On the bounds for the largest Laplacian eigenvalues of weighted graphs

Sezer Sorgun ${ }^{\text {a,* }}$, Şerife Büyükköse ${ }^{\text {b }}$
${ }^{\text {a }}$ Nevşehir University, Faculty of Sciences and Arts, Departments of Mathematics, Nevşehir, Turkey
${ }^{\text {b }}$ Ahi Evran University, Faculty of Sciences and Arts, Department of Mathematics, 40100 Kirşehir, Turkey

ARTICLE INFO

Article history:

Received 28 March 2011
Received in revised form 19 January 2012
Accepted 1 March 2012
Available online 22 March 2012

MSC:

05C50

Keywords:

Weighted graph
Laplacian matrix
Upper bound

Abstract

We consider weighted graphs, such as graphs where the edge weights are positive definite matrices. The Laplacian eigenvalues of a graph are the eigenvalues of the Laplacian matrix of a graph G. We obtain an upper bound for the largest Laplacian eigenvalue and we compare this bound with previously known bounds.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple graphs, such as graphs which have no loops or parallel edges. Hence a graph $G=(V, E)$ consists of a finite set of vertices, V, and a set of edges, E, each of whose elements is an unordered pair of distinct vertices. Generally V is taken as $V=\{1,2, \ldots, n\}$.

A weighted graph is a graph each edge of which has been assigned to a square matrix called the weight of the edge. All the weight matrices are assumed to be of the same order and to be positive matrix. In this paper, by "weighted graph" we mean "a weighted graph with each of its edges bearing a positive definite matrix as weight", unless otherwise stated.

The following are the notations to be used in this paper. Let G be a weighted graph on n vertices. Denote by $w_{i, j}$ the positive definite weight matrix of order p of the edge $i j$, and assume that $w_{i j}=w_{j i}$. We write $i \sim j$ if vertices i and j are adjacent. Let $w_{i}=\sum_{j: j \sim i} w_{i j}$.

The Laplacian matrix of a graph G is defined as $L(G)=\left(l_{i j}\right)$, where

$$
l_{i, j}= \begin{cases}w_{i} ; & \text { if } i=j \\ -w_{i j} ; & \text { if } i \sim j \\ 0 ; & \text { otherwise }\end{cases}
$$

Let λ_{1} denote the largest eigenvalue of $L(G)$. If V is the disjoint union of two nonempty sets V_{1} and V_{2} such that every vertex i in V_{1} has the same $\lambda_{1}\left(w_{i}\right)$ and every vertex j in V_{2} has the same $\lambda_{1}\left(w_{j}\right)$, then G is called a weight-semiregular graph. If $\lambda_{1}\left(w_{i}\right)=\lambda_{1}\left(w_{j}\right)$ in a weight semiregular graph, then G is called a weight-regular graph.

In the definitions above, the zero denotes the $p \times p$ zero matrix. Hence $L(G)$ is a square matrix of order $n p$.
Upper and lower bounds for the largest Laplacian eigenvalue for unweighted graphs have been investigated to a great extent in the literature [1-10]. For most of the bounds, Pan [11] has characterized the graphs which achieve the upper bounds of the largest Laplacian eigenvalues for unweighted graphs.

[^0]Theorem 1 (Rayleigh-Ritz [12]). Let $A \in M_{n}$ be Hermitian, and let the eigenvalues of A be ordered such that $\lambda_{n} \leq \lambda_{n-1} \leq$ $\cdots \leq \lambda_{1}$. Then,

$$
\begin{aligned}
& \lambda_{n} x^{T} x \leq x^{T} A x \leq \lambda_{1} x^{T} x \\
& \lambda_{\max }=\lambda_{1}=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}=\max _{x^{T} x=1} x^{T} A x \\
& \lambda_{\min }=\lambda_{n}=\min _{x \neq 0} \frac{x^{T} A x}{x^{T} x}=\min _{x^{T} x=1} x^{T} A x
\end{aligned}
$$

for all $x \in \mathbb{C}^{n}$.
Proposition 1 ([13]). Let $A \in M_{n}$ have eigenvalues $\left\{\lambda_{i}\right\}$. Even if A is not Hermitian, one has the bounds

$$
\begin{equation*}
\min _{x \neq 0}\left|\frac{x^{T} A x}{x^{T} x}\right| \leq\left|\lambda_{i}\right| \leq \max _{x \neq 0}\left|\frac{x^{T} A x}{x^{T} x}\right| \tag{1.1}
\end{equation*}
$$

for $i=1,2, \ldots, n$.
Corollary 1 ([13]). Let $A \in M_{n}$ have eigenvalues $\left\{\lambda_{i}\right\}$. Even if A is not Hermitian, one has the bounds

