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Abstract Operations in assembling and joining large size aircraft components are changed to novel

digital and flexible ways by digital measurement assisted alignment. Positions and orientations

(P&O) of aligned components are critical characters which assure geometrical positions and rela-

tionships of those components. Therefore, evaluating the P&O of a component is considered nec-

essary and critical for ensuring accuracy in aircraft assembly. Uncertainty of position and

orientation (U-P&O), as a part of the evaluating result of P&O, needs to be given for ensuring

the integrity and credibility of the result; furthermore, U-P&O is necessary for error tracing and

quality evaluating of measurement assisted aircraft assembly. However, current research mainly

focuses on the process integration of measurement with assembly, and usually ignores the uncer-

tainty of measured result and its influence on quality evaluation. This paper focuses on the expres-

sion, analysis, and application of U-P&O in measurement assisted alignment. The geometrical and

algebraical connotations of U-P&O are presented. Then, an analytical algorithm for evaluating the

multi-dimensional U-P&O is given, and the effect factors and characteristics of U-P&O are dis-

cussed. Finally, U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating

and improving. Cases are introduced with the methodology.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Wide employments of digital assembly technologies and large
scale metrologies provide novel digital and flexible approaches

for aircraft assembly to improve quality and shorten leading-
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time; the changes of operations in assembling are mainly based

on flexible adjusting devices and digital measurement instru-
ments.1–3 The large size components joining process, as a key
stage of aircraft assembly, has been changed from the tradi-

tional process based on manual fixtures and operations to
automatic alignment and connection in a digital way, which
significantly improves aligning precision and efficiency.4–8 In

measurement assisted aircraft components alignment, digital
measurement instruments, such as laser tracker, iGPS (in-
door-GPS), and photogrammetry, are used to collect data of

components’ positions, orientations, and interfaces, and then
an adjustment plan is carried out by a data processing system,
to drive flexible adjusting devices (such as the Electronic Mat-
ing Alignment System, automated positioning systems based
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on POGOs, parallel adjusting platforms) for automatically
adjusting positions and orientations of large size components.

Application of digital and automatic alignment technologies

relies on the integration of digital measurement with an assem-
bly process,9–11 which is not a simple linkage of measuring and
assembling, but more essentially the fuse of measured data,

design data, and fixture data. In order to unify quality require-
ments, fixture data, and measurement demands, the concept of
key measurement characteristics (KMCs),12 as a set of geomet-

rical datumand features, is introduced.KMCs in aircraft assem-
bly provide unified carriers for storing and analyzing key
assembly data from design, measurement, and other sources.

Based on KMCs, positions and orientations of components

in measurement assisted assembly are measured and analyzed
to guide adjustment and alignment. For example, assembly da-
tum is defined as a set of geometrical features with optical tar-

get points (OTPs) surrounding the assembled components,
coordinates of which in the measurement coordinate system
are collected before alignment, fitted with their ideal positions

in the product model to calculate the position and orientation
of the assembly datum, and then the transformation from the
measurement coordinate system to the global coordinate sys-

tem is derived. Like assembly datum, positions and orienta-
tions of components and flexible locators are also measured
and parsed to their geometrical status in the global coordinate
system, in order to direct reasonable adjustment of their posi-

tions and orientations during sequential processes.
In measurement assisted alignment, measured objects are

changed from coordinates of points and planar dimensions

to positions and orientations; so it is critical to develop and ap-
ply new methodologies and approaches of data collecting and
processing as well as components adjusting approaches.13,14

Although a lot of methodologies and approaches have been
studied for measuring, analyzing, and adjusting positions
and orientations of aligned components,15–17 there is still a

lack of attention to the measurement uncertainty of position
and orientation (U-P&O), which is as important as the mea-
sured value of position and orientation.

