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Abstract Previous results from genome wide association studies (GWASs) in chickens divergently

selected for abdominal fat content of Northeast Agricultural University (NEAUHLF) showed that

many single nucleotide polymorphism (SNP) variants were associated with abdominal fat content.

Of them, six top significant SNPs at the genome level were located within SRD5A3, SGCZ, DLC1,

GBE1, GALNT9 and DNAJB6 genes. Here, expression levels of these six candidate genes were

investigated in abdominal fat and liver tissue between fat and lean broilers from the 14th generation

population of NEAUHLF. The results showed that expression levels of SRD5A3, SGCZ and

DNAJB6 in the abdominal fat and SRD5A3, DLC1, GALNT9, DNAJB6 and GBE1 in the liver

tissue differed significantly between the fat and lean birds, and were correlated with abdominal

fat traits. The findings will provide important references for further function investigation of the

six candidate genes involved in abdominal fat deposition in chickens.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Because of the strong association with a number of diseases,
including insulin resistance, type 2 diabetes mellitus,
atherosclerosis and ischemic heart disease, obesity produces

adverse health consequences in humans (Spiegelman and
Flier, 2001; Hotamisligil, 2006; Shoelson et al., 2006). A simi-
lar problem exists in chickens. Excessive accumulation of fat in

chicken abdomens does not only reduce carcass yield and feed
efficiency, but is also a less desirable product for consumers.
Therefore, mechanisms of obesity occurrence, genes regulating

fat deposition and the development of adipose tissue are issues
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identified either by traditional research methods or high-
throughput techniques (Wang et al., 2006; Gesta et al., 2007).

Notwithstanding increased knowledge of obesity, the genes

influencing fatness remain incompletely detected. As one of the
major tools, genome wide association studies (GWAS) have
resulted in a dramatic increase in the identification of suscep-

tibility variants associated with obesity in humans and domes-
tic animals (Scherag et al., 2010; Day and Loos, 2011; Hu
et al., 2013).

In recent years, many variants and genes associated with
obesity in chickens have been successfully identified using
GWAS. Abasht et al. revealed cryptic alleles as an important
factor in heterosis for fatness in a chicken F2 population

(Abasht and Lamont, 2007). Liu and Sun identified some can-
didate genes associated with abdominal fat traits in an F2

resource population derived from a cross between a Chinese

local breed and a commercial rapid-growing broiler line (Liu
et al., 2013; Sun et al., 2013).

Previously, many variants associated with abdominal fat

traits have been identified using GWAS in our laboratory
(unpublished data). Of them, six top significant single nucleo-
tide polymorphisms at the genome level were located within

SRD5A3 (Steroid 5a-reductase 3), SGCZ (Sarcoglycan, zeta),
DLC1 (Deleted in liver cancer 1), GBE1 (Glucan (1,4-alpha-),
branching enzyme 1), GALNT9 (N-acetylgalactosaminyltrans
ferase 9) and DNAJB6 (DNAJ homology subfamily B member

6), suggesting that these genes play important roles in fat depo-
sition in chickens. Here, we investigate whether these six genes
are differentially expressed in fat and liver tissues between fat

and lean broilers and the relationship between their expression
levels and abdominal fat content, which would help in our
understanding of the roles these genes play in chicken adipose

tissues.
2. Materials and methods

2.1. Experimental animals

The broilers used in this study were derived from the Northeast
Agricultural University (NEAU) broiler lines divergently
selected for abdominal fat content (NEAUHLF). The
NEAUHLF line has been selected since 1996 and the selection

procedure and raising conditions have been described in detail
previously (Wang et al., 2007; Guo et al., 2011). For each line,
a total of 10 male and 6 female birds from the 14th generation

population were used. Birds were slaughtered at 7 weeks of
age, the average abdominal fat weight (AFW) with standard
error and average abdominal fat percent (AFP) with standard
Table 1 Primer sequences used in this study.