$$
\begin{equation*}
\min _{x \neq 0, y \neq 0}\left|\frac{x^{T} A y}{x^{T} y}\right| \leq\left|\lambda_{i}\right| \leq \max _{x \neq 0, y \neq 0}\left|\frac{x^{T} A y}{x^{T} y}\right| \tag{1.2}
\end{equation*}
$$

for any $\bar{x} \in R^{n}(\bar{x} \neq \overline{0}), \bar{y} \in R^{n}(\bar{y} \neq \overline{0})$ and for $i=1,2, \ldots, n$.
Lemma 1 (Horn and Johnson [12]). Let B be a Hermitian $n \times n$ matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, then for any $\bar{x} \in R^{n}(\bar{x} \neq \overline{0}), \bar{y} \in R^{n}(\bar{y} \neq \overline{0})$,

$$
\begin{equation*}
\left|\bar{x}^{T} B \bar{y}\right| \leq \lambda_{1} \sqrt{\bar{x}^{T}} \bar{x} \sqrt{\bar{y}^{T} \bar{y}} . \tag{1.3}
\end{equation*}
$$

Equality holds if and only if \bar{x} is an eigenvector of B corresponding to λ_{1} and $\bar{y}=\alpha \bar{x}$ for some $\alpha \in R$.
Some upper bounds on the largest Laplacian eigenvalue for weighted graphs, where the edge weights are positive definite matrices, are known as below. Then, we also give an upper bound on the largest Laplacian eigenvalue for weighted graphs in Section 2 and compare our bound with other bounds.

Theorem 2 (Das and Bapat [14]). Let G be a simple connected weighted graph. Then

$$
\begin{equation*}
\lambda_{1} \leq \max _{i \sim j}\left\{\lambda_{1}\left(\sum_{k: k \sim i} w_{i k}\right)+\sum_{k: k \sim j} \lambda_{1}\left(w_{j k}\right)\right\} \tag{1.4}
\end{equation*}
$$

where $w_{i j}$ is the positive definite weight matrix of order p of the edge $i j$. Moreover equality holds in (1.4) if and only if
(i) G is a weight-semiregular bipartite graph;
(ii) $w_{i j}$ have a common eigenvector corresponding to the largest eigenvalue $\lambda_{1}\left(w_{i j}\right)$ for all i, j.

Theorem 3 (Das [15]). Let G be a simple connected weighted graph. Then

$$
\begin{equation*}
\lambda_{1} \leq \max _{i \sim j}\left\{\sqrt{\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}\right)\left(\sum_{r: r \sim i} \lambda_{1}\left(w_{i r}\right)+\sum_{s: s \sim k} \lambda_{1}\left(w_{k s}\right)\right)+\sum_{k: k \sim j} \lambda_{1}\left(w_{j k}\right)\left(\sum_{r: r \sim j} \lambda_{1}\left(w_{j r}\right)+\sum_{s: s \sim k} \lambda_{1}\left(w_{k s}\right)\right)}\right\} \tag{1.5}
\end{equation*}
$$

where $w_{i j}$ is the positive definite weight matrix of order p of the edge $i j$. Moreover equality holds in (1.5) if and only if
(i) G is a bipartite semiregular graph; and
(ii) $w_{i j}$ have a common eigenvector corresponding to the largest eigenvalue $\lambda_{1}\left(w_{i j}\right)$ for all i, j.

Theorem 4 (Das [15]). Let G be a simple connected weighted graph. Then

$$
\begin{equation*}
\lambda_{1} \leq \max _{i \sim j}\left\{\frac{\lambda_{1}\left(w_{i}\right)+\lambda_{1}\left(w_{j}\right)+\sqrt{\left(\lambda_{1}\left(w_{i}\right)-\lambda_{1}\left(w_{j}\right)\right)^{2}+4 \bar{\gamma}_{i} \bar{\gamma}_{j}}}{2}\right\} \tag{1.6}
\end{equation*}
$$

where $\bar{\gamma}_{i}=\frac{\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}\right) \lambda_{1}\left(w_{k}\right)}{\lambda_{1}\left(w_{i}\right)}$ and $w_{i j}$ is the positive definite weight matrix of order p of the edge $i j$. Moreover equality holds in (1.6) if and only if
(i) G is a weighted-regular graph or G is a weight-semiregular bipartite graph;
(ii) $w_{i j}$ have a common eigenvector corresponding to the largest eigenvalue $\lambda_{1}\left(w_{i j}\right)$ for all i, j.

2. An upper bounds on the largest Laplacian eigenvalue of weighted graphs

Theorem 5. Let G be a simple connected weighted graph. Then

$$
\begin{equation*}
\lambda_{1} \leq \max _{i}\left\{\sqrt{\lambda_{1}^{2}\left(w_{i}\right)+\sum_{k: k \sim i} \lambda_{1}^{2}\left(w_{i k}\right)+\sum_{k: k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{i k} w_{k}\right)+\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s t}\right)}\right\} \tag{2.1}
\end{equation*}
$$

where $w_{i k}$ is the positive definite weight matrix of order p of the edge $i k$ and $N_{i} \cap N_{k}$ is the set of common neigbours of i and k. Moreover equality holds in (2.1) if and only if
(i) G is a weighted-regular graph or G is a weight-semiregular bipartite graph;
(ii) $w_{i k}$ have a common eigenvector corresponding to the largest eigenvalue $\lambda_{1}\left(w_{i k}\right)$ for all i, k.

