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0. Introduction

In the past decade, a lot of results have been obtained on generalizations of
Dedekind domains to the noncommutative case, e.g. Asano orders, Dedekind prime
rings and hereditary Noetherian prime rings. Now, if one wants to produce a
noncommutative analogue of a Krull domain, a very rich gamma of possible
definitions is available. A commutative Krull domain may be characterized in two
different ways: on the one hand a Krull domain is a completely integrally closed ring
which satisfies the ascending chain condition on divisorial ideals; on the other hand,
a Krull domain is & ring which is equal to the intersecticn of the localizations at its
height one prime ideals, and each such localization is a discrete valuation ring. This
duality may be exploited in the noncommutative case too. For instance, Chamarie
defines a Krull ring to be a maximal order (the noncommutative analogue of a
completely integrally ciosed ring) satisfying the ascending chain condition on certain
left and right ideals (cf. [2],[3]). If the ring is written as an intersection of
localizations, one may consider independent local conditions on the localized rings
but also on the type of localization. Marubayashi defines a Krull ring (cf. [13],[15})
as an intersection of local, Noetherian, Asano orders and a simple, Noetherian ring,
which are left and right localizations of the ring with respect to an idempoten: kernel
functor satisfying property (T) (cf. [5] and [21] for details on localization). On the
other hand, an £2-Krull ring is defined as an intersection of quasi-local Q-rings (see
Section 1 for the definition) which are symmetric localizations of the ring (i.c. the
associated filter has a basis of ideals, cf. [21]). The difference between a
Marubayashi-Krull ring and an 2-Krull ring is that we only assume conditions on
twosided ideals: the first problem of this kind is to find a symmetric analogue of
the Goldie theorems, i.e. to give necessary and sufficient condiiions such that a ring
R may be embedded in a symmetric localization Qj,,(R) which is a simple ring.
However, to find an intrinsic characterization in terms of elements or ideals of R,
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turns out to be rather difficult. In order to bypass this problem, we will limit
ourselves to prime rings satisfying Formanek’s condition, i.e. every nonzero ideal
intersects the center nontrivially. Therefore Q-Krull rings are closely related to the
center. It is clear from the imposed condition that P.1.-Q-Krull rings will constitute
the class of Q-Krull rings for the greater part. In this case, all definitions of
noncommutative Krull rings coincide and a Krull P.I.-ring is just a maximal order
over a Krull domain.

This note surveys some recent results. In Section 2, we establish an intrinsic
characterization of central 2-Krull rings. It is worth to note that the proof of this
theorem uses arithmetical pseudovaluations, from the theory of primes, as
developed by J. Van Geel (cf. [20]). Localization of Q-Krull rings is being treated
in Section 3 and symmetric maximal orders equivalent to a geometrical 2-Krull ring
are being studied in Section 4. Also the class group is introduced (there are several
possible definitions!). We wil! limit ourselves to the central class group (cf. Section
5). To construct a wide class of examples, it was necessary to develop the notion
of a Gr-Q-Krull ring, i.e. the graded analogue of an Q-Krull ring (cf. Section 6).
This made it possible to handle generalized Rees rings. This class of rings includes
(twisted)(semi) group rings (cf. Section 7). Finally, it is also possible to show when
a skew polynomial ring is an Q-Krull ring (cf. Section 8).

For the curiosity of the reader, we mention that the prefix ‘@’ has first been used
by E. Nauwelaerts and F. Van Oystaeyen in [18] where the notion of an Q-ring is
studied. An Q-ring is a noncommutative version of a Dedekind domain; in fact, the
set of maximal ideals of a ring R is sometimes denoted by (R). Now it is clear from
the definition of an 2-Krull ring why ‘@’ is used.

1. Definitions, examples and properties

All rings will be associative and have a unit element. Ideal always means a two-
sided ideal. Let R be a prime ring satisfying Formanek’s condition, i.e. every

nonzero ideal of R intersects C, the center of R, nontrivially. In this case, the
overring

QumR)=0={c"'r=rc"!|0#ceC,reR}

is a simple ring. Moreover, Qym(R)=Qg\o(R) = Qk\o(R), where Qkyo(R) denotes
the localization of the left R-module R with respect to the symmetric filter

HR\O)={I ] I 2 left ideal of R containing a nonzero twosided ideal}.

