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Discrete symmetry andCP phase of the quark mixing matrix
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Abstract

A simple specific pattern of the two 3× 3 quark mass matrices is proposed, resulting in a prediction of theCP phase of
the charged-current mixing matrixVCKM, i.e., sin2φ1(β) = 0.733, which is in remarkable agreement with data, i.e., sin2φ1 =
0.728±0.056±0.023 from Belle and sin2β = 0.722±0.040±0.023 from BaBar. This pattern can be maintained by a disc
family symmetry, an example of which isD7, the symmetry group of the heptagon.
 2005 Elsevier B.V.

The three families of quarks have very different masses and mix with one another in the charged-curren
matrix VCKM in a nontrivial manner. This 3× 3 matrix has three angles and one phase, the latter being the s
of CP nonconservation in the Standard Model (SM) of particle interactions. In the context of the SM, this p
now measured with some precision, i.e.,

(1)sin 2φ1 = 0.728± 0.056± 0.023

from Belle[1], and

(2)sin 2β = 0.722± 0.040± 0.023

from BaBar[2], whereφ1 (also known asβ) is defined as the phase of the elementVtd , i.e.,

(3)Vtd = |Vtd |e−iφ1.

Together with|Vus |, |Vcb|, and|Vub|, the entireVCKM matrix can now be fixed, up to sign and phase conventi
Given the experimentally measured values of these parameters, is there a pattern to be recognized? The
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Table 1
Character table ofD7

Class n h χ1 χ2 χ3 χ4 χ5

C1 1 1 1 1 2 2 2
C2 7 2 1 −1 0 0 0
C3 2 7 1 1 a1 a2 a3
C4 2 7 1 1 a2 a3 a1
C5 2 7 1 1 a3 a1 a2

not obvious, because the relevant physics comes from the structure of the two 3× 3 quark mass matrices

(4)Mu=V u
L

(
mu 0 0
0 mc 0
0 0 mt

)(
V u

R

)†
,

(5)Md=V d
L

(
md 0 0
0 ms 0
0 0 mb

)(
V u

R

)†
,

from which the observed quark mixing matrix is obtained

(6)VCKM = (
V u

L

)†
V d

L .

A theoretically consistent approach to understandingMu andMd is to extend the Lagrangian of the SM
support a family symmetry in such a way that the forms of these mass matrices are restricted with few
meters than are observed, thus making one or more predictions. Because of complex phases, this is o
straightforward proposition. In this Letter, we advocate a simple specific pattern, i.e.,Mu is diagonal, wherea
Md is of the form

(7)Md =
( 0 a ξb

a 0 b

ξc c d

)
,

which was first proposed by one of us long ago[3]. The difference here is that whereas|ξ | was fixed atmu/mc in
that model, it is now a free parameter. The family symmetry used previously wasS3 × Z3, which still works, but
with differentZ3 assignments and a larger Higgs sector. As a more elegant example for our discussion, we
insteadD7, the symmetry group of the heptagon[4]. A recent proposal[5] based onQ6 has bothMu andMd of
the form of Eq.(7), but withξ = 0. To maintain this latter condition consistently, an extraZ12 symmetry has to be
assumed. Hereξ is simply another parameter, equal to the ratio of two arbitrary vacuum expectation values

The groupD7 has 14 elements, 5 equivalence classes, and 5 irreducible representations. Its characte
given by Table 1. Heren is the number of elements andh is the order of each element. The numbersak are
given byak = 2 cos(2kπ/7). The character of each representation is its trace and must satisfy the followin
orthogonality conditions:

(8)
∑
Ci

niχaiχ
∗
bi = nδab,

∑
χa

niχaiχ
∗
aj = nδij ,

wheren = ∑
i ni is the total number of elements. The number of irreducible representations must be equa

number of equivalence classes.
The three irreducible two-dimensional representations ofD7 may be chosen as follows. For21, let

C1:
(

1 0
)

, C2:
(

0 ωk

7−k

)
(k = 0,1,2,3,4,5,6),
0 1 ω 0
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C3:
(