Proof. Let $\bar{X}=\left(\bar{x}_{1}^{T}, \bar{x}_{2}^{T}, \ldots, \bar{x}_{n}^{T}\right)^{T}$ be an eigenvector corresponding to the largest eigenvalue λ_{1} of $L(G)$.We assume that \bar{x}_{i} is the vector component of \bar{X} such that

$$
\begin{equation*}
\bar{x}_{i}^{T} \bar{x}_{i}=\max _{k \in V}\left\{\bar{x}_{k}^{T} \bar{x}_{k}\right\} \tag{2.2}
\end{equation*}
$$

Since \bar{X} is nonzero, so is \bar{x}_{i}.
The (i, j)-th element of $L(G)$ is

$$
\begin{cases}w_{i} ; & \text { if } i=j \\ -w_{i, j} ; & \text { if } i \sim j \\ 0 ; & \text { otherwise. }\end{cases}
$$

Now we consider the matrix $L^{2}(G)$. The (i, j)-th element of $L^{2}(G)$ is

$$
\begin{cases}w_{i}^{2}+\sum_{k \in N_{i}} w_{i k}^{2} ; & \text { if } i=j \\ -w_{i} w_{i j}-w_{j i} w_{j}+\sum_{k \in N_{i} \cap N_{j}} w_{i k} w_{k j} ; & \text { otherwise. }\end{cases}
$$

We have

$$
\begin{equation*}
L^{2}(G) \bar{X}=\lambda_{1}^{2} \bar{X} \tag{2.3}
\end{equation*}
$$

From the i-th equation of (2.3), we have

$$
\lambda_{1}^{2} \bar{x}_{i}=w_{i}^{2} \bar{x}_{i}+\sum_{k: k \sim i} w_{i k}^{2} \bar{x}_{i}+\sum_{k: k \sim i}-\left(w_{i} w_{i k}+w_{i k} w_{k}\right) \bar{x}_{k}+\sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}} w_{i s} w_{s t} \bar{x}_{t}\right)
$$

i.e.

$$
\begin{equation*}
\lambda_{1}^{2} \bar{x}_{i}^{T} \bar{x}_{i}=\bar{x}_{i}^{T} w_{i}^{2} \bar{x}_{i}+\sum_{k: k \sim i} \bar{x}_{i}^{T} w_{i k}^{2} \bar{x}_{i}+\sum_{k: k \sim i}-\bar{x}_{i}^{T}\left(\left(w_{i} w_{i k}+w_{k i} w_{k}\right)\right) \bar{x}_{k}+\sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}} \bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{t}\right) . \tag{2.4}
\end{equation*}
$$

Taking the modulus on both sides of (2.4), we get

$$
\begin{equation*}
\left|\lambda_{1}^{2}\right| \bar{x}_{i}^{T} \bar{x}_{i} \leq\left|\bar{x}_{i}^{T} w_{i}^{2} \bar{x}_{i}\right|+\sum_{k: k \sim i}\left|\bar{x}_{i}^{T} w_{i k}^{2} \bar{x}_{i}\right|+\sum_{k \sim i}\left|\bar{x}_{i}^{T}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \bar{x}_{k}\right|+\sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}}\left|\bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{t}\right|\right) . \tag{2.5}
\end{equation*}
$$

Since $w_{i, k}$ is the positive definite matrix for every $i, k, w_{i, k}^{2}$ matrices are also positive definite. So, we have

$$
\begin{equation*}
\leq \lambda_{1}\left(w_{i}^{2}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}^{2}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{k \sim i}\left|\bar{x}_{i}^{T}\left(w_{i} w_{i k}+w_{i k} w_{k}\right) \bar{x}_{k}\right|+\sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}}\left|\bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{t}\right|\right) \tag{2.6}
\end{equation*}
$$

from (1.3).

