is called the language generated 
by G with control set C. 

Notation. Let  Z be a given alphabet. In  the rest of the paper  we shall assume 
that Z is fixed. Let  e, ~, d, d be symbols not  in Z, and let A ~ Z L/{c, g, d, d}. 
Le t  ~ be the binary relation on A* defined by 

xcCy ~-~ xy, xddy ~-.~ xy, xay ~-.~ xy 

for all x, y in A* and a in Z. Le t  ~-~ be the reflexive transit ive closure of ~-~. 

Let  

D -~ {w in A* ]w * E}. 

Note that  if 27 - ~, then D is a Dyck language. Let  h be the homomorphis ln  
defined on A* by h(c) = h(g) -- h(d) = h(cT) = e and h(a) -=- a for each 
a i n  X. 

We now prove a stronger version of Chomsky and Stanley 's  theorem 
which will be used to demonstrate  the main resul t  of this paper.  

LEMMA. For  every context-free language L C Z*,  there exists a regular 
set R C A* such that L = h(D (3 R). 

Pro@ Suppose that e is not in L. Without  loss of generality we may 
assume that  L = L(G) for some grammar G = ((X1 ,..., X~}, Z, P, 2(1) , 
where each product ion of P is of the form 3;~ --~ a, a in Z, or X i  --~ X j X ,  
(Chomsky,  1959). Le t  g be the homomorphism of P*  into A* defined by  
g(Xi  --~ a) = gd~ta and g ( X  i -+ X~Xk) = ed~cd~ccdJc. Let  

R ~ eric{g(,0 1 ~ in  e } * .  
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I t  can be proved by induction on n that  for 7r x ,..,, ~r~ in P.  

X i ~i'~ ~" t X i l X i ~  " .  X i m  , t in  27", 

if  and only if 

and 

cdcg(rr i "" ~rn) ~ cd4"c " .  cdi2ccd6c 

h(g(7rl ""Tr,) ) = t. 

Thus,  w is i n L  = L(G) if and dnly if X 1 =% w, w in 2 " ,  for some ~ in P*.  
This  occurs if and only if cdcg(a) is in D and h(g(a)) = w. Hence 

L = h(cdcg(P*) n D) 

= h(R n D). 

Now suppose that  E is in L. Le t  R '  = R u {E}. Then  

h(U' (h D) = h(R a D) v h(E) 

= (L - -  {,}) ~3 {,} = L.  

THEOREM There exists a context-free grammar G with the property that for 
each context-free language L E_ 2 "  a regular control set C can be found such that 
L (G) = L. 

Proof. Let  G = ({X, Y}, 27, P,  X),  where P is defined below. Le t  

Pa = {Z -+ aZ I Z in {X, Y}}, for each a in 27, 

po = { x  x x ,  Y x y } ,  = { x  4 ,  

Pa = {X- -~  Y X ,  Y ~ Y Y } ,  Pa = { Y  ~ ~}, 

and let P = U~in ,~P~.  L e t f  be the homomorphism from P*  into A * defined 
by  f(Tr) = x if ,r is in P , .  

We  now show t ha t f (A (G) )  = De. Firs t  we show that:  

(a) I f Z  :~ wZ, Z i n  {X, Y}, w in 27", a in P*,  t h e n f ( a )  ~,~ e. 

The  proof  of (a) will be by  induction on the length of a. I f  [ a I ---- 0, then 
c¢ ---- e, and (a) is trivially satisfied. Now suppose (a) is true for all a with 
I a t ~ n and consider a derivation Z ~ tZ  ~ wZ, t in N u 2 .  Such a 
derivation can be of one of the three following forms. 

(a-i) Z ~ X Z ~ u X Z ~ u Z  ~ u v Z ,  where u and v are in 
27", rr = Z--+ X Z  and # - - - - X - - ~  e. F rom the inductive hypothesis,  
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f(/3) ~-~ e and f (7)  *'~ ¢. Since f(Tr) ~- c and f(77) = g, we have fQr]377~,) = 

cf(fi) ef(~) *,.% cC ~ ~. 

(a-ii) Z ~ Y Z  ~ u Y Z  =~ uZ :~ uvZ, where u and v are in Z*. An  
argument analogous to (i) shows that  f(Trfi~7~,) = df(fi) df(~,) ~ dd ,'~ ¢. 

(a-iii) Z 2~ aZ  ~ awZ, where a is in 27 and w is in X*. F rom the 
inductive hypothesis f (~)  ~ ~ E. Since f(w) = a N e, we have f(Tr~) * E. 

Thus,  the statement (a) is valid for all c~ in P*.  Now let ~ be in A(G).  
Then  there exists fl in P*  such that c¢ = fi~r and X ~ w X  2~ w, where 

~r = X - ~  E and w is in 27*. By (a), f(fi) is in D. Hence f (c  0 = f(fi)  e is in 
De. Thus  f (A (G) )  C_ De. 

Let  x be in A*. I t  can be proved by induction on the length of x that  if 
x ~-~ e, then for each Z in {X, Y}, there exists ~ in P*  such that  f(c~) -~ x, 
Z ~ wZ for some w in Z*.  The  details are left for the reader. 

Thus ,  for each x in D, there exists ~ in P*  such that _32 ~ w X  ~ w, 
w in Z*,  w = X- -~  ~, and f(c~) ~ x. Thus,  xg is in f (A(G)) ,  from which 
De 2f(A(a)). 

By the previous lemma, for each context-free language L _CC 27*, there exists 
a regular set R _C A * such that L ~ h(D c3 R). Let  C --  f - l (Re) .  Then  

L = h ( D n R )  = h ( D g n R g )  

-~ h ( f ( A ( a ) )  n Re) = h f (A(a)  n f-~(Rg)) 

= I ¢ ( A ( a )  n c) .  

Since X ~ hf(~) for each ~ in A(G),  we have 

L -~ hf (A(G) n C) = L c ( a  ). 

Since Lc(G ) is context-free for every regular control set C (Ginsburg and 
Spanier,  1968), we have the following result. 

COROLLARY. There exists a context free grammar G such that {Lc(G ) 1 C 
is regular} is identical to the class of context-free languages over Z*.  
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