Definiiion. A prime ring R satisfying Formanek’s condition is said to be an Q-Krull
ring (cf. {6)) if

(1) There exist multiplicatively closed filters of ideals, 5,’2(0,-) (i€ A) such that
R;=Q;(R)={g€ Qyn(R)| Te ¥*(;) IqCR}
=0 (R)={q€ Qyu(R) | Tl ¥*(a)) gICR}.
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(2) Each ring R, is a quasi-local £2-ring, i.e. every nonzero ideal of R, is a power
of the unique maximal ideal P; of R,.

3) R=[)., R

(4) For every ie A and for all I'= ¥ 2(6,), RiI=1IR;=R,.

(5) For all reR there are only finite'v many i€ A such that RrR=(r) & = o))

The next proposition provides some elementary properties of €2-Krull rings.

Proposition 1.1 (cf. [6], [24]). If R is an Q-Krull ring, then

(1) VieA a;is an idempotent kernel functor (in the sense of Goldman, cf. [5]).

Q) P;=P/NReX UR) (X' (R) stands for the set of height one prime ideals
of R).

() VieA ¥%(0))=¢*(R\P;)={I|I an ideal of R such that I¢ P;}.

@) R=\,cxim Qr\p(R) (and Op\p(R)={g€ Qym(R) |IgCR and qICR for
some ideal I of R, IZ P;}).

Note that the abstract theory of localization of noncommutative rings is not
needed in the definition of an ©-Krull ring, but nevertheless, the overrings R; turn
out to be localizations of R by Proposition 1.1.

We will often deal with some special types of Q-Krull rings. A ring R is said to
be a geometrical Q-Krull ring if it is an Q-Krull ring such that for all ieA o, is a
geometric kernel functor, i.e. for every ideal 7 of R and for all ieA R, and IR,
are ideals of R; (and hence R;/=IR;). An Q-Krull ring R is a central Q-Krull ring
if for all ieA Ie ¥*(q;) iff RUN C)e ¥%(0;). In this case

Q5,(R) = Qp\p(R) = Qc\ p(R)={c"'r|0#ce C\ pre R}
and p;=P;NC. Moreover

R= [ Qc\pR).
pieX'(C)
Clearly, a central 2-Krull ring is also a geometrical £22-Krull ring.

We define a left (resp. right) fractional R-ideal I to be a nonzero left (resp. right)
R-submodule of Qyn,(R) such that ¢c/CR for some O#ce C. A fractional ideal is
a left and right fractional ideal. If R is an €-Krull ring, then it is easy to see that
the set of fractional R;-ideals forms an infinite cycli: group with generator P,

Note that if R is commutative, this notion of an Q-Krull ring reduces to a com-
mutative Krull domain. More generally, if R is an €-Krull ring, define for all
ieA v;:K*>Z:a~n where P;"=R;a (K is the field of fractions of C). It is
straightforward to check that each v; is a discrete valuation and that C is the in-
tersection of the associated valuation rings. So we have proved

Proposition 1.2. The center of an Q-Krull ring is a Krull domain.

Elementary examples of ©-Krull rings are complete matrix rings M,(R) or
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Azumaya algebras over a Krull domain. Polynomial rings over any simple ring
which i§ not a Goldie ring yield examples of £-Krull rings which are neither
Marubayashi-Krull rings nor Chamarie-Krull rings.

A prime Formanek ring R is said to be a symmetric maximal order if there does
not exist an overring § such that RGCSCQsym(R) and ¢SCR for some 0#ceC.
This is equivalent to saying that for every ideal 7 of R (I:;I)=(I:,I)=R. If A and
B are subsets of Qgp,(R), then

(A:B)={qeQ|gBCA} and (A: B)={qeQ|BgCA}.

It is straightforward to check that if R is a geometrical Q-Krull ring, then R is a sym-
metric maximal order (cf. [8]).

Let R be an £2-Krull ring and I a fractional R-ideal. Consider the twosided
R-module I'=(), R;IR;. Clearly, I is a fractional R-ideal and ICT. If I=1I, I is said
to be a divisorial R-ideal. Moreover, if R is also a symmetric maximal order (e.g.
if R is a central Q-Krull ring), then I is divisorial if and only if I=I* where
I*=(R:(R:I)). The set of divisorial ideals of R, denoted by D(R), is a semigroup
under * where A * B=(4B) and 4, Be D(R). In case R is an Q-Krull ring, we have

Theorem 1.3 (cf. [7]). D(R) is a free abelian group generated by X'(R).