Measurement uncertainty is a non-negative parameter

characterizing the dispersion of values attributed to a quantity,
which has a probabilistic basis and reflects incomplete knowl-
edge of the quantity. As a part of the measurement result of

position and orientation, U-P&O ensures the integrity and
credibility of measured value of position and orientation made
out by a measuring process. Without the analysis of U-P&O, it

would be difficult to trace the accumulated error in the data
transfer process, which begins with assembly design and con-
tinues through adjustment, alignment, and verification; fur-
thermore, the quality evaluation of alignment may not be

correct without considering the uncertainty of measurement
result. Position and orientation are multi-dimensional quan-
tity, the expression of which is not given out in the Guide to

the Expression of Uncertainty in Measurement (GUM)18;
meanwhile, P&O and U-P&O of aligned components are spe-
cific and process-related quantities in measurement assisted

aircrafts, and thus the studies on the expression, analysis,
and application of U-P&O are necessary.

In this paper, mathematical definition and connotations of

U-P&O are presented in the Section 2. Then, an analytical
algorithm for measuring and calculating the multi-dimensional
U-P&O is conducted in Section 3, with the discussion of its effect
factors and data independency characteristic in measurement
assisted aircraft assembly. In Section 4, a novel method of assem-
bly quality evaluation based on uncertainty of position and orien-
tation is proposed to present an application of U-P&O in

measurement assisted assembly.Finally, future researchonuncer-
tainty of position and orientation is described in conclusions.

2. Mathematical definitions

2.1. Position and orientation

Position and orientation are key geometric features in defining
the relationships between related components in aircraft

assembly, especially in digital assembly processes. In order to
conduct the definition and expression of uncertainty of posi-
tion and orientation, it is necessary to define position and ori-

entation from mathematical perspective.
Position and orientation describe the geometrical status of

a rigid body in the global coordinate system (GCS), which
should be predefined before digital measurement. As shown

in Fig. 1(a), O � XYZ represents the global coordinate system
of a three-dimensional environment, then the point O0 on the
rigid body is selected as the original point to build a local coor-

dinate system (LCS) represented by O0 � X0Y0Z0, and finally
the position and orientation of the rigid body relative to the
GCS can be expressed by a six-dimensional variable, which in-

cludes the amount of rotation and displacement of the LCS
relative to the GCS:

T ¼ fa; b; c; dx; dy; dzg ð1Þ

where a, b, c are the rotation angles of each axis of the LCS;

dx, dy, dz are the displacements of the original point of the
LCS. Thus, the position and orientation of the rigid body is
essentially the transformation from its LCS to the GCS, and
its value depends on the selection of the LCS and the GCS.

In order to analytically solve position and orientation, it is
necessary to conduct its mathematical expression. In a linear
space, the transformation of coordinate systems can be ex-

pressed by a matrix: as shown in Fig. 1(b), the vectors directing
from the original point O to any point in the GCS construct a
linear space S, and the vectors directing from the original point

O0 to any point in the LCS construct another linear space S0. Pi

is one of the points on the rigid body, and then the position of
Pi in the GCS can be expressed by a vector of linear space as:

PG
i ¼ pGi ; 1

� �T
; PG

i 2 S;

where pGi ¼ ðxG
i ; y

G
i ; z

G
i Þ is the coordinate of the point Pi in the

GCS.
The position of Pi in the LCS of the rigid body can be ex-

pressed by another vector of linear space as:

PL
i ¼ ½pLi ; 1�

T
; PL

i 2 S0;

where pLi ¼ ðxL
i ; y

L
i ; z

L
i Þ is the coordinate of the point Pi in the

LCS.The two vectors are different descriptions of the same

point, so there is a linear transformation, which enables that:

T�PL
i ¼ PG

i ð2Þ

where T is a matrix with four rows and four lines.

Eqs. (1) and (2) display the geometrical and algebraical con-
notations of position and orientation of the rigid body, and the
relation between them can be derived as:



Fig. 1 Geometrical and algebraical connotations of position and orientation of a rigid body.
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T ¼
R3�3 M3�1