Now let examine whether ($w_{i} w_{i k}+w_{k i} w_{k}$) for $k \sim i$ and $w_{i s} w_{s t}$ for $s \in N_{i} \cap N_{t}$ are Hermitian in the inequality of (2.6). Case 1: $\left(w_{i} w_{i k}+w_{k i} w_{k}\right)$ and $w_{i s} w_{s t}$ are Hermitian matrices.
Then using inequality in (1.3), we get (2.6) as

$$
\begin{align*}
\leq & \lambda_{1}\left(w_{i}^{2}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}^{2}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{k}^{T} \bar{x}_{k}} \\
& +\sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s t}\right) \sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}}\right) . \tag{2.7}
\end{align*}
$$

Case 2: $\left(w_{i} w_{i k}+w_{k i} w_{k}\right)$ is Hermitian for $k \sim i$ and $w_{i s} w_{s t}$ is not a Hermitian matrix for $s \in N_{i} \cap N_{t}, 1 \leq i, t \leq n$. Since $\left(w_{i} w_{i k}+w_{k i} w_{k}\right)$ is Hermitian, from (1.3) we have

$$
\begin{equation*}
\sum_{k \sim i}\left|\bar{x}_{i}^{T}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \bar{x}_{k}\right| \leq \lambda_{1}\left(\left(w_{i} w_{i k}+w_{k i} w_{k}\right)\right) \sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{k}^{T} \bar{x}_{k}} \tag{2.8}
\end{equation*}
$$

Now, let $w_{i s} w_{s t}$ not be a Hermitian matrix for $s \in N_{i} \cap N_{t}, 1 \leq i, t \leq n$. Let us take the ratio of

$$
\begin{equation*}
\left|\frac{\bar{x}_{k}^{T} w_{k s} w_{s t} \bar{x}_{t}}{\bar{x}_{k}^{T} \bar{x}_{t}}\right| \tag{2.9}
\end{equation*}
$$

for $1 \leq k, t \leq n$. If $N_{k} \cap N_{t}=\varnothing$, this ratio is zero. So let us consider $N_{k} \cap N_{t} \neq \varnothing$. Then we get

$$
\left|\frac{\bar{x}_{k}^{T} w_{k s} w_{s t} \bar{x}_{t}}{\bar{x}_{k}^{T} \bar{x}_{t}}\right|=\frac{\left|\bar{x}_{k}^{T} w_{k s} w_{s t} \bar{x}_{t}\right|}{\left|\bar{x}_{k}^{T} \bar{x}_{t}\right|}
$$

and using the Cauchy Schwarz inequality we have

$$
\geq \frac{\left|\bar{x}_{k}^{T} w_{k s} w_{s t} \bar{x}_{t}\right|}{\sqrt{\bar{x}_{k}^{T} \bar{x}_{k}} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}}}
$$

From (2.2), we get

$$
\begin{equation*}
\left|\frac{\bar{x}_{k}^{T} w_{k s} w_{s t} \bar{x}_{t}}{\bar{x}_{k}^{T} \bar{x}_{t}}\right| \geq \frac{\left|\bar{x}_{k}^{T} w_{k s} w_{s t} \bar{x}_{t}\right|}{\sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}}} \tag{2.10}
\end{equation*}
$$

Since (2.10) implies for each \bar{x}_{k} and \bar{x}_{t}

$$
\min _{\bar{x}_{k} \neq 0, \bar{x}_{t} \neq 0}\left\{\left|\frac{\bar{x}_{k}^{T} w_{k s} w_{s t} \bar{x}_{t}}{\bar{x}_{k}^{T} \bar{x}_{t}}\right|\right\}=\frac{\left|\bar{x}_{i}^{T} w_{k s} w_{s t} \bar{x}_{t}\right|}{\sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}}}
$$

from inequality of (1.2) and since $\lambda_{1}\left(w_{i s} w_{s t}\right)$ is the largest eigenvalue of $w_{i s} w_{s t}$ matrix for $s \in N_{i} \cap N_{t}, 1 \leq i, t \leq n$ we have

$$
\begin{equation*}
\frac{\left|\bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{t}\right|}{\sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}}} \leq\left|\lambda_{i}\right|\left(w_{i s} w_{s t}\right) \leq \lambda_{1}\left(w_{i s} w_{s t}\right) \tag{2.11}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}}\left|\bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{t}\right| \leq \lambda_{1}\left(w_{i s} w_{s t}\right) \sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}} \tag{2.12}
\end{equation*}
$$

If we arrange the expressions (2.8) and (2.12) in the inequality of (2.6), we can again get the inequality in (2.7).
Case 3: $\left(w_{i} w_{i k}+w_{k i} w_{k}\right)$ is not Hermitian for $k \sim i$ and $w_{i s} w_{s t}$ is a Hermitian matrix for $s \in N_{i} \cap N_{t}, 1 \leq i, t \leq n$.
Since the matrix of $w_{i s} w_{s t}$ is Hermitian, we get

$$
\begin{equation*}
\sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}}\left|\bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{t}\right|\right) \leq \sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s t}\right) \sqrt{\bar{x}_{i}^{T}} \bar{x}_{i} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}}\right) . \tag{2.13}
\end{equation*}
$$