Gene symbol Forward primer (50–3 0) Reverse primer

SRD5A3 TGGACTTGGCTATTACGTTGCTG CATCGCAAC

SGCZ GCTCTGCGTCTGTCCCAATG AGCTCCACA

DLC1 ATGAGAGTTCAACAGACAG TAAAAGCAT

GBE1 ATTTGTGGATGGTGGACT CATACCCTT

GALNT9 AGATTGGCTTGCTTGAC TGTAGGGTT

DNAJB6 AGCCTTTGCTGAGGAGT CTTGCTGCC

GAPDH AGAACATCATCCCAGCGT AGCCTTCAC
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error of the lean line were 12.53 ± 1.17 g and 0.59% ±
0.05%, respectively, however, for the fat line, they were
54.09 ± 1.93 g and 3.29% ± 0.13%. There were significant dif-

ferences in both AFW and AFP between the two lines. Samples
were collected from abdominal fat and liver tissues, then
weighed and immediately frozen in liquid nitrogen, and stored

at �80 �C until analysis.

2.2. RNA extraction and cDNA synthesis

Total abdominal and liver RNA was isolated using TRIZOL�
Reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. The extracted RNA was dissolved

in DEPC-treated water and the purity and integrity were esti-
mated by an ultraviolet/visible spectrophotometer (Pharmacia,
USA) at a 260/280 nm absorbance ratio (range 1.8–2.0 indi-
cates a pure RNA sample) and agarose gel electrophoresis.

Total RNA was reverse transcribed to cDNA in a reaction vol-
ume of 20 lL containing 1 lg total RNA, 0.5 lL of 50 pmol/L
Oligo d(T)18 Primers and finally supplemented with nuclease-

free water to a volume of 5 lL for the first step. This mixture
was heated at 70 �C for 5 min and incubated on ice-water for
5 min. Then 5· Reverse transcription Buffer 4 lL, MgCl2
(25 mM) 2.5 lL, dNTP Mixture 1 lL, RNase Inhibitor
(Promega Biotech Co. Ltd) 0.5 lL, Improm-II Reverse
Transcriptase (Promega, Madison, WI, USA) 1 lL and
nuclease-free dH2O were added to a final volume of 20 lL.
The RT mixture was incubated at 25 �C for 5 min, then
42 �C for 60 min and finally inactivated by heating at 70 �C
for 15 min. The cDNA was directly for use in quantitative

real-time PCR.

2.3. Quantitative analysis of mRNA expression

Special primers for amplifications of these genes were designed
spanning at least one intron to avoid genomic DNA contami-
nation using Primer Premier 5.0 software according to

Ensembl. All primers were synthesized by Invitrogen
Biotechnology (Shanghai) Co., Ltd. (Table 1).

SYBR Green real-time PCR amplifications were conducted
using an AB Applied Biosystems 7500 Real Time PCR System

(Life Technologies, USA). The stably expressed gene,
GAPDH, served as the endogenous reference for determina-
tion of targeted mRNA profiles (Bustin, 2002). Quantitative

PCR amplifications were performed in a final volume of
10 lL reaction mixture under the optimum reaction conditions
including 5 lL SYBR� Permix Ex Taq� II (TaKaRa, Japan),

0.2 lL ROX Reference Dye II (TaKaRa, Japan), 0.2 lL
(50–30) Production

size (bp)

Anneal temp

(�C)
GenBank

No.

GCCTATGATGTG 122 60 ID: 422750

AGCAGATGTTGCTA 92 60 ID: 422739

AATGGCAG 194 60 ID: 422740

TACCCTCAA 132 60 ID: 427964

TCTTTGTGC 153 60 ID: 416796

TTCTTTGTAT 211 60 ID: 420448

TACCCTCTTG 184 60 ID: 374193
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Figure 2 Comparison of expression level of six genes in liver

tissue between two lines.
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forward primer, 0.2 lL reverse primer (10 lmol/L) of target
gene or housing genes, 3.4 lL water and 1 lL template
cDNA. Amplification conditions were performed starting with

30 s template denaturation step at 94 �C, followed by 40 PCR
cycles of 5 s at 95 �C, 34 s at 60 �C, where the fluorescence was
acquired. Finally, a dissociation curve to test PCR specificity

was generated by one cycle for 15 s at 95 �C, followed by
60 �C for 1 min and increased to 95 �C with acquired
fluorescence.

All samples were amplified in triplicate as technical repli-
cates and specific amplification was confirmed by single peak
observation on dissociation curves. The means of Ct values
were obtained for further calculations.

2.4. Statistical analysis

The expression levels of the six genes were measured using

real-time PCR. The 2�DCt (DCt = Ct of the target gene – Ct
of the housekeeping gene) method was used to analyze the
relative quantitative data. Values were expressed as

mean ± standard error of the mean. Data of expression were
subjected to square root and arcsine transformation to
normality distribution.