01�3 1

� �
ð3Þ

where R3·3 = R(a)R(b)R(c) and M3·1 = [dx,dy,dz]T. R3·3 is
called the rotation matrix, and M3·1 is called the displacement

vector.
Eq. (3) unifies the geometrical and algebraical connotations

of position and orientation.
UT ¼

r2
a covða; bÞ covða; cÞ covða; dxÞ covða; dyÞ covða; dzÞ

covða; bÞ r2
b covðb; cÞ covðb; dxÞ covðb; dyÞ covðb; dzÞ

covða; cÞ covðb; cÞ r2
c covðc; dxÞ covðc; dyÞ covðc; dzÞ

covða; dxÞ covðb; dxÞ covðc; dxÞ r2
dx covðdx; dyÞ covðdx; dzÞ

covða; dyÞ covðb; dyÞ covðc; dyÞ covðdx; dyÞ r2
dy covðdy; dzÞ

covða; dzÞ covðb; dzÞ covðc; dzÞ covðdx; dzÞ covðdy; dzÞ r2
dz

2
6666666664

3
7777777775

ð4Þ
2.2. Uncertainty of position and orientation

In large size aircraft assembly, uncertainty of position and ori-
entation is a parameter describing the fluctuant scope of posi-
tion and orientation of datum, components, and locators in

the global coordinate system. UT is used to mathematically ex-
press the value of U-P&O, which is valued by the variance of
the error between the actual and ideal values of position and

orientation. Td is used to represent the actual value of position
and orientation, and T is the ideal position and orientation. If
the distribution of Td is normal, then Td � U(T,UT) .

Reference to its geometrical form, the value of position and
orientation contains two aspects of information: the position
of the original point of the LCS in the GCS, and the rotation

of each axis of the LCS relative to the GCS; similarly, as
shown in Fig. 2, uncertainty of position and orientation con-
tains the uncertainty of the original point position and the
uncertainty of directions of each axis, both of which are not

independent. Apparently, it will not make sense to discuss
uncertainty of position and orientation without consideration
of the object’s geometrical features being measured; assembly

datum, components, and locators are rigid bodies with borders
in the three-dimensional space, and their geometrical interface
features randomly exist in a three-dimensional area which is
determined by the uncertainty of their positions and orienta-
tions, as shown by the cuboids in Fig. 2, and has a max bound-
ary and a min boundary, which form the envelop of their

interfaces.
Reference to the algebraical form as shown by Eq. (1), posi-

tion and orientation is a six-dimensional variable which includes

the amount of rotation and displacement of the LCS relative to
the GCS; therefore, uncertainty of position and orientation can
be easily expressed by a six-dimensional vector as follows:
UT ¼ fra; rb; rc; rdx; rdy; rdzg

Although the six-dimensional vector can be used to reflect the
fluctuation of position and orientation, it cannot present the
correlation of each dimension; thus a six-dimensional covari-

ance matrix is derived as follows:

3. Analysis of U-P&O

3.1. Analytical algorithm

Usually, through collecting actual positions of three or more
OTPs on the surface of a measured object, its position and ori-
entation in the GCS can be calculated based on Eq. (2). In or-

der to resolve the uncertainty of position and orientation based
on measurement data, the analytical relation between UT (the
mathematical expression of uncertainty of position and orien-
tation) and UPG

i
(the mathematical expression of OTPs’ posi-

tion uncertainty) is conducted as follows.
According to Eqs. (2) and (3), the relation between OTPs’

position and matrix of position and orientation can be ex-

pressed as a function g(•) as follows:

PG
i ¼ g T;PL

i

� �
ð5Þ



Fig. 2 Geometrical form of U-P&O.
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Then, based on Eq. (3), the matrix of position and orientation
in Eq. (5) is replaced by a six-dimensional variable:

PG
i ¼ g h;PL

i

� �
ð6Þ

where h= (a,b,c,dx,dy,dz)T.
If hest is a solution of Eq. (6), expand the function g(�)

based on first-order Taylor series at ðhest;PL
i Þ:

PG
i þ DPG

i ¼ gðhest þ Dh;PL
i Þ � gðhest;PL

i Þ þ
@g

@h

� �T
hest ;P

L
i

Dh

Therefore, DPG
i ¼ @g

@h

� �T
hest ;P

L
i

Dh ¼ JiDh, where Ji is the Jacobin

matrix of the function g(•).
If n is the number of OTPs and n P 3, then

DPG
1

..

.

DPG
n

2
664

3
775 ¼

J1

..

.