On the other hand, let $\left(w_{i} w_{i k}+w_{k i} w_{k}\right)$ not be a Hermitian matrix for $k \sim i$. By a similar argument to Case 2 we have

$$
\begin{equation*}
\frac{\left|\bar{x}_{i}^{T}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \bar{x}_{t}\right|}{\sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{k}^{T} \bar{x}_{k}}} \leq\left|\lambda_{i}\right|\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \leq \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \tag{2.14}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sum_{k \sim i}\left|\bar{x}_{i}^{T}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \bar{x}_{k}\right| \leq \sum_{k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{k}^{T} \bar{x}_{k}} . \tag{2.1.}
\end{equation*}
$$

If we arrange the expressions (2.15) and (2.13) in the inequality of (2.6), we can again get the inequality in (2.7).
Case 4: The matrices of $\left(w_{i} w_{i k}+w_{k i} w_{k}\right)$ for $k \sim i$ and $w_{i s} w_{s t}$ for $s \in N_{i} \cap N_{t}, 1 \leq i, t \leq n$ are not Hermitian matrices. By applying the same methods as Cases 2 and 3, we have also (2.7). Therefore, we see that

$$
\begin{align*}
\lambda_{1}^{2} \bar{x}_{i}^{T} \bar{x}_{i} \leq & \lambda_{1}\left(w_{i}^{2}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}^{2}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \sqrt{\bar{x}_{i}^{T} \bar{x}_{i} \sqrt{\bar{x}_{k}^{T}} \bar{x}_{k}} \\
& +\sum_{1 \leq i, t \leq n}\left(\sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s t}\right) \sqrt{\bar{x}_{i}^{T} \bar{x}_{i}} \sqrt{\bar{x}_{t}^{T} \bar{x}_{t}}\right) \tag{2.16}
\end{align*}
$$

in all situations. If we use (2.2), we have

$$
\begin{equation*}
\leq \lambda_{1}\left(w_{i}^{2}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}^{2}\right)_{i}^{T} \bar{x}_{i}+\sum_{k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \bar{x}_{i}^{T} \bar{x}_{i}+\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s t}\right) \bar{x}_{i}^{T} \bar{x}_{i} . \tag{2.17}
\end{equation*}
$$

Thus we obtain

$$
\lambda_{1} \leq \sqrt{\lambda_{1}\left(w_{i}^{2}\right)+\sum_{k: k \sim i} \lambda_{1}\left(w_{i, k}^{2}\right)+\sum_{k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right)+\sum_{1 \leq i, t \leq n \in \cap} \sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i, s} w_{s, t}\right)},
$$

i.e.

$$
\begin{equation*}
\lambda_{1} \leq \max _{i \in V}\left\{\sqrt{\left(\lambda_{1}\left(w_{i}^{2}\right)+\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}^{2}\right)+\sum_{k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right)+\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s t}\right)\right)}\right\} . \tag{2.18}
\end{equation*}
$$

Now suppose that equality in (2.1) holds. Then all the equalities in the above argument must be equalities. From equality in (2.17) we have

$$
\begin{equation*}
\bar{x}_{i}^{T} \bar{x}_{i}=\bar{x}_{k}^{T} \bar{x}_{k} \tag{2.19}
\end{equation*}
$$

for all $k, k \sim i$ and for all $k, k \sim p, p \sim i$. From this we say $\bar{x}_{k} \neq \overline{0}$.
From equality in (2.16) and using Lemma 1 we get that \bar{x}_{i} is eigenvector of $w_{i, k},\left(w_{i} w_{i k}+w_{k i} w_{k}\right), w_{i s} w_{\text {sk }}$ such that $s \in N_{i} \cap N_{k}$ for the largest eigenvalues $\lambda_{1}\left(w_{i k}\right), \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right), \lambda_{1}\left(w_{i s} w_{s k}\right)$ respectively and for any k

$$
\begin{equation*}
\bar{x}_{k}=b_{i k} \bar{x}_{i} \tag{2.20}
\end{equation*}
$$

for some $b_{i k}$. Similarly, from equality in (2.16) and using Lemma 1 we also get that \bar{x}_{i} is an eigenvector of $w_{i s} w_{\text {st }}$ such that $s \in N_{i} \cap N_{t}$ for the largest eigenvalue $\lambda_{1}\left(w_{i s} w_{s t}\right)$ for any $1 \leq i, t \leq n$

$$
\begin{equation*}
\bar{x}_{t}=c_{i t} \bar{x}_{i} \tag{2.21}
\end{equation*}
$$

for some $c_{i t}$.
From (2.19) we get

$$
\left(b_{i k}^{2}-1\right) \bar{x}_{i}^{T} \bar{x}_{i}=0\left(c_{i t}^{2}-1\right) \bar{x}_{i}^{T} \bar{x}_{i}=0,
$$

i.e.

$$
\begin{equation*}
b_{i k}= \pm 1, \quad c_{i t}= \pm 1 \quad \text { as } \bar{x}_{i}^{T} \bar{x}_{i}>0 . \tag{2.22}
\end{equation*}
$$

