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Let A be an n × n matrix with eigenvalues λ1, λ2, . . . , λn, and let

m be an integer satisfying rank(A) �m� n. If A is real, the best

possible lower bound for its spectral radius in terms of m, tr A and

tr A2 is obtained. If A is any complex matrix, two lower bounds for∑n
j=1 |λj|2 are compared, and furthermore a new lower bound for

the spectral radius is given only in terms of tr A, tr A2, ‖A‖, ‖A∗A −
AA∗‖, n andm.

Crown Copyright © 2009 Published by Elsevier Inc. All rights
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1. Introduction

It is an interesting problem to characterize distribution of eigenvalues of a matrix in a simple way.

Wolkowicz and Styan [10] extended the Samuelson inequality and thereby [11,12] initially proposed

many important bounds for the matrix spectrum using traces. More results [3–8] follow them. Here
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our interest focuses on finding lower bounds for the spectral radius from some special traces which

are simply available.

The following notations are used throughout the paper:
A an n × nmatrix
A∗ the conjugate transpose of A
λj(j = 1, 2, . . . , n) eigenvalues of A
ρ(A) the spectral radius of A

a = tr A, b = tr A2 respectively traces of A and A2

‖A‖ = √
tr(A∗A) the Euclidean (Frobenius) norm of A

m an integer satisfying rank(A) �m� n
�z the real part of a complex number z
z̄ the complex conjugate of a complex number z
[x], x ∈ R the largest integer not greater than x

A lower bound for the spectral radius following [12, Theorem 3.1, (3.2a)] is

ρ(A) �
|a|
n

+ 1√
n(n − 1)

max

⎧⎨⎩0, ‖A‖2 −
√
n3 − n

12
‖A∗A − AA∗‖ − |a|2

n

⎫⎬⎭
1/2

.

However, there exist counterexamples, e.g.

A =
(

3 1

−1 3

)
.

The inequality above is not true for the block diagonal matrix A ⊕ · · · ⊕ A either.

If A is a real matrix such that rank(A) � 3, Horne [3, Theorems 1 and 3] gives a lower bound for

ρ(A) as below

ρ(A) � LH(a, b,m)

=
⎧⎪⎪⎨⎪⎪⎩
|a|/m +

√
(m2 − m)−1(b − a2/m), if b� a2/m,

(a2 − b)(m − 1)−1|a|−1, if − (m − 3)a2(2m)−1 � b� a2/m,√
3(m + 3)a2(4m3 − 4m2)−1 − 3b(m2 − m)−1, if b < −(m − 3)a2(2m)−1.

Besides, Merikoski and Virtanen [7] use n, tr A, tr A2 to give the best possible lower bound for the

Perron root of the nonnegative matrix A.

Themain goal of this paper is to find new lower bounds for the spectral radiusρ(A)using efficiently
computable quantities like tr A, tr A2, ‖A‖ and ‖A∗A − AA∗‖. First, we give the best possible lower

bound for ρ(A) of real matrix A only using tr A, tr A2 and m. Then we compare two lower bounds for∑n
j=1 |λj|2, and show a new lower bound for the spectral radius of any complex matrix A involving

tr A, tr A2, ‖A‖, ‖A∗A − AA∗‖, n and m. The paper concludes by leaving some relative problems in

future.

2. The sharp lower bound for the spectral radius of a real matrix

Throughout this section suppose A to be a real matrix and rank(A) � 3. Then a, b ∈ R. For m� 3

we define a set

Sm(a, b) =
⎧⎨⎩ (zj) ∈ Cm : ∑

j

zj = a;∑
j

z2j = b;

∃k ∈ {0, 1, . . . , [m/2]}, z2j−1 = z2j , 1� j � k; zl ∈ R, 2k + 1� l �m

⎫⎬⎭.

Observe that Sm(a, b) is a closed set in Cm.
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For any closed set S in the coordinate space Cm, we define

L(S) = min
(zj)∈S

max
j

|zj|.
Here the minimum exists. A tuple (zj) ∈ S is called an optimal point of S if maxj |zj| = L(S).