Jn

2
664

3
775Dh) DPG ¼ JDh ð7Þ

Therefore, Dh= (JTJ)�1JTDPG.
Fig. 3 Effect factors of U-P&O in digital
Finally, the covariance matrix of h can be derived as:

covðhÞ ¼ EðDhDhTÞ

¼ EððJTJÞ�1JTDPGðDPGÞTððJTJÞ�1JTÞ
T

Þ

¼ ðJTJÞ�1JT � EðDPGðDPGÞTÞ � ððJTJÞ�1JTÞ
T

¼ ðJTJÞ�1JT �UPG � ððJTJÞ�1JTÞ
T

¼ UT

ð8Þ

where UPG ¼
UPG

1

. .
.

UPG
n

2
64

3
75.

The actual position and orientation of datum, components,
and locators depends on the selection of the LCS and the

deployment of OTPs on those objects; however, the transfer
matrix between position uncertainty and U-P&O given by
Eq. (8) embeds the influences of the LCS and OTPs’ deploy-

ment on position and orientation measurement, which enables
the calculation of U-P&O being independent from the measur-
ing process and only relying on OTPs’ position uncertainty.

3.2. Effect factors

According to its phenomenon, uncertainty of position and
orientation can be divided into two sections: (i) variation of posi-

tion and orientation generated by setting up and locating; and (ii)
measurement uncertainty caused by OTPs’ coordinates collec-
tion. As shown in Fig. 3, in setting up and locating of assembled

components, influences of manufacturing variation, movement
status, and structure deformation caused by gravity and assembly
force are the main sources of components’ position and orienta-

tion variation; and then, the positioning accuracy, stability, and
datum variation of fixture which lead to the position variation
of components are also important factors that need to be con-
trolled. Meanwhile, some factors of assembly environment, espe-

cially the vibration of ground, also contribute to the variation of
the actual position and orientation of components.

During the processes of coordinates collection and position

and orientation fitting, precision characteristics, calibration,
measurement assisted aircraft assembly.
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and measurement stability of the digital measurement system
will significantly influence the uncertainty of coordinates mea-
surement results19; even for the same digital measurement sys-

tem, different measurement plans, which include construction
of measurement field, data collecting approaches, measure-
ment data pre-processing, and other aspects, will lead to differ-

ent results; furthermore, the influences of assembly
environment, such as humidity, air pressure, and temperature
distribute, on measurement uncertainty are also significant.

The digital measurement system used in large components
alignment is usually highly precise and well calibrated, and
then the uncertainty of position and orientation is mainly
determined by location uncertainty of the measured object;

in order to analyze the location uncertainty independently
and improve assembly process and assembly environment, a
special measurement plan for collecting data and separating

location uncertainty from measurement uncertainty contained
in U-P&O are discussed as follows.

Measurement data of OTPs’ coordinates is the only original

data for fitting position and orientation and analyzing its
uncertainty. Supposing there are n OTPs and the nominal, ac-
tual, and measured values of the position of the ith OTP Pi are

expressed as pGi ; p
d
i , and pmi , then the relation between them can

be derived as:

pmi ¼ pdi þ Dpmi ¼ pGi þ Dpdi þ Dpmi ð9Þ

where DPd
i is the deviation between the actual and nominal

values, which is supposed to be normal distribution as

DPd
i � Uð0; r2

dÞ; DPm
i is the deviation between the measured

and actual values, which is also supposed to be normal distri-
bution as DPm

i � Uð0; r2
mÞ.

Therefore, the measured value of the position of the OTP Pi

in the GCS normally distributes as

pmi � UðpGi ; r2
d þ r2

mÞ

When the value of r2
d is 7.5 or more times of the value of r2

m,
the PCA method can be used to separate two kinds of variance

of normal distributed sample.20

The measurement plan for collecting data is:

(1) Measurement system selection: multi-station measure-
ment net consisted of three or more laser trackers or
photogrammetry is a feasible choice for implementing
online and parallel measurement; furthermore, photo-

grammetry is more feasible and less costly for being used
in a real assembly process.

(2) Sampling strategy: during t minutes (t is a positive inte-

ger), collect two coordinate data of each OTP every
thirty seconds, and express each data as pm1;j;k , in which
j is the serial number of measuring, j= 1,2, � � �, 2t, and
k is the number of data collected at the jth measuring,
k= 1,2. Therefore, there will be 4t · n coordinates data
during t minutes being collected, which are the original
data of uncertainty analysis.