Model-based tests were carried out to evaluate the different
gene expression levels on abdominal fat and liver between the
two lines using Y= l + Line + Sex + Line · Sex + e, by
the GLM procedure of JMP4.0 (SAS, Chicago, IL, USA),

which fitted with Line and Sex as fixed effects, Line · Sex as
interaction of Line and Sex, where Y is the dependent variable
for different gene expression levels of birds, l is the overall

population mean, and e is the residual random error. The
Pearson coefficient of correlation between expression levels
and abdominal fat traits was estimated. P < 0.05 was taken

to indicate significant differences or significant correlation.

3. Results

3.1. The expression of six genes in abdominal fat tissues

As shown in Fig. 1, all six genes were expressed in abdominal
fat tissues. SRD5A3 and SGCZ were differentially expressed
between the fat and lean birds (P < 0.01), and the expression
Figure 1 Comparison of expression level of six genes in

abdominal fat tissue between two lines.
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levels were higher in fat birds. In contrast, DNAJB6 expression
level in fat birds was significantly lower than that of lean birds
(P< 0.05). For the other three genes, DLC1, GBE1 and

GALNT9, no significant differences in the expression levels
were observed in abdominal fat tissues between the two lines.

3.2. The expression of six genes in liver tissues

As shown in Fig. 2, all six genes were expressed in liver tissues
of fat and lean birds. SRD5A3 expression levels in lean birds
were significantly higher than that of fat birds (P < 0.05).

Both DLC1 and DNAJB6 expression levels in lean birds were
significantly higher than that of fat birds (P < 0.01). In con-
trast, GBE1 expression levels in lean birds were significantly

(P< 0.05) lower than that of fat birds, and GALNT9 expres-
sion levels in lean birds were significantly (P < 0.01) lower
than that of fat birds.

3.3. The correlation analyses between these six gene expression

levels and AFW and AFP

The results of a correlation analysis between these six gene
expression levels and AFW are given in Table 2. SRD5A3
and SGCZ expression levels in abdominal fat tissues were sig-
nificantly positively correlated with AFW and AFP (P < 0.05

or P < 0.01). DNAJB6 expression levels in abdominal fat tis-
sues were significantly negatively correlated with AFW and
AFP (P < 0.01). SRD5A3, DLC1 and DNAJB6 expression

levels in liver tissues were negatively and significantly corre-
lated with AFW and AFP (P < 0.01). GBE1 and GALNT9
expression levels in liver tissue were significantly positively cor-

related with AFW and AFP (P < 0.05 or P < 0.01).

4. Discussion

Adipose and hepatic tissues play important roles in the growth
and development of animals. The former not only maintains
energy balance, but also functions as a crucial endocrine organ;

the latter, especially in avian species, is a major site for lipid
metabolism. Here, for the first time, SRD5A3, SGCZ, DLC1,
GBE1, GALNT9 and DNAJB6 genes were investigated at the
transcriptional level in abdominal fat and liver tissues of
d correlation with fatness traits in a unique broiler population. Saudi Journal of

http://dx.doi.org/10.1016/j.sjbs.2015.04.014


Table 2 Correlation coefficients between mRNA expression levels of six genes in abdominal fat and liver tissues and abdominal fat

traits.

SRD5A3 SGCZ DLC1 GBE1 GALNT9 DNAJB6

AF Liver AF Liver AF Liver AF Liver AF Liver AF Liver

AFW 0.35* �0.53** 0.47** �0.21 0.13 �0.47** 0.04 0.35* �0.10 0.47** �0.47** �0.54**
AFP 0.39* �0.49** 0.55** �0.18 0.24 �0.45** 0.14 0.38* �0.04 0.48** �0.46** �0.51**

* Indicates P< 0.05.
** Indicates P< 0.01.
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chicken. Significant differences in expression levels of these
genes between fat and lean birds were observed for both tissues,

coupled with a significant correlation of their expression levels
with AFW and AFP, which suggested that these genes could be
associated with abdominal fat deposition in chickens.