Let p, q be positive integers such that p < q. Through the map

Sp(a, b)→Sq(a, b),

(zj)
p
j=1 
→(z1, z2, . . . , zp,

q−p︷ ︸︸ ︷
0, . . . , 0),

the set Sp(a, b) is embedded to a closed subset of Sq(a, b). Hence it follows that

Proposition 2.1. Let a, b ∈ R. If p, q ∈ Z and 3� p < q, then

L(Sp(a, b)) � L(Sq(a, b)).

On one hand, for any real matrix A such that rank(A) �m, tr A = a and tr A2 = b, the tuple (λj)
m
j=1

of its eigenvalues in a proper sort (possibly excluding some zero eigenvalues) belongs to Sm(a, b). Thus,
we get

Theorem 2.2. Let A be a real matrix of order n, and m an integer satisfying rank(A) �m� n. Then

ρ(A) � L(Sm(tr A, tr A2)).

On the other hand, for any real numbers a, b and an integer m� 3, there exists a real matrix

A such that 3� rank(A) �m, tr A = a, tr A2 = b and ρ(A) = L(Sm(a, b)). Given an optimal point of

Sm(a, b) as (x1 + iy1, x1 − iy1, . . . , xk + iyk , xk − iyk ,w2k+1, . . . ,wm) where xj , yj ∈ R, 1� j � k and

wl ∈ R, 2k + 1� l �m, one of such real matrices is constructed as

A =
(

x1 y1−y1 x1

)
⊕ · · · ⊕

(
xk yk−yk xk

)
⊕ (w2k+1) ⊕ · · · ⊕ (wm).

Hence, due to facts above we call L(Sm(tr A, tr A2)) to be the sharp lower bound for the spectral radius

of real matrix A in terms of m, tr A, tr A2.

The explicit expression of L(Sm(a, b)) is given below.

Theorem 2.3. Let a, b ∈ R and 3�m ∈ Z. Then

L(Sm(a, b)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D−1

(√
bD − (m − 1)a2 + |a|(m − 2k − 1)

)
, if b > a2/m;

m−1
√

2a2 − mb, if b� a2/m,m is even;
(m2 − 3m)−1

(√
2a2(m − 1)(m − 2) − bm(m − 1)(m − 3) − 2|a|

)
,

if − 2a2(m − 3)(m + 1)−2 � b� a2/m,m > 3,m is odd;√
(m − 1)−1(2a2(m + 1)−1 − b),

if b < −2a2(m − 3)(m + 1)−2,m > 3,m is odd;
(a2 − b)(2|a|)−1, if 0 < b� a2/3,m = 3;
2−1

√
a2 + 2|b|, if b� 0,m = 3;

where k =
[
1
2

(
m −

√
ma2/b

)]
and D = m − 1 + (m − 2k − 1)2.

We leave the proof of Theorem 2.3 to the appendix at the end, which itself is not closely related to

the theme here.
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Simple but tedious calculation shows that

Proposition 2.4. For any a, b ∈ R and 3�m ∈ Z,

L(Sm(a, b)) � LH(a, b,m).

Therefore, L(Sm(a, b)) is a better lower bound for ρ(A) than LH(a, b,m).

Example 2.5.

A =
⎛⎜⎜⎝

−0.187772 −0.362303 −0.706214 0.107561
−0.201396 −0.306535 −0.890974 0.055703
−0.037347 −0.884669 0.310718 −0.081558
0.093463 −0.334546 −0.296899 0.443462

⎞⎟⎟⎠ .

Herea = tr A = 0.25987, b = tr A2 = 2.2288, n = 4.The lowerboundby [3] isLH(a, b, n) = 0.49430,
the sharp lower bound is L(Sn(a, b)) = 0.80290, and the true value of ρ(A)is 1.0781.

Because of Proposition 2.1, precise estimation of the spectral radius is possible for singular real

matrices if the integerm approaches closer to the rank. Below is an example.

Example 2.6.

A =

⎛⎜⎜⎜⎜⎝
−2.95921 1.81492 −0.22063 4.22845 0.29100
4.04665 −2.89876 2.30456 4.05921 1.27605
2.36225 3.18211 −2.03943 −0.67160 4.10834

−3.25901 4.90758 −0.95127 2.33214 2.63481
−1.95169 5.68627 −1.51541 0.20106 3.83484

⎞⎟⎟⎟⎟⎠ .