During measurement assisted aircraft components align-
ment, assembly datum is usually setup on the ground of the

assembly cite, which is more easily affected by assembly envi-
ronment. Unfortunately, position and orientation of assembly
datum is the original data of sequential data collecting and

processing; therefore, uncertainty source analysis and
separation is critical for ensuring the stability of assembly da-
tum and precision of alignment.
3.3. Computational example

Uncertainty is a parameter that reflects the fluctuating range of
a quantity, and thus its value doesn’t change with the express-

ing form of the quantity. In the case of uncertainty of position
and orientation, if the assembly environment, measurement
system, measurement approach, and assembly process have

been determined, the value of U-P&O will not change with
the selection of the LCS and OTPs. This characteristic is
termed data independency of U-P&O. Considering its geomet-

rical connotation, as illustrated in Fig. 2, the uncertainty of po-
sition and orientation essentially describes the fluctuant scope
of position and orientation of a rigid object in the assembly
space. The scope is a connatural characteristic generated by

the effect factors of assembly environment, measurement sys-
tem, measurement approach, and alignment process. In order
to expound and verify the independency of U-P&O, a mea-

surement experiment of position and orientation of a wing in
aircraft wing-fuselage alignment is carried out; in addition,
the computational example verifies the analytical algorithm

of U-P&O.
During aircraft wing-fuselage alignment, the measurement

of position and orientation of the wing is the basis of adjusting
trajectory planning. Two experiments of wing position and ori-

entation measurement were carried out, as shown in Fig. 4.
The experiments included three steps:

(1) Define the local coordinate system of the wing and select
the corresponding OTPs.

An OTP on the structure of a component is not only a mea-
sured point, but also a hole or another feature for fixing the
optical target. The selection of OTPs for position and orienta-

tion measurement largely follows the following three basic
principles: (a) the selected OTPs should have the attributes
of visibility, namely, the optical path between the OTPs and
the measurement device is not affected or blocked by other fac-

tors; (b) the ideal place where the OTPs are to be located
should be on the areas that show high structure rigidity, which
is expected to diminish the influence resulting from the struc-

ture deformation, vibrations. and other potential environmen-
tal factors; (c) the existing holes together with other features
should be well utilized when possible, which facilitates placing

the optical target, whilst reducing the effect of the measuring
process on the designs of the product structures.

In a simulation process, the layout of OTPs does not affect
the measurement results. Therefore, based on the model of

wing-fuselage alignment, OTPs of the wing are selected ran-
domly from the points set on the surface of the wing and their
nominal coordinates are extracted. In the first case, taking

LCS1 as the local coordinate system of the wing, whilst using
P1, P2, and P3 as the OTPs for measuring; in the second case,
LCS2 is the local coordinate system of the wing, while P4, P5,

and P6 are the OTPs.

(2) Setup the laser tracker and collect the coordinates of the

OTPs.



Fig. 4 Measuring the position and orientation of a wing in wing-fuselage alignment.
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Given the hypothesis that the global coordinate system is

the same as the measurement coordinate system, the model
of a laser tracker is added to the simulation environment. In
the experiments, a simulation measurement algorithm of laser
tracker is used for collecting the coordinates of the OTPs.

Then, the nominal and measured data of those OTPs can be
derived as shown in Table 1.

(3) Calculate the position and orientation and U-P&O of
the wing.

The position and orientation and U-P&O of the wing are
calculated by the analytical algorithm presented in Section 3.1,
and the results are showed in Table 2.

Obviously, although the designed LCSs and OTPs in the

two experiments are different, the uncertainties of position
and orientation based on the two datasets are the same. The
experiments have verified the data independence of U-P&O.
4. Application study

4.1. Quality index based on uncertainty

The main purpose of assembly quality control is to ensure the

assembly relationships between components are within the de-
signed tolerances by methodologies based on quality evalua-
tion. The quality of a product is evaluated according to the

designed values, tolerances, and measurement results of one
or more quality characteristics of the product. With the tradi-
tional quality evaluation method, the conclusion of a quality

characteristic will be of conformance when the measurement
Table 1 Nominal and measured data of the OTPs. Unit: mm.