Theorem 1.4. Let R be a prime P.I.-ring. Then the following are equivalent:
(1) R is an Q-Krull ring.
(2) R is a Marubayashi-Krull ring.
(3) R is a Chamarie-Krull ring.
(4) R is a (symmetric) maximal order and Z(R) is a Krull domain.

Note also that if R is a P.I.-Q2-Krull ring, then R is a central Q-Krull ring (cf.
131, [9D).

2. A characterization of central 2-Krull rings

It is wel: known that a commutative ring R is a Krull domain if and only if R is
completely integrally closed and R satisfies the ascending chain condition on
divisorial ideals contained in R. In the noncommutative case, we have the following
generalization

Theorem 2.1 (cf. [8]). A ring R is a central Q-Krull ring if and only if
(1) R is a symmetric maximal order;
(2) R satisfies the ascending chain condition or: divisorial ideals in R;

(3) For each Pe X'(R) and for any ideal I of R we have ICP if and only if
aNnc)ycPnao).
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Proof. If R is a central -Krull ring, it is quite obvious that the abcve mentioned
conditions are satisfied. We will sketch the proof of the converse. Since R is a sym-
metric maximal order, the set of divisorial ideals D(R) = {I|1 a fractional R-ideal
such that I*=(R:(R:I))=1} is a commutative group. Moreover, D(R) is a free
abelian group with basis X '(R), because R satisfies the ascending chain condition
on divisorial ideals contained in R (cf. [16]). Therefore, if e D(R), we may write
I=P{"%---x PP in a unique way and P;e X'(R), n;e Z (1<i<k). Define for all i

V;:D(R)—Z: P %+ x Pt = n;.

Then v; is an arithmetical pseudovaluation in the sense that

)] VI, Je D(R) v;(I+J)=vi(I)+v;(J),

) VI, JeDR) v,(d+Jy*)=min{v,(I),v;(J)},
3) VI, JeD(R) if /CJ, then v;([)=v,(J),

o) v;(R) =0.

Denote by R;={xe stm(R)Iv,-((RxR)*)ZO}. Then R;={x€ Qyn(R)|xICR and
IxCR for some ideal I of R not contained in P;}. By condition (3) it follows that
R, is a quasi-local Q-ring with unique maximal ideal P;= {x| V((RxR)*)>0}.
Finally, it is clear that R= ﬂ,. R;, which establiciaes the theorem.

It will become apparent from the following sections that this characterization
theorem is very useful. In nearly all cases where one wants to show that some ring
is a central Q-Krull ring, we will check the conditions of the preceding theorem.

3. Localization of Q-Krull rings

In this section we will restrict to geometrical 2-Krull rings. Nevertheless, in socme
cases, more general results hold. For full detail, we refer to [8]. So, let R be a
geometrical Q-Krull ring and write R={,_, R;. If A, is a subset of A, the ring
S=. 4, Ri 1s said to be a subintersection of R. We may state

Proposition 3.1 (cf. [8]). If R= ﬂie AR is a geometrical (resp. central) Q-Krull
ring and Ay is a subset of A, then the subintersection S = ﬂ R, is a geometrical
(resp. central) Q-Krull ring.

fedy

Proposition 3.2 (cf. [8]). Let R be a geometrical Q-Krul! ring and & *(x) a muitipli-
catively closed filter of ideals. Then the ring

Q,(R)={g € Qyy(R) | IgCR for some I € ¢ *(x)}

is a subintersection of R and herice a geometrical Q2-Krull ring.



68 E. Jespers, P. Wauters
4. Symmetric maximal orders equivalent to a geometrical £2-Krull ring

If R is a bounded Marubayashi-Krull ring, then any maximal order equivalent to
R is again a bounded Marubayashi-Krull ring (cf. {14]). This result was generalized
by Chamarie who proved that a maximal order equivalent to a Chamarie~Krull ring
is again a Chamarie-Krull ring (cf. [2]). In case R is an -Krull ring, this does not
hold anymore. The reason for this is that a quasi-local Q-ring need not be
hereditary, while a local Noetherian Asano order is a left and a right hereditary ring.

Let R be a prime, Formanek ring. A ring SC Qyn(R) = Q is said to be equivalent
to R if there exist 0#c, de Z(Q) such that cRC Sand dSCR. lissaid tobeanR—-§
ideal if I is a left R-ideal and a right S-ideal.