Herea = tr A = −1.7304, b = tr A2 = 85.319, n = 5,m = 4.Usingn, a, bwegetLH(a, b, n) = 2.4042
and L(Sn(a, b)) = 4.5367; the lower bounds in terms of m, a, b are LH(a, b,m) = 3.0873 and

L(Sm(a, b)) = 4.9898. The true value of ρ(A) is 7.0627.

Remark. When A is nonnegative, the sharp lower bound in terms of n, a, b, i.e. L(Sn(a, b)), is exactly
the optimal lower bound given by [7, Theorem 10].

Example 2.7.

A =
⎛⎜⎜⎝
0 2 1 1

7 4 1 4

5 2 1 4

5 3 0 3

⎞⎟⎟⎠ .

Herea = tr A = 8, b = tr A2 = 102, n = 4. Theminimumcolumnsumis3and theminimumrowsum

is 4. The lower bound by [7, Corollary 5, 3, Theorem 1] is 4.6771. The sharp lower bound L(Sn(a, b)) =
5.6742, equals to the lower bound by [7, Theorem 10]. The spectral radius is ρ(A) = 9.8888.

In Example 2.7, the sharp lower bound is better than the minimum column (row) sum. However,

in some other examples, the minimum column (row) sum is a sharper lower bound for Perron root.

Example 2.8.

A =
⎛⎜⎜⎝
1 0 6 7

3 1 6 7

6 2 6 4

4 3 6 7

⎞⎟⎟⎠ .
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Here a = tr A = 15, b = tr A2 = 329, n = 4. The lower bound by [7, Corollary 5, 3, Theorem 1] is

8.5175. The sharp lowerbound is L(Sn(a, b)) = 10.079, the sameas the lowerboundby [7, Theorem10].

Theminimum column sum is 6 but theminimum row sum is 14. The spectral radius isρ(A) = 17.690.

Remark. In fact, Theorem 2.2 holds also for matrices whose nonreal eigenvalues occur in conjugate

pairs, and real matrices are the most natural family of such matrices.

3. Lower bounds for
∑n

j=1 |λj|2

It is also interesting to give lower bounds for
∑n

j=1 |λj|2, which is used further to locate eigenvalues

[11,12].

Considering rank(A) �m� n, without loss of generalitywe assumeλj = 0, j = m + 1, . . . , n. Since∣∣∣b − a2/m
∣∣∣ =

∣∣∣∣∣∣
m∑
j=1

(
λj − a/m

)2∣∣∣∣∣∣�
m∑
j=1

∣∣λj − a/m
∣∣2 =

n∑
j=1

|λj|2 − |a|2/m,

we get a lower bound for
∑n

j=1 |λj|2 as below

n∑
j=1

|λj|2 � τ1(A) =
∣∣∣∣∣b − a2

m

∣∣∣∣∣ + |a|2
m

. (1)

Another lower bound for
∑n

j=1 |λj|2 by [2, Theorem 1] is

n∑
j=1

|λj|2 � τ2(A) = ‖A‖2 −
√
n3 − n

12
‖A∗A − AA∗‖. (2)

Here neither lower bound for
∑n

j=1 |λj|2 has comparative dominance, i.e. τ1(A) � τ2(A) (or τ1(A) �
τ2(A)) does not hold for all matrices. Below are some numerical examples.

Example 3.1.

A =
⎛⎝1 1 1

1 −1 0

0 1 1

⎞⎠ .

Here n = m = 3 and τ1(A) = 5 > τ2(A) = 7 − 2
√

11.

Example 3.2.

A =
(

1 1

−1 1

)
⊕

(−1 1

−1 −1

)
.

Here n = m = 4 and τ1(A) = 0 < τ2(A) = 8.

4. A new lower bound for the spectral radius

In this section let A be any complex matrix and rank(A) � 2. To obtain a new lower bound of ρ(A),
we need the Brunk inequality.