Nominal value in LCS

P1 [�3487.138,11989.798,�702.421]
P2 [�3487.138,1429.798,�702.421]
P3 [�28147.138,6927.857,1697.579]
P4 [62.8614,14239.1554,920.9225]

P5 [�10564.9264,1349.6608,1738.6847]
P6 [�22664.4987,11856.6994,2044.5322]
result is within the designed tolerance; by contrast, the conclu-

sion will be of non-conformance when the measurement result
is out of the designed tolerance. However, the measurement
result of the quality characteristic is uncertain. The uncertainty

of measurement result is likely to cause that one measurement
result is within the tolerance but another is out of the toler-
ance. As a result, the evaluation cannot exactly reflect the
actual product quality.

Taking the quality characteristic A as an example, as shown
in Fig. 5. x0 is the nominal value of A, x0L and x0U are the low-
er and upper limits of the designed tolerance of A, x is the mea-

sured value of A, xm is the average value of x, r2 is the variance
of x, that is x � N(xm,r

2), xL and xU are the lower and upper
limits of the actual value of A, which is the fluctuant range.

For the second case, the traditional method will determine A
to be conformance, and for the third case, it will determine
A to be non-conformance, but obviously, A may be confor-

mance or nonconformance in those cases. Therefore, it is
necessary to take into consideration the uncertainty during
quality evaluation based on measured data.

In order to exactly evaluate product assembly quality, a

new concept of quality index (QI) is proposed based on uncer-
tainty, which is defined as: QI of a quality characteristic is the
ratio of two probabilities, one is the probability of the result

within the tolerance and the other is the probability of the re-
sult out of the tolerance. QI of the quality characteristic A in
the above example can be derived in the equation below:

QI ¼ pfx 2 ½x0L; x0U�g
pfx R ½x0L; x0U�jx 2 ½xL; xU�g

The values of xL and xU are determined by the confidence
probability of measured data. Take the confidence probability
Measured value in GCS

[3658.114,3670.936,1835.196]

[3658.114,�6888.892,1835.196]
[�21109.033,�1390.032,2488.166]
[7084.8736,5920.4025,3704.6484]

[�3574.3307,�6969.2918,3770.4976]
[�15665.3233,3537.8311,3221.1391]



Table 2 Nominal and measured data of the positions and orientations and their uncertainty.

Items 1 2

Nominal value of position

and orientation
0:996 3:805� 10�4 �0:070 7086:937

�3:912� 10�4 0:999 �5:823� 10�5 �8318:932
0:071 7:816� 10�5 0:997 2781:158
0 0 0 1

2
664

3
775

0:442 1:000 �0:083 7186:715
�1:032 0:499 �0:428 �8368:663
0:833 0:500 0:442 2832:158
0 0 0 1

2
664

3
775

Measured value of position

and orientation

0:997 3:812� 10�4 �0:069 7086:825
�3:857� 10�4 0:998 �5:735� 10�5 �8318:812

0:070 8:035� 10�5 0:997 2781:468
0 0 0 1

2
664

3
775

0:397 1:005 �0:084 7186:623
�1:028 0:399 �0:419 �8368:759
0:837 0:502 0:401 2832:052
0 0 0 1

2
664

3
775

Uncertainty of position and orientation [0.10,0.16,0.31,5.24,1.06,1.32] [0.11,0.15,0.31,5.23,0.98,1.40]

Fig. 5 Quality evaluation b
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of 99.73% as an example, the fluctuant range of measured data

is ±3r, that is xL = xm � 3r, xU = xm + 3r. Then, in the
case of bilateral tolerance, QI can be calculated using the fol-
lowing equations:

(1) If xm � 3r > x0U or xm + 3r < x0L, QI = 0;
(2) If xm � 3r > x0L and xm + 3r < x0U, QI =1;
(3) If xm � 3r < x0L and xm + 3r > x0U,