Theorem 4.1 (cf. [8]). Let R be a geometrical Q-Krull ring with property (P), this
means that for every symmetric maximal order S(P) equivalent to Qg\p(R) all
Or\p(R)—S(P) ideals are projective left Qg\ p(R)-modules and projective right
S(P)-modules, then every symmetric maximal order equivalent to R is a geometrical
Q-Krull ring. Conversely, if the symmetric maximal orders equivalent to all

mleamo emn enetue omzasadana srrene flinse Aviames ooz afara

.11
&CUI"C!I(L“I él"l\lu" nngy e uguin geourncinic éﬂ"l\lull rrngo, l"Cll every geornciric

Q-Krull ring satisfies property (P).

5. Class groups of 2-Krull rings

In commutative algebra and number theory, the class group of a Krull domain
plays an important role. Roughly speaking, it measures the lack of unique factoriza-
tion in the ring. In the noncommutative case, several possibilities arise to define the
class group. We will introduce the normalizing class group and the central class
group. Let R be an Q-Krull ring. Define

P"(R)={Rn=nR|neQyn(R)} and P°(R)={Rc|ceZ(Q)}.

Then CI"(R)=D(R)/P"(R) is said to be the normalizing class group of R and
CI‘(R) = D(R)/P¢(R) is the central class group of R. Some results on the normaliz-
ing class group may be found in [11] and [12]. In the sequel, we will restrict to the
central class group and we will simply speak about the class group and write CI(R).
Since 2-Krull rings as wel! as the class group are strongly related to the center, it
is not surprising that the class group of the center is contained in the class group
of the ring. However, if R is an ©-Krull ring, CI(C) need not to be equal to CI(R)
as proves the following example: consider C[X, ] where C is the field of com-
plex numbers and ~ denotes the complex conjugation. It is easy to verify that
CI(C[X, 1)=Z/2Z and CI(Z(C[X, 1)) =0 since Z(C[X, ]) = R[.X?].

Let RCS be rings. § is said to be a (ring) extension of R if S=R- Zg(R) where

Zs(R)={seS l VreR:sr=rs}. Then we have the following generalization of
Nagata’s theorem.
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Theorem 5.1 (cf. [9]). Suppose that R is a central Q-Krull ring and let B be a sub-
intersection of R such that B is an extension of R, say R=(",_,R;and B=|),, W R
(AgC A). Then y:CUR)—CUB): [I1-[(BI)*] is a surjective homomorphism and
ker y is generated by the classes of prime ideals P;€ X'(R) such that i€ A\ A,.

In particular, we have

Corollary 5.2 (cf. [9]). Let R be a central Q-Krull ring and & a kernel functor satisfy-
ing property (T) and suppose that Q,(R) is a ringextension of R. Put y:Cl(R)—
CI(Q,(R)). Then Xer y is generated by the classes of those prime ideals Pe X'(R)
such that Pe ¥*(0).

6. Graded Q-Krull rings

In the following sections, a wide class of ©2-Krull rings will be constructed. All
these rings are graded rings. Therefore it will be necessary to introduce a general
technique to handle graded rings. It turns out that a graded ring R is an £-Krull
ring if R satisfies certain ‘graded Krull properties’, some overring Q®*(R) is an
©-Krull ring and a third technical condition needs to be satisfied. This has motivated
us to introduce the notion of a Gr-Q2-Krull ring. To be more precise, let R be a
graded ring, graded by an abelian monoid S. R is said to be gr-prime, if xRy =0
implies x=0 or y=C for x, y € A(R) (h(R) is the set of homogeneous elements of R);
R is gr-Formanek if every gr-ideal contains a nonzero (homogeneous) central
element. Then the overring

Qf=Q%(R)=Q&n(R)={c'r=rc”'|0#ceh(C),recR}

is a gr-simple ring. R is said to be a Gr-Q-Krull ring if R can be written as an in-
tersection of rings R;, such that there exist multiplicatively closed filters » 3(x)
with e %(x;) iff RUNAR)) € #2(ic;), R;= O,.(R), and each graded ideal of R, is
a power of the unique maximal gr-ideal of R;. Also the graded analogues of the
other conditions of an £2-Krull ring need to hold. Similarly as in the ungraded case,
one may define geometrical and central Gr-Q-Krull rings. The interesting point is the
relationship between an Q-Krull ring and a Gr-Q-Krull ring. The following resuit
is quite obvious.

Proposition 6.1 (cf. [24]). If R is a graded ring and a central Q-Krull ring, then R
is a central Gr-Q-Krull ring.