Lemma 4.1 [1, Brunk inequality]. For real numbers x1, x2, . . . , xm, it holds that

max
j

xj �m−1
m∑
j=1

xj + 1√
m(m − 1)

⎛⎜⎝ m∑
j=1

x2j − 1

m

⎛⎝ m∑
j=1

xj

⎞⎠2
⎞⎟⎠

1/2

.
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From now on we denote

η(A) = max

⎧⎨⎩
∣∣∣∣∣b − a2

m

∣∣∣∣∣ , ‖A‖2 −
√
n3 − n

12
‖A∗A − AA∗‖ − |a|2/m

⎫⎬⎭ .

Theorem 4.2. If b = a2/m, then

ρ(A) � |a|/m +
√

η(A)(2m2 − 2m)−1. (3)

If a = 0, then

ρ(A) �
√

(η(A) + |b|)(2m2 − 2m)−1. (4)

Otherwise,

ρ(A) � max−1� x � 1

{
p1

√
1 + x + p2

√
1 − x + p3

√
p4 + x

}
, (5)

where γ = arg a − 2−1 arg(b − a2/m), p1 = |a cos γ |
(√

2m
)−1

, p2 = |a sin γ |
(√

2m
)−1

,

p3 =
√

|b − a2/m|(2m2 − 2m)−1, and p4 = η(A)|b − a2/m|−1.

Proof. Assume λj = 0,m < j � n. Applying inequalities (1) and (2), we have

2

⎛⎜⎝ m∑
j=1

(�(exp(iθ)λj))
2 − 1

m

⎛⎝ m∑
j=1

�(exp(iθ)λj)

⎞⎠2
⎞⎟⎠

=
m∑
j=1

|λj|2 + �
⎛⎝exp(2iθ)

m∑
j=1

λ2
j

⎞⎠ − 1

m

∣∣∣∣∣∣
m∑
j=1

λj

∣∣∣∣∣∣
2

− 1

m
�
⎛⎜⎝exp(2iθ)

⎛⎝ m∑
j=1

λj

⎞⎠2
⎞⎟⎠

� η(A) + �(exp(2iθ)(b − a2/m)).

Define the function

gA(θ) = �(a exp(iθ))

m
+ 1√

2m(m − 1)

(
η(A) + �

(
exp(2iθ)

(
b − a2

m

)))1/2

.

We apply Brunk inequality to �(exp(iθ)λj) (j = 1, . . . ,m), and obtain

max
j

�(exp(iθ)λj) � gA(θ).

Since ρ(A) = ρ(exp(iθ)A) �maxj �(exp(iθ)λj) for any θ , we have

ρ(A) �max
θ

gA(θ). (6)

Here the maximum exists because the function gA(θ) is periodic and continuous.

If b = a2/m or a = 0, the inequalities (3) and (4) follow from (6) obviously.

Suppose b /= a2/m and a /= 0. Due to the fact that trigonometric functions are periodic and sym-

metric, the inequality (6) yields

ρ(A) �max
θ

gA

(
θ − 2−1 arg(b − a2/m)

)

= max
θ

⎧⎨⎩ cos θ cos γ |a|/m − sin θ sin γ |a|/m

+ (2m2 − 2m)−1/2
√

η(A) + |b − a2/m| cos 2θ
⎫⎬⎭
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= max
0� θ � π/2

{√
2p1 cos θ + √

2p2 sin θ + p3

√
p4 + cos 2θ

}
.

Let x = cos 2θ . Then we get the inequality (5). �

Corollary 4.3. Let a, b ∈ R. If b − a2/m� −|a|
√

(2m)−1(m − 1)(η(A) + b − a2/m), then

ρ(A) � |a|/m +
√

(2m2 − 2m)−1
(
η(A) + b − a2/m

)
.

Otherwise,

ρ(A) �
√

(2m − 2)−1(a2 − mb)−1(a2 − b)(η(A) − (b − a2/m)).

Proof. For convenience we use notations γ , p1, p2, p3, p4 as in Theorem 4.2. It only remains to find the

maximum of the function

h(x) = p1
√

1 + x + p2
√

1 − x + p3
√

p4 + x,−1� x � 1.