QI ¼ pfx0L < x < x0Ug
0:9973� ðpfxL < x < x0Lg þ pfx0U < x < xUgÞ

¼
U

x0U � xm

r

� 	
� U

x0L � xm

r

� 	

0:9973� U
x0L � xm

r

� 	
� U

xL � xm

r

� 	
þ U

xU � xm

r

� 	
� U

x0U � xm

r

� 	� 	

(4) If xm � 3r < x0L < xm + 3r < x0U,

QI ¼ pfx0L < x < xUg
0:9973� pfxL < x < x0Lg

¼
U

xU � xm

r

� 	
� U

x0L � xm

r

� 	

0:9973� U
x0L � xm

r

� 	
� U

xL � xm

r

� 	� 	
(5) If x0L < xm � 3r < x0U < xm + 3r,
pfx < x < x g

y the traditional method.
QI ¼ L 0U

0:9973� pfx0U < x < xUg

¼
U

x0U � xm

r

� 	
� U

xL � xm

r

� 	

0:9973� U
xU � xm

r

� 	
� U

x0U � xm

r

� 	� 	

According to the definition, a larger QI reflects better assembly

quality. In order to draw a quality evaluation conclusion of a
quality characteristic based on QI, it is required to identify a
score table based on experience and knowledge of history data.
The table maps the range of the QI value to a corresponding

score, which represents the final conclusion of the measured
quality characteristic. The flow chart for evaluating the quality
of a quality characteristic is shown in Fig. 6.

4.2. Evaluating alignment based on U-P&O

In generally, there are more than one quality characteristics for

aircraft components alignment quality evaluation and
improvement. For example, during the wing-fuselage align-
ment, not only the mate relationship between the wing and

the fuselage have to be ensured, but also the installation angle



Fig. 6 The flow chart for evaluating the quality of a quality characteristic.

Fig. 7 Process for evaluating alignment based on U-P&O.
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of the wing, the concentricity of the fuselage, and other char-
acteristics have to be controlled within designed tolerances.

In the traditional way of quality control for aircraft compo-
nents alignment, those quality characteristics are measured
and adjusted independently. As a result, the adjustment of

one quality characteristic may bring another one out of the
appropriate value. All of those quality characteristics cannot
be simultaneously adjusted to meet the designed requirements,

leading to increased assembly times and costs.
Quality characteristics in aircraft assembly are essentially

the geometrical relationships of one component relative to an-
other, and all of those geometrical relationships can be re-

solved and expressed by the positions and orientations of
components which are relative to the global coordinate system
in digital assembly; therefore, the designed values and toler-

ances of those quality characteristics can be converted into
the designed value and tolerance of the position and orienta-
tion of the adjusted component. By doing so, the position

and orientation of the adjusted component become the only
quality characteristic for quality evaluation. Through measur-
ing the position and orientation and resolving its uncertainty,
the QI value can be calculated according to the designed value

and tolerance of position and orientation. The quality evaluat-
ing conclusions can thus be drawn based on the score table.

In order to evaluatemeasurement assisted alignment, quality

characteristics, such as fuselage concentricity, setup angle, and
interface gap, are converted to position and orientation. Each
mapping from a quality characteristic to position and orienta-

tion makes out a tolerance of the value of position and orienta-
tion. Then, the intersection of all the tolerances becomes the
criterion of alignment evaluation. The process for evaluating

alignment based on U-P&O is depicted in Fig. 7. Based on the
measurement results of position and orientation and the U-
P&O, the QI value of the alignment is calculated according to
the criterion; finally, the evaluation conclusions can be derived
for position and orientation adjustment planning and quality
improvement in measurement assisted alignment.
5. Conclusions

(1) This paper presents the mathematical definition of
uncertainty of position and orientation, with its conno-

tations in both geometrical and algebraical aspects; an
analytical algorithm based on measurement data is pro-
posed for resolving uncertainty of position and orienta-

tion in aircraft components alignment.
(2) Effect factors of uncertainty of position and orientation

are mainly divided into two sections: variation and mea-

surement uncertainty of position and orientation, and a
method for separating the two sections is discussed; the
independency characteristic of uncertainty of position
and orientation is presented based on measurement

experiments, and then a novel method for evaluating
alignment by quality index is proposed.

(3) The research on uncertainty of position and orientation

is in its infancy. Future works will continually focus on
the effect factors and characteristics analysis of uncer-
tainty of position and orientation, and its further appli-

cation in large size components alignment and other
digital assembly processes.
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