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Abstract

For two not necessarily commutative topological groups G and K , let H(G; K) denote the
space of all continuous homomorphisms from G to K with the compact-open topology. We
prove that if G is metrizable and K is compact then H(G; K) is a k-space. As a consequence
we obtain that if D is a dense subgroup of G then H(D; K) is homeomorphic to H(G; K), and
if G is separable h-complete, then the natural map G → C(H(G; K); K) is open onto its image.
c© 2003 Elsevier Science B.V. All rights reserved.
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The aim of the present paper is to generalize the result of Chasco [2] that for
every abelian metrizable group G, its dual group Ĝ (i.e. the group of homomorphisms
into the unit circle, T) is a k-space under the compact-open topology. We prove that
the space of homomorphisms H(G;K) is a k-space whenever G is a (not necessarily
commutative) metrizable topological group and K is a compact topological group which
satis<es assumptions that we call “radical-based” below.

De
nition 1. A topological group K is radical-based, if it has a countable base {�n}
at e, such that each �n is symmetric, and for all n∈N:
(1) (�n)n ⊂ �1;
(2) a1; a2 : : : ; an ∈�1 implies a∈�n.

Any topological subgroup K of the unitary group of a C∗-algebra is radical-based:
one can de<ne �n = {u∈K | ‖u− e‖¡�n} for a suitably chosen sequence {�n}.
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Recall that a HausdorG topological space X is called a k-space if F ⊂ X is closed
if and only if F ∩ C is closed for every closed compact subset C of X .

Theorem 1. For a metrizable topological group G and a radical-based compact group
K , H(G;K) is a k-space.

In order to prove Theorem 1 we will need the two results below. To shorten
notations, for �∈H(G;K) we put S�(A; B) = S(A; B)� ∩ H(G;K) where S(A; B) =
{� | �(A) ⊂ B} (A ⊂ G and B ⊂ K).

Lemma 1. If K is radical-based then its base {�n} at e satis:es:

(a) �2k�2k ⊂ �k for all k ∈N;
(b) �2k ⊂ �k for all k ∈N.

Lemma 2. Suppose that G is metrizable and K is compact and radical-based. Let
�∈H(G;K) and U be a neighborhood of e in G. Then S�(U;�2) is precompact, i.e.
S�(U;�2) is compact.

Proof of Theorem 1. Let � ⊂ H(G;K) be a set such that for any compact subset �
of H(G;K), � ∩ � is closed. We have to prove that � is closed. To that end let
�∈H(G;K) such that � 	∈ �. It suIces to <nd a compact subset C of G and l¿ 2
such that S�(C;�2l) ∩ �= ∅.
The group G is <rst countable, so let {Un}∞n=1 be a base at e. We may assume that

Un is decreasing. Set U0 = G. We are going to <nd l¿ 2 and construct inductively a
family {Fn}∞n=0 of <nite subsets of G such that for all n¿ 0

(1) Fn ⊂ Un,

(2)
n⋂
k=1
S�(Fk; �2l) ∩ S�(Un+1; �2) ∩ �= ∅.

First we have to construct F0. By Lemma 2, S�(U1; �2) is compact, thus by the as-
sumption S�(U1; �2) ∩ � is closed. On compact subsets of C(G;K) the compact-open
topology coincides with the topology of pointwise convergence. But � 	∈ S�(U1; �2)∩�,
so there exists a neighborhood of � in the pointwise topology which is disjoint from
S�(U1; �2) ∩ �. It is clear that sets of the form S�(F;�l) where F ⊂ G is <nite
form a base at � for the pointwise topology on H(G;K). So there exists F0 such
that

S�(F0; �l) ∩ S�(U1; �2) ∩ �= ∅: (1)

(Without loss of generality we may assume l¿ 2.) By Lemma 1, �2l ⊆ �l, thus
S�(F0; �2l) ⊂ S�(F0; �l). In particular:

S�(F0; �2l) ∩ S�(U1; �2) ∩ �= ∅: (2)
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Suppose that we have already constructed F0; : : : ; Fn−1 such that (1) and (2) hold.
For all x∈Un we de<ne

�x =
n−1⋂

k=0

S�(Fk; �2l) ∩ S�({x}; �2l) ∩ S�(Un+1; �2) ∩ �: (3)

Notice, that the sets �x are closed, because each S�(Fk; �2l) is closed even in the
pointwise topology. But then

⋂

x∈Un
�x =

n−1⋂

k=0

S�(Fk; �2l) ∩ S�(Un; �2l) ∩ S�(Un+1; �2) ∩ �: (4)

Since S�(Un; �2l) ⊂ S�(Un; �2), this means (using assumption (2)) that

⋂

x∈Un
�x ⊂

n−1⋂

k=0

S�(Fk; �2l) ∩ S�(Un; �2) ∩ �= ∅: (5)

�x are closed subsets of S�(Un+1; �2), which is compact by Lemma 2. Therefore, there
must be a <nite set Fn ⊂ Un such that

⋂
x∈Fn �x = ∅, in other words:

n−1⋂

k=0

S�(Fk; �2l) ∩ S�(Fn; �2l) ∩ S�(Un+1; �2) ∩ �= ∅; (6)

as desired.