If b > a2/m, then sin γ = 0. Thus h(x) reaches its maximum
√

2p1 + p3
√

p4 + 1 at x = 1.

Ifb < a2/m, thencos γ = 0.Denote x0 = (p23 − p22p4)(p
2
2 + p23)

−1. If x0 � −1, thenh(x) reaches its

maximum

√
(p4 + 1)(p22 + p23) at x = x0. If x0 � −1, then h(x) has its maximum

√
2p2 + p3

√
p4 − 1

at x = −1. �
Particularly, Corollary 4.3 is used to estimate spectral radii of real matrices. As more information

than tr A, tr A2 is applied, sometimes the lower bound by Corollary 4.3 is better than L(Sm(tr A, tr A2))
and LH(a, b,m). Below we show a numerical example.

Example 4.4.

A =
⎛⎜⎜⎝
0.626243 −0.539359 −0.016912 0.590066
0.475256 0.244961 −0.718191 −0.364156
0.463113 0.697466 0.432590 0.296332
0.446128 −0.311304 0.522169 −0.727854

⎞⎟⎟⎠ .

Here a = tr A = 0.57594, b = tr A2 = 0.70162, and n = 4. The lower bound by [3] is LH(a, b, n) =
0.37105, the sharp lower bound is L(Sn(a, b)) = 0.48045, and the lower bound by Corollary 4.3 is

0.58063. Actually, ρ(A) = 1.0500.

Anyhow, below is an example where the lower bound by Corollary 4.3 is less than LH(a, b, n).

Example 4.5.

A =
⎛⎜⎜⎝

11.95393 −37.46259 −2.43785 −6.49614
9.30982 −33.06045 9.07286 −0.27081

−9.16662 −25.31161 −17.39773 −1.60148
38.35426 −4.88824 −3.00578 −17.67963

⎞⎟⎟⎠ .

Here a = tr A = −56.184, b = tr A2 = 252.96, and n = 4. The lower bound for ρ(A) by Corollary 4.3
is 15.555, the lower bound by [3, Theorem 3] is 17.227, the sharp lower bound is L(Sn(a, b)) = 18.203,
and the actual value of ρ(A) is 28.827.

5. Summary and future problems

We acquire the sharp lower bound for the spectral radius of real matrix A in terms of m, tr A and

tr A2. After discussing two lower bounds for
∑n

j=1 |λj|2, we give a new lower bound for the spectral

radius of complexmatrixAusing tr A, tr A2, ‖A‖, ‖A∗A − AA∗‖, n andm. It is natural to leavequestions

as below:



1014 L. Wang et al. / Linear Algebra and its Applications 432 (2010) 1007–1016

1. What is the best possible lower bound for the spectral radius of a complexmatrixA usingm, tr A

and tr A2?

2. What is the best possible lower bound for
∑n

j=1 |λj|2 using tr A, tr A2, ‖A‖, ‖A∗A − AA∗‖, n and

m? If a lower bound better than (1) and (2) is applied to Theorem4.2 and Corollary 4.3, the lower

bounds for spectral radii will be improved.

Appendix. Proof of Theorem 2.3

Lemma 5.1. An optimal point (zj)
m
j=1 of Sm(a, b) satisfies |zj| = L(Sm(a, b)) for at least m − 1 indices j.

Proof. Suppose thereexist two indicesp, q such thatmaxj |zj| > |zp| � |zq| fora tuple (zj)
m
j=1 ∈ Sm(a, b).

We can choose p, q such that either zp = zq or zp, zq ∈ R. Let z̃p, z̃q be roots of the polynomial

z2 − z

⎛⎝a − δ
∑
j /=p,q

zj

⎞⎠ + 1

2

⎛⎜⎝
⎛⎝a − δ

∑
j /=p,q

zj

⎞⎠2

−
⎛⎝b − δ2

∑
j /=p,q

z2j

⎞⎠
⎞⎟⎠ = 0,

where δ ∈ R. When δ = 1, the roots are zp, zq.