SRD5A3 was expressed in abdominal fat and liver tissues of
chickens, and SRD5A3 expression levels in abdominal fat tis-
sues were significantly positively correlated with AFW and

AFP. It has been reported that SRD5A3 plays a crucial role
in N-linked protein glycosylation, which was a process that
involves many steps including the assembly of a lipid carrier
for the oligosaccharide, the flip-flopping of this lipid between

leaflets of the endoplasmic reticulum membrane, and multiple
cycles of phosphorylation and dephosphorylation of lipids in
yeast and mammals (Stiles and Russell, 2010; Cantagrel

et al., 2010). In addition, SRD5A3 participates in the process
of steroid hormone biosynthesis, and fatty acids had been
identified as the substrates of this steroid 5a-reductase family

member (Moon and Horton, 2003). Based on the above evi-
dence, it is speculated that SRD5A3 might be essential for
fat deposition.

DNAJB6 was expressed in both adipose and liver tissues,

and the expression levels in both tissues differed between the
two lines, and were negatively correlated with AFW and
AFP. DNAJB6, named MRJ [Mammalian relative of DnaJ

(HSP40)], is a member of the HSP40 family, subfamily B, own-
ing two spliced variants, MRJ (S) (smaller isoform) and MRJ
(L) (long isoform). It was found that MRJ (L) up-regulates

expression of DKK1 (Mitra et al., 2010), a Wnt inhibitor,
which regulates aspects of placental lipid deposition through
the Wnt signaling pathway (Strakovsky and Pan, 2012).

Sustained activation of the Wnt signaling pathway prevents
adipogenic differentiation (Nakamura et al., 2013).
Accordingly, we infer that DNAJB6 is critical for regulating
abdominal fat accumulation, potentially by impacting the

transcription of DKK1 involved in lipid metabolism.
SGCZ was differentially expressed between the fat and lean

birds, and the expression levels in abdominal fat tissues were

significantly correlated with AFW and AFP. SGCZ, a well-
known gene whose protein product belongs to the sarcoglycan
protein family, had been identified as a basilic factor in the

pathogenesis of muscular dystrophy and is expressed mainly
in vascular smooth muscle (Hack et al., 2000; Wheeler et al.,
2002; Aurino et al., 2008). Vascular smooth muscle cells are

the essential factor of activity and configuration of blood ves-
sels that could be changed in cardiovascular diseases (Cannon,
2013), and obesity could induce a series of cardiovascular dis-
eases (Lppoliti et al., 2013). Additionally, the report suggested

that muscle could be seen as an important mediator for fat
Please cite this article in press as: Jin, P. et al., Differential expression of six genes an
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deposition (Brockmann et al., 2009). Therefore, we could
deduce that SGCZ participates in the process of fat deposition.

Our results also showed that DLC1 was expressed in the
adipose and liver tissues, which was in line with the results
from human studies and proved by Durkin et al. (2002). The

expression level of DLC1 in the liver was significantly different
(P < 0.01) between the two lines. Coincidentally, it was nega-
tively and significantly correlated with AFW. As a potential

tumor suppressor gene in the liver (Xue et al., 2008), suppres-
sive function of DLC1 relies on DLC1’s RhoGAP activity acti-
vated by lipid interaction and the START domain (Erlmann
et al., 2009), which is typically found in lipid transfer proteins

and forms a hydrophobic pocket to accommodate a single
lipid molecule (Alpy and Tomasetto, 2005). When liver cancer
occurs, normal lipid metabolism may be significantly influ-

enced (Jiang et al., 2007). Therefore, it could be concluded that
DLC1 indirectly influences fat metabolism in vivo.

GBE1 and GALNT9 genes were expressed in both abdom-

inal fat and liver tissues, and the mRNA expression levels in
the liver were positively significantly correlated with AFW
and AFP. It was reported that a mutation on GBE1 was found
causing glycogen storage disease type IV, an autosomal reces-

sive disorder of the glycogen synthesis (Andersen, 1956).
GALNT9 participates in the process of biosynthesis of O poly-
ose and has been identified as being responsible for mitochon-

drial myopathy and glycobiology (Casas et al., 2004; Van der
Zwaag et al., 2009). It is well known that in the liver, glycogen
is converted to fat, and delivered to other tissues to be used or

stored in the form of lipoprotein. Thus, these two genes could
influence the synthesis of fat acid through the regulation of
glycometabolism.

To sum up, our findings will provide important references
for further function investigation of the six candidate genes
involved in abdominal fat deposition in chickens.
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