ω 0
0 ω6

)
,

(
ω6 0
0 ω

)
, C4:

(
ω2 0
0 ω5

)
,

(
ω5 0
0 ω2

)
,

(9)C5:
(

ω4 0
0 ω3

)
,

(
ω3 0
0 ω4

)
,

whereω = exp(2πi/7), then22,3 are simply obtained by the cyclic permutation ofC3,4,5.
For Dn with n prime, there are 2n elements divided into(n + 3)/2 equivalence classes:C1 contains just the

identity, C2 has then reflections,Ck from k = 3 to (n + 3)/2 has 2 elements each of ordern. There are 2 one
dimensional representations and(n−1)/2 two-dimensional ones. ForD3 = S3, the above reduces to the “comple
representation withω = exp(2πi/3) discussed in a recent review[6].

The group multiplication rules ofD7 are

(10)1′ × 1′ = 1, 1′ × 2i = 2i ,

(11)2i × 2i = 1 + 1′ + 2i+1, 2i × 2i+1 = 2i + 2i+2,

where24,5 means21,2. In particular, let(a1, a2), (b1, b2) ∼ 21, then

(12)a1b2 + a2b1 ∼ 1, a1b2 − a2b1 ∼ 1′, (a1b1, a2b2) ∼ 22.

In the decomposition of21 × 22, we have instead

(13)(a2b1, a1b2) ∼ 21, (a2b2, a1b1) ∼ 23.

To arrive at our proposed pattern, let

(14)(u, d)i ∼ 21 + 1, dc
i ∼ 21 + 1, uc

i ∼ 22 + 1,

(15)φd
i ∼ 21 + 1, φu

i ∼ 23 + 1,

where the scalar fieldsφd,u
i are distinguished by an extra symmetry such as supersymmetry so that they

only to dc, uc, respectively. Using the multiplication rules listed above, we see thatMu is indeed diagonal, an
Md is of the form of Eq.(7), with a, d coming from〈φd

3 〉 and (b, ξb), (c, ξc) from 〈φd
1,2〉, respectively. Thes

latter are distinct from〈φu
1,2〉, so that the constraint|ξ | = mu/mc in Ref. [3] no longer applies.

As in Ref. [3], we can redefine the phases ofMd so thata, b, c, d are real, butξ is complex. Assuming tha
a2 � b2 and|ξ |2 � 1, then to a very good approximation,

(16)mb �
√

c2 + d2, ms � bc√
c2 + d2

, md �
∣∣∣∣a2d

bc
− 2ξa

∣∣∣∣,
(17)Vcb � bd

c2 + d2
, Vus � −ad

bc
+ ξ, Vub � ac + ξbd

c2 + d2
.

Using the 6 experimental inputs onmb, ms , md , |Vcb|, |Vus |, and|Vub|, the 6 parametersa, b, c, d , Reξ , and Imξ

are fixed, thereby predicting theCP phase ofVCKM. Numerical inputs of quark masses (in GeV) are taken fr
Ref. [7] evaluated at the scaleMW , i.e.,

(18)md = 0.00473

(+0.00061
−0.00067

)
, ms = 0.0942

(+0.0119
−0.0131

)
, mb = 3.03± 0.11.

Numerical inputs of mixing angles are taken from the 2004 Particle Data Group compilation[8], i.e.,

(19)|Vus | = 0.2200± 0.0026, |Vcb| = (41.3± 1.5) × 10−3, |Vub| = (3.67± 0.47) × 10−3.

Taking the central values of the above 6 quantities, we find

(20)a = 0.0142 GeV, b = 0.1566 GeV, c = 1.8223 GeV, d = −2.4208 GeV,
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(21)Reξ = 0.08124, Im ξ = 0.08791.

After rotating the phase ofVus to make it real to conform to the standard convention, we then predict

(22)sin 2φ1 = 0.733,

in remarkable agreement with experiment, i.e., Eqs.(1) and (2). The three anglesφ1(β), φ2(α), φ3(γ ) of the
unitarity triangle are then 23.6◦, 98.4◦, 58.0◦, respectively.