Due to continuous dependence of the roots of a polynomial on the coefficients of the polynomial

[9], there exists a positive number δ < 1 such that |z̃p| < maxj |zj| and |z̃q| < maxj |zj|. Hence,
max

j
|zj| > max

j /=p,q
{|z̃p|, |z̃q|, δzj}.

Notice that the numbers δzj , z̃p, z̃q in a proper sort constitute a tuple in Sm(a, b). Thus, maxj |zj| >
L(Sm(a, b)) and then (zj)

m
j=1 is not an optimal point. �

Lemma 5.2. If b > a2/m, then an optimal point (zj)
m
j=1 of Sm(a, b) satisfies (zj)

m
j=1 ∈ Rm.

Proof. Assume (zj)
m
j=1 ∈ Sm(a, b) and (zj)

m
j=1 /∈ Rm. Let

xj = a

m
+

(
�zj − a

m

)√√√√ b − a2/m∑m
j=1(�zj)2 − a2/m

.

On one hand,
∑m

j=1 xj = a and
∑m

j=1 x
2
j = b. On the other hand, we have maxj |zj| �maxj |�zj| >

maxj |xj|. Therefore, such a tuple (zj)
m
j=1 /∈ Rm is not an optimal point. �

Proposition 5.3. Suppose a, b ∈ R and b > a2/m. Let k =
[
1
2

(
m −

√
ma2/b

)]
, and D = m − 1 +

(m − 2k − 1)2. Then

L(Sm(a, b)) = D−1

(√
bD − (m − 1)a2 + |a|(m − 2k − 1)

)
.

Proof. By Lemmas 5.1 and 5.2, computing L(Sm(a, b)) under the condition b > a2/m reduces to the

following optimization problem:

L(Sm(a, b)) = min rl

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y + (m − 2l − 1)rl = a,

y2 + (m − 1)r2l = b,

rl , y ∈ R,

−rl � y� rl ,

l ∈ {0, 1, . . . ,m − 1}.
Here we omit the elementary but tedious procedure to solve this optimization problem. �
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Proposition 5.4. Let m be an even positive integer. Suppose a, b ∈ R and b� a2/m. Then

L(Sm(a, b)) = m−1
√
2a2 − mb

and the optimal points for Sm(a, b) are (zj)
m
j=1, where zj =

(
a/m ±

√
b/m − a2/m2

)
and z2j−1 = z2j.

Proof. Let z0 = a/m. For any (zj)
m
j=1 ∈ Sm(a, b), we have

max
j

|zj| �

√∑
j |zj|2
m

=
√

|z0|2 +
∑

j |zj − z0|2
m

�

√√√√|z0|2 +
∣∣∣∑j(zj − z0)2

∣∣∣
m

=
√

2a2 − mb

m
. (7)

The former inequality in (7) collapses to equality if and only if |zj| = |zl|(1� j, l �m), and the latter

inequality in (7) collapses to equality if and only if zj − z0(1� j �m) are colinear on the complex plane.

Then the optimal points are characterized as above. �

L(S3(a, b)) =
{
(a2 − b)(2|a|)−1, if 0 < b� a2/3,√
a2 + 2|b|/2, if b� 0.

Proposition 5.5. Let m be odd and m > 3. Then

L(Sm(a, b)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(m2 − 3m)−1

(√
2a2(m − 1)(m − 2) − bm(m − 1)(m − 3) − 2|a|

)
,

if − 2a2(m − 3)(m + 1)−2 � b� a2/m;√
(m − 1)−1(2a2(m + 1)−1 − b), if b� −2a2(m − 3)(m + 1)−2.

Proof. Suppose (zj)
m
j=1 to be an optimal point. We have zm ∈ R, as m is odd. By Lemma 5.1, (zj)

m−1
j=1

has to be an optimal point in Sm−1(a − zm, b − z2m), and therefore are characterized as in Proposition

5.4. Then it only remains to solve the optimization problem

L(Sm(a, b)) = min

√
x2 + y2

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(m − 1)x + zm = a,

(m − 1)(x2 − y2) + z2m = b,

x, y, zm ∈ R,

|zm| �
√
x2 + y2.

Here we omit the detail solution to this optimization problem. �
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