The converse of this result does not hold, for if R is a commutative Krull domain
and G an arbitrary abelian group, then R[G] is a Gr-Q-Krull ring but R[G] need
not be a Krull domain (cf. [1]). Moreover, R[G] is not prime in general. Therefore,
we impose that the grading semigroup S is cancellative and torsion free abelian (this
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means that the quotient group of S is torsion free abelian). Then we may state

Theorem 6.2 (cf. [25]). A graded ring R is a central Q-Krull ring if and only if

(1) R is a central Gr-Q-Krull ring.

2) Q&n(R) is a central Q-Krull ring.

(3) For each Pe X'(R) Z(R/P) has the intersection property with respect to
C/PNC (i.e. that any nonzero ideal of Z(R/P) has a nontrivial intersection with
C/PNC).

The investigation whether a graded ring is a central Q-Krull ring is therefore split
up in three parts. First, one has to examine whether the graded ring is a Gr-©-Krull
ring. Usually, this follows from the appropriate conditions on the part of degree one
of the ring and on the grading semigroup (cf. Section 7). In general, Q& (R) is a
well-known ring, e.g. a group ring over a simple ring. In the P.I.-case, Q%,,(R) is
always an Azumaya algebra over its center, which is a graded field (cf. {23]). Finally,
the third condition is merely a technical one to make the loralizations central.
Moreover, it follows from a result of W. Schelter (cf. [19]) that this condition is
always satisfied if R is a P.1.-ring.

As in the commutative case, we may define the graded class group of a graded
Q-Krull ring R. If Dy(R) is the free abelian group of graded divisorial ideals and
Pg(R) = {Rc| ce h(Z(Q%))}, then ClL,(R)=D,(R)/P,(R). We have the following
useful result:

Theorem 6.3 (cf. [9]). If R is a graded ring and a central Q-Krull ring, then the
sequence 1—Cl(R)~Cl(R)—~»Cl(Q®)—1 is exact.

In particular, if R is a P.I.-ring, CI(Q*®)= 1 whence Cl;(R) = CI(R).

7. Generalized Rees rings

If R is a commutative ring and 7 is an ideal of R, a Rees ring is defined to be the
subring R+ IX+ X%+ .-+ I" X" + .- of the polynomial ring R[X] and is used in
the proof of the Artin-Rees Lemma. Afterwards, this construction has been
generalized in several steps, mainly by F. Van Oystaeyen (cf. [22],[17],[12]). The
construction we will give here contains the class of (twisted) semigroup rings.

Let . be a prime Formanek ring, and suppose that R is a symmetric maximal
order, in particular R has a group of divisorial ideals D(R). Let S be a torsion free
abelian cancellative monoid aad f:S—D(R) a monoid homomorphism (so
J()=R). If y: SX S— %(Z(R)) is a two-cocycle, we define the generalized Rees ring
R =R(f,,S) associated to S and y to be the subring of O,,,(R)'[S] given by

R(fy.8)= 6—2 1,5 where I,=f(s).
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Tke identity element of R is 1=y(1,1)"'1 ard without loss of generality we will
assume that 1=1. Note that if I,=R for all se€ S, R(f, 7, S) is a twisted semigroup
ring R'[S].

We will use Theorem 6.2 to check when a generalized Rees ring is a central
Q-Krull ring. First, ngym(R)=Q‘[G] where Q=0 (R), G=(§) is the quotient
group of S and y: G x G — #%(Z(R)) extends the given map y from Sx S to #(Z(R)).
Denote by

Si={seS|VteS:y(s,t)=y(t5)}

and by Gy the quotient group of S;. We have to assume that G/G; is finite in order
to treat Q... (R). Now, it turns out that R(f, ¥, S) is a Gr-Q-Krull ring exactly when
R is an Q-Krull ring and S satisfies the same ‘Krull properties’, i.e. S is a Krull
semigroup. The notion of a Krull semigroup has been introduced by Chouinard
in [4].

Theorem 7.1 (cf. [25]). Let R be an S-graded ring, S a torsion free abelian
cancellative monoid. If

(1) R is a central Q-Krull ring,

(2) S is a Krull semigroup,

(3) Z(R/P) is algebraic over C/PNC for all Pe X'(R),

(4) G/Ggy is a finite group,

(5) G satisfies the ACC on cyclic subgroups,
then the generalized Rees ring R(f,y, S) is a central Q-Krull ring.

Corollary 7.2 (cf. [25]). Suppose that S is a torsion free abelian cancellative monoid
and G={S) is such that G/G; is finite. If R is a central Q-Krull ring, S is a Krull
semigroup, G satisfies the ACC or cyclic subgroups and Z(R/P) is algebraic over
C/PNC for ull Pe X'(R), then R'[S] is a central Q-Krull ring. If the two-cocycle
is trivial, ther the converse also ho..ls.