Let C =
∞⋃
n=0

Fn ∪ {e}. We have Fn ⊂ Un, so C is a set of elements converging to e.

Thus C is sequentially compact, but since G is metrizable, it means that C is compact.

It is clear that S�(C;�2l) ∩ S�(Un; �2) ∩ � = ∅. Since H(G;K) =
∞⋃
n=1

S�(Un; �2), this

means that S�(C;�2l) ∩ �= ∅. Therefore S�(C;�2l) ∩ �= ∅.

A topological space X is hemicompact if X is the countable union of compact
subspaces Xn, such that every compact subset of X is contained in a <nite union of
the sets Xn.

Corollary 1. For a metrizable topological group G and a radical-based compact group
K , C(H(G;K); K) is completely metrizable.

Proof. Once metrizability has been shown the completeness is obvious, because
H(G;K) is a k-space, and K is complete (because it is compact). Since in [1] it
was shown that if X is hemicompact then C(X; K) is metrizable, it suIces to show
that H(G;K) is hemicompact.
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Let � be a compact subset of H(G;K). By the Ascoli Theorem � is equicontinuous,
in particular there exists a neighborhood U of e such that �(U ) ⊂ �2 for all �∈�. In
other words, � ⊂ Se(U;�2). Let {Un} be a base at e∈G. For some n∈N, Un ⊂ U ,
thus � ⊂ Se(U;�2) ⊂ Se(Un; �2). By Lemma 2, Se(Un; �2) is compact, and clearly

H(G;K) =
∞⋃
n=1

Se(Un; �2), hence H(G;K) is hemicompact, as desired.

De
nition 2. G is h-complete if for any continuous homomorphism f :G → H the
subgroup f(G) is closed in H .

The Corollary below generalizes a theorem by Chasco [2] stating that for a separable

metrizable complete abelian group G, the natural map G → ˆ̂G is an isomorphism of
topological groups if and only if it is bijective.

Corollary 2. Suppose that G is separable metrizable and h-complete, and suppose
further that K is compact and radical-based. Then, the natural map N :G →
C(H(G;K); K) is continuous and open onto the image. (In particular it is an embed-
ding if and only if it is one-to-one.)

Proof. Since G is metrizable it is clear that N is continuous, because the natural map
G → C(C(G;K); K) is continuous. To see that it is open onto its image, we notice
that since G is h-complete, N (G) is closed in C(H(G;K); K), and therefore it is
complete metric. Hence N (G) is a Baire space. Applying an open map type of theorem
([4, Corollary 32.4]) one obtains that N is open onto the image.

Theorem 2. Let K be a compact radical-based group. If D is a dense subgroup of
the metrizable group G then H(D;K) ∼=H(G;K).

Proof. Clearly, H(D;K) = H(G;K) as sets, and we have an induced map
– :H(G;K) → H(D;K) by restriction. Since – is continuous, and bijective, we only
have to show that – is open. To that end we will show that the inverse image
of a compact set is compact. Since H(D;K) is a k-space it will imply that – is
open.
Take a compact subset � of H(D;K). Then, by the Ascoli Theorem � is equicon-

tinuous; in particular there exists a neighborhood U of e in G, such that �(U∩D) ⊂ �4
for all �∈�, and so �(U ∩ D) ⊂ M�4 ⊂ �2 for all �∈�. Thus � ⊂ Se(U ∩ D;�2).
Let V be a symmetric neighborhood of e in G such that V 2 ⊂ U , and let x∈V . There

exists a sequence {xn} ⊂ D such that xn → x, and thus for n¿ n0; xn ∈ xV ⊂ VV ⊂ U .
Since xn ∈D; xn ∈U ∩D for n¿ n0, thus x∈U ∩ D, and hence V ⊂ U ∩ D. Therefore
� ⊂ Se(U ∩ D;�2) ⊂ Se(V;�2). By Lemma 2, Se(V;�2) is precompact, hence � is
compact in H(G;K) as it is closed there.

We note that Theorem 2 is a generalization to the non-abelian case of a similar
result by Chasco [2].
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Uncited but important references

The following books are not quoted above explicitly, but they were a great help to
the author in preparing the present paper: General Topology [3], Uniform Spaces [5],
General Topology [6] and Topological Groups [7].
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