Now let's take any vertex i.
Since $w_{i k}$ is a positive definite matrix, $w_{i, k}^{2}$ and w_{i}^{2} are also positive matrices. Thus, we get

$$
\begin{align*}
& \bar{x}_{i}^{T} w_{i}^{2} \bar{x}_{i}>0, \\
& \bar{x}_{i}^{T} w_{i k}^{2} \bar{x}_{i}>0 . \tag{2.23}
\end{align*}
$$

From equality in (2.16) we get

$$
\begin{equation*}
-\sum_{k \sim i} b_{i k} \bar{x}_{i}^{T}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \bar{x}_{i}=\sum_{k \sim i}\left|b_{i k}\right|\left|\bar{x}_{i}^{T}\left(w_{i} w_{i k}+w_{k i} w_{k}\right) \bar{x}_{i}\right| \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}} c_{i t} \bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{i}=\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}}\left|c_{i t}\right|\left|\bar{x}_{i}^{T} w_{i s} w_{s t} \bar{x}_{i}\right| . \tag{2.25}
\end{equation*}
$$

Since $b_{i k}= \pm 1$, therefore from (2.24), we get $b_{i k}=-1$ for all $k, k \sim i$. Hence,

$$
\bar{x}_{k}=-\bar{x}_{i}
$$

for all $k, k \sim i$.
Since $c_{i t}= \pm 1$, therefore from (2.25) we get $c_{i t}=1$ for all $1 \leq i, t \leq n$. Hence,

$$
\bar{x}_{t}=\bar{x}_{i}
$$

for all $1 \leq i, t \leq n$.
Let $U=\left\{k: \bar{x}_{k}=-\bar{x}_{i}\right\}$ for all $k, k \sim i$ and $W=\left\{k: \bar{x}_{k}=\bar{x}_{i}\right\}$ such that $k \in N_{i} \cap N_{t}$ for all $1 \leq i, t \leq n$. Moreover, from equality in (2.17), \bar{x}_{i} is a common eigenvector of $w_{i, k}$, corresponding to the largest eigenvalue $\lambda_{1}\left(w_{i k}\right)$ for all i, k. Since G is connected $V=U \cup W$ and the subgraphs induced by U and W respectively are empty graphs. Hence G is bipartite.

Now we have

$$
\begin{equation*}
L(G) \bar{x}_{i}=\lambda_{1} \bar{x}_{i}, \tag{2.26}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
w_{i} \bar{x}_{i}-\sum_{k: k \sim i} w_{i k} \bar{x}_{k}=\lambda_{1} \bar{x}_{i} \tag{2.27}
\end{equation*}
$$

For $i, p \in U$

$$
\begin{equation*}
\lambda_{1} \bar{x}_{i}=w_{i} \bar{x}_{i}+\sum_{k: k \sim i} w_{i k} \bar{x}_{i} \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1} \bar{x}_{i}=w_{p} \bar{x}_{i}+\sum_{k: k \sim p} w_{i p} \bar{x}_{i} . \tag{2.29}
\end{equation*}
$$

So, we get

$$
\begin{equation*}
\left(\lambda_{1}\left(w_{i}\right)-\lambda_{1}\left(w_{p}\right)\right) x_{i}=0 \tag{2.30}
\end{equation*}
$$

from (2.28) and (2.29) as \bar{x}_{i} is an eigenvector of w_{i} corresponding to the largest eigenvalue $\lambda_{1}\left(w_{i}\right)$ for all i. Since $\bar{x}_{i} \neq 0$, therefore $\lambda_{1}\left(w_{i}\right)$ is constant for all $i \in U$. Similarly we can also show that $\lambda_{1}\left(w_{i}\right)$ is constant for all $i \in W$. Hence G is a bipartite semiregular graph.

Conversely, suppose that conditions (i)-(ii) of the theorem hold for the graph G.
We must prove

$$
\lambda_{1}=\max _{i}\left\{\sqrt{\lambda_{1}^{2}\left(w_{i}\right)+\sum_{k: k \sim i} \lambda_{1}^{2}\left(w_{i k}\right)+\sum_{k: k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{k i} w_{k}\right)+\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s t}\right)}\right\} .
$$

Let U, W be partite sets of G. Also let $\lambda_{1}\left(w_{i}\right)=\alpha$ for $i \in U$ and $\lambda_{1}\left(w_{i}\right)=\beta$ for $i \in W$.
Since G is a bipartite graph,therefore U, W are partite sets of G. $N_{i} \cap N_{t}$ is empty for all $1 \leq i, t \leq n$. To prove, let $N_{i} \cap N_{t} \neq \varnothing$. Thus, there is a vertex s such that $s \sim i, s \sim t$. On the other hand, let $i \in U, t \in W$.

$$
\begin{align*}
& s \sim i \Rightarrow s \in W \tag{2.31}\\
& s \sim t \Rightarrow s \in U \tag{2.32}
\end{align*}
$$