Note thui a (torsion free) abelian group is always a Kru!l semigroup.

Proposition 7.3 (cf. [25]). Under the conditions of Theorem 7.1 we have the follow-
ing exact sequence

1= CIR)/(S(#(Sp) * P(R)/P(R))—~CI(R)~ CUQ"'[SD~1

where %(S-) denotes the group of units of S;.

8. Skew polynomiai rings

One of the main results of [10] gives sufficient conditions for a skew semigroup
ring to be an Q-Krull ring. These conditions are also necessary in a lot of cases. Un-
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fortunately, this is a very technical matter. So, for the sake of simplicity, we will
restrict to skew polynomial rings. Let R be an arbitrary ring and ¢ a ringautomor-
phism of R. It is clear that if R[X, ¢] is an 2-Krull ring, this will 1mply conditions
on g-stable ideals 7 of R (i.e. a(I)CI). This leads us to the notion of a ¢-Q2-Krulil

ring, i.e. the conditions will depend on the autamorp hism o. Ronghi‘y‘ speaking, the

o e 30t miala ) e bl masrremeaedd e dland Avramer semermans o abnlall 3 dAnl
Formanek condition is p1acea oy uic aaaumpuux tnat Cvery NonZiro o-stavit 1acai
........ o smrravriant alamant o cnirh that fAar cnma NN and far all »~ D
bUlllallla a4 U~IIVAQILAKL CICLIIVIIL @ JUVIL LHAL IUL DVIIV (1~ U Allu  1UL QL 7 TN
ra=ac"(r) (we denote this set by #(R)?). Then R has an overring Qg,(R) which
is a g-simple ring, i.e. all g-stable ideals are trivial. Under these hypotheses, R is

said to be a normalizing o--Krull ring if R can be written as an intersection of rings
R;, such that there exist multiplicatively closed filters of ideals ,Sﬂz(lc,-) such that
Ie £%(x;) iff RUNA(R)’) € #*(x;), Ri=Qy(R) and each o-stable ideal of R; is a
power of the unique maximal g-stable ideal P/ of R;. Also some other technical
conditions need to be satisfied (cf. [10]). Then we have

Theorem 8.1 (cf. [10]). The following conditions imply that R[X,a] is a central
£-Kruii ring.

FIN I Pe o s B D] Lt
(1) IN S U normanging o-ss~-nrui ring.
N D ic o nrisno ring whinkh bhaco tho infoscontinm mennoméy vusth soonant tn 7 D\0
\«) I\ IS5 @ priifie ring wilicn nas ine iniersection property wiin respect (G L)
(D For evervy Pe YHURY IO\ (i o the a-analpoue of X YR thore evicte a n>0
\J’ i U ‘r"", -~ \-“0 \“’ A d lv‘ "l‘i‘ SN, W “’.“'vé"‘t VJ reS “"’ BRI & WANIET W T~ VU
such that Z(R[X, o))\ PLX, ] % 0.
(4) For all P,eX'(R) Z(R,/P)° is an algebraic field extension of
Z(R)°/Z(R)°NP;.

Moreover, if ail g-stable ideals I of R are a-invariant (i.e. I=a(l)), then the con-
verse is also true.

In particular, we have

Coroiiary 8.2 (cf. {i0]). Let R be a centrai Q-Kruii ring such that
FIN D Liveo hc foedmoecom o m o o .l . rmsIngd
(1) R nas ine intersection p. riy wiin respect io Z(R)".
O Enr all De YUDY thore ovicte nn elomient ne D\ D and 7 nonsern natiienl
\&J] TUI uit I T UV tnicic €ADL U cicinern TN \I unu u nunger wuturui
number n>0 such that aX"e Z(RIX o)
MBI W s »m VUV JVENIE SIFME Wi '—I\l\l‘l’ U]’
(3) For all Pe X\(R) O(Z R/P'\”\ is aleebraic over O(Z(RY /Z(RYP N P): then
=7 bl A pACSS 7 7 w2 gt VST WNSASYS S ENSR) T TE gy sieChe

r
RI[X, dl is a central Q-Krull rin

Corollary 8.3 (cf. [7]). A polynomial ring R[X] is a central Q-Krull ring if and only
if R is a ceniral Q-Krull ring and Z(R/P) is algebraic over C/PNC for all
PeX'(R).
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