This is contradiction according to (2.30) and (2.31). Hence, we found that $N_{i} \cap N_{t}=\varnothing$.
The following equation can be easily verified:

$$
\left(2 \alpha^{2}+2 \alpha \beta\right)\left(\begin{array}{c}
\bar{x} \\
\bar{x} \\
\vdots \\
\bar{x} \\
-\bar{x} \\
-\bar{x} \\
\vdots \\
-\bar{x}
\end{array}\right)=A\left(\begin{array}{c}
\bar{x} \\
\bar{x} \\
\vdots \\
\bar{x} \\
-\bar{x} \\
-\bar{x} \\
\vdots \\
-\bar{x}
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{ccc}
w_{1}^{2}+\sum_{k \in N_{1}} w_{1, n}^{2} & -\left(w_{1} w_{1,2}+w_{1,2} w_{2}\right)+\sum_{k \in N_{1} \cap N_{2}} w_{1 k} w_{k, 2} \cdots & -\left(w_{1} w_{1, n}+w_{1, n} w_{n}\right)+\sum_{k \in N_{1} \cap N_{n}} w_{1, k} w_{k, n} \\
-\left(w_{2} w_{1,2}+w_{1,2} w_{1}\right)+\sum_{k \in N_{1} \cap N_{2}} w_{1, k} w_{k, 2} & -\sum_{k \in N_{2}} w_{1,2}^{2} \cdots & -\left(w_{2} w_{1, n}+w_{1, n} w_{n}\right)+\sum_{k \in N_{2} \cap N_{n}} w_{2, k} w_{k, n} \\
\vdots & \vdots & \vdots \\
-\left(w_{n} w_{1, n}+w_{1, n} w_{1}\right)+\sum_{k \in N_{1} \cap N_{n}} w_{1, k} w_{k, n} & -\left(w_{2} w_{1, n}+w_{1, n} w_{n}\right)+\sum_{k \in N_{2} \cap N_{n}} w_{2, k} w_{k, n} \ldots & w_{n}^{2}+\sum_{k \in N_{n}} w_{k, n}^{2}
\end{array}\right) .
$$

Therefore $2 \alpha^{2}+2 \alpha \beta$ is an eigenvalue of $L^{2}(G)$. So

$$
\begin{equation*}
2 \alpha^{2}+2 \alpha \beta \leq \lambda_{1}^{2} \tag{2.33}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\lambda_{1}^{2}\left(w_{i}\right)+\sum_{k: k \sim i} \lambda_{1}^{2}\left(w_{i k}\right)+\sum_{k: k \sim i} \lambda_{1}\left(w_{i} w_{i k}+w_{i k} w_{k}\right)+\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s}\right) \lambda_{1}\left(w_{s t}\right)=2 \alpha^{2}+2 \alpha \beta \tag{2.34}
\end{equation*}
$$

for all $i \in V$. We get

$$
\lambda_{1}^{2} \leq \max _{i \in V}\left\{\left(\lambda_{1}\left(w_{i}^{2}\right)+\sum_{k: k \sim i} \lambda_{1}\left(w_{i k}^{2}\right)+\sum_{k \sim i} \lambda_{1}\left(\left(w_{i} w_{i k}+w_{i k} w_{k}\right)\right)+\sum_{1 \leq i, t \leq n} \sum_{s \in N_{i} \cap N_{t}} \lambda_{1}\left(w_{i s} w_{s k}\right)\right)\right\}=2 \alpha^{2}+2 \alpha \beta
$$

from inequality in (2.18). Hence the theorem is proved by (2.33).
Corollary 2. Let G be a simple connected weighted graph where each edge weight $w_{i, j}$ is a positive number. Then

$$
\begin{equation*}
\lambda_{1} \leq \max _{i}\left\{\sqrt{w_{i}^{2}+w_{i}+\sum_{j}\left\{\left(w_{i} w_{i, j}+w_{i, j} w_{j}\right): i \sim j\right\}+\sum_{1 \leq i, t \leq n} \sum_{s}\left\{w_{i s} w_{s j}: s \in N_{i} \cap N_{t}\right\}}\right\} \tag{2.35}
\end{equation*}
$$

Moreover equality holds in (2.35) if and only if G is a bipartite semiregular graph.
Proof. We have $\lambda_{1}\left(w_{i}\right)=w_{i}$ and $\lambda_{1}\left(w_{i j}\right)=w_{i j}$ for all i, j. From Theorem 5 we get the required result.
Corollary 3. Let G be a simple connected unweighted graph. Then

$$
\lambda_{1} \leq \max _{i}\left\{\sqrt{d_{i}^{2}+d_{i}+\sum_{j}\left\{d_{i}+d_{j}+\left|N_{i} \cap N_{j}\right|: i \sim j\right\}+\sum_{j}\left\{\left|N_{i} \cap N_{j}\right|: i \nsim j\right\}}\right\}
$$

where d_{i} is the degree of vertex i and $\left|N_{i} \cap N_{j}\right|$ is the number common neighbors of i and j.
Proof. For an unweighted graph, $w_{i, j}=1$ for $i \sim j$. Therefore $w_{i}=d_{i}$. Using Corollary 2 we get the required results.
Example 1. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be a weighted graph where $V_{1}=\{1,2,3,4\}, E_{1}=\{\{1,4\},\{2,3\},\{3,4\}\}$ and each weight is a positive definite matrix of three order. Let $V_{2}=\{1,2,3,4,5,6,7\}, E_{2}=\left\{\begin{array}{l}\{1,4\},\{2,4\},\{3,4\},\} \\ \{4,5\},\{5,6\},\{5,7\}\end{array}\right\}$ such that each weight is a positive definite matrix of order two. Assume that the Laplacian matrices of G_{1} and G_{2} are as follows:

$$
L\left(G_{1}\right)=\left[\begin{array}{cccccccccccc}
3 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & -1 & 1 \\
1 & 3 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -3 & 1 \\
-1 & -1 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -5 \\
0 & 0 & 0 & 5 & 0 & 2 & -5 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 2 & 0 & -5 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 5 & -2 & -2 & -5 & 0 & 0 & 0 \\
0 & 0 & 0 & -5 & 0 & -2 & 6 & 0 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -5 & -2 & 0 & 10 & 5 & 0 & -5 & -3 \\
0 & 0 & 0 & -2 & -2 & -5 & 2 & 5 & 8 & 0 & -3 & -3 \\
-3 & -1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 4 & 1 & -1 \\
-1 & -3 & 1 & 0 & 0 & 0 & 0 & -5 & -3 & 1 & 8 & 2 \\
1 & 1 & -5 & 0 & 0 & 0 & 0 & -3 & -3 & -1 & 2 & 8
\end{array}\right]
$$

and

$$
L\left(G_{2}\right)=\left[\begin{array}{cccccccccccccc}
1 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 & -1 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & -1 & -4 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & -1 & -1 & -1 & 4 & 4 & -1 & -1 & 0 & 0 & 0 & 0 \\
-1 & -2 & -1 & -3 & -1 & -4 & 4 & 14 & -1 & -5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 3 & 3 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -5 & 3 & 18 & -1 & -6 & -1 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -6 & 1 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -7 & 0 & 0 & 1 & 7
\end{array}\right] .
$$

The largest eigenvalues of $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are $\lambda_{1}=22.25, \lambda_{2}=26.16$ rounded two decimal places and the above mentioned bounds give the following results:

	(1.4)	(1.5)	(1.6)	(2.1)
G_{1}	26.41	26.38	23.17	25.03
G_{2}	33.98	29.65	27.11	27.22.

Consequently, we see that the bound in (2.1) is better than the bounds in (1.4) and (1.5). But it is not better than the bound in (1.6) from the above table.

Acknowledgment

Thanks are due to Mr. Kinkar Chandra Das for his kindness in checking this paper.

References

[1] W.N. Anderson, T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141-145.
[2] K.C. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 368 (2003) 269-278.
[3] K.C. Das, A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs, Linear Algebra Appl. 376 (2004) 173-186.
[4] K.C. Das, Sharp lower bounds on the Laplacian eigenvalues of trees, Linear Algebra Appl. 384 (2004) 155-169.
[5] K.C. Das, The largest two Laplacian eigenvalues of a graph, Linear Multilinear Algebra 52 (6) (2004) 441-460.
[6] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (2) (1994) 221-229.
[7] J.-S. Li, D. Zhang, A new upper bound for eigenvalues of the Laplacian matrix of a graph, Linear Algebra Appl. 265 (1997) 93-100.
[8] J.-S. Li, D. Zhang, On Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998) 305-307.
[9] J.-S. Li, Y.-L. Pan, de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph, Linear Algebra Appl. 328 (2001) 153-160.
[10] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1998) 33-35.
[11] Y.-L. Pan, Sharp upper bounds for the Laplacian graph eigenvalues, Linear Algebra Appl. 355 (2002) 287-295.
[12] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[13] S. Sorgun, Ş Büyükköse, H.S. Özarslan, An upper bound on the spectral radius of weighted graphs (submitted for publication).
[14] K.C. Das, R.B. Bapat, A sharp upper bound on the largest Laplacian eigenvalue of weighted graph, Linear Algebra Appl. 409 (2005) 153-165.
[15] K.C. Das, Extremal graph characterization from the upper bound of the Laplacian spectral radius of weighted graphs, Linear Algebra Appl. 427 (2007) 55-69.

[^0]: * Corresponding author.

 E-mail addresses: srgnrzs@gmail.com (S. Sorgun), serifebuyukkose@gmail.com (Ş. Büyükköse).