We may also vary the 6 numerical inputs within their allowed ranges, taking into account the correlation b
md andms (becausemd/ms is tightly constrained). In that case,

(23)sin 2φ1 = 0.733

(+0.107
−0.152

)
.

In the future, these input parameters will be determined with more precision and our model will be more s
tested.

Flavor-changing neutral-current interactions are mediated by the three neutral Higgs bosons in thed sector with
Yukawa couplings given by

(24)LY = a

v3
φ0

3

(
q1q

c
2 + q2q

c
1

) + b

v1

(
φ0

1q2 + φ0
2q1

)
qc

3 + c

v1
q3

(
φ0

1qc
2 + φ0

2qc
1

) + d

v3
φ0

3q3q
c
3 + h.c.,

whereqi, q
c
j are the basis states of the mass matrixMd of Eq.(7). Let

(25)Md = V

(
md 0 0
0 ms 0
0 0 mb

)(
V c

)†
,

thenV = VCKM andV c is its analog for the charge-conjugate states. In this model, they are approximately
by

(26)V �

 1 −(ad/bc) + ξ (ac + ξbd)/(c2 + d2)

(ad/bc) − ξ∗ 1 bd/(c2 + d2)

−a/c −bd/(c2 + d2) 1


 ,

whereξ = v2/v1, and

(27)V c �

 1 −(ad/bc) + ξ∗c2/(c2 + d2) a/b + ξ∗cd/(c2 + d2)

a
√

c2 + d2/bc d/
√

c2 + d2 −c/
√

c2 + d2

−ξc/
√

c2 + d2 c/
√

c2 + d2 d/
√

c2 + d2


 .

Usingqi = Viαdα andqc
j = V c

jβdc
β , we can rewrite the couplings ofφ0

1,2,3 in terms of the quark mass eigensta

and evaluate their contributions to flavor-changing processes such asK–K̄ andB–B̄ mixings, etc.
An important point to notice[9] is that if φ1,2 are replaced byφ3 in the Yukawa sector, then there would be

flavor-changing interactions at all. Hence all such effects are contained in the terms

(28)

(
φ0

1

v1
− φ0

3

v3

)(
bq2q

c
3 + cq3q

c
2

) + ξ

(
φ0

2

v2
− φ0

3

v3

)(
bq1q

c
3 + cq3q

c
1

)
.

Whereas the mass of the SM combination(v1φ
0
1 +v2φ

0
2 +v3φ

0
3)/

√|v1|2 + |v2|2 + |v3|2 should be of order the elec
troweak breaking scale, the two orthogonal combinations contained in the above are allowed to be much
say a few TeV.

TheKL–KS mass difference gets its main contribution from the(q1q
c
3)(q3q

c
1)† term throughφ0

2 exchange. Thus

(29)

mK � BKf 2

Kb2c2d

2 2 3/2 2 2
.

mK 3(c + d ) m2v1
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UsingfK = 114 MeV,BK = 0.4, v1 = 100 GeV, andm2 = 7 TeV, we find this contribution to be 2.5 × 10−17,
well below the experimental value of 7.0× 10−15. Similarly,

(30)

mB

mB

� BBf 2
Bbcd

3(c2 + d2)1/2m2
2v

2
1

,

and

(31)

mBs

mBs

� BBf 2
Bbcd2

3(c2 + d2)m2
1

(
1

v2
1

+ 1

v2
3

)
.

UsingfB = 170 MeV,BB = 1.0,v1,3 = 100 GeV, andm1,2 = 7 TeV, we find these contributions to be 4.5×10−15

and 7.2× 10−15 respectively, to be compared against the experimental value of 6.3× 10−14 for the former and the
experimental lower bound of 1.8× 10−12 for the latter.

It is interesting to note that the form of Eq.(7) is easily adaptable to the Majorana neutrino mass matrix
rearranging the two zeros, we can have

(32)M(e,µ,τ)
ν =

(
a c d

c 0 b

d b 0

)

as advocated in Ref.[4], which is a successful description of neutrino oscillation phenomena. This hints
intriguing possibility that despite their outward dissimilarities, both quark and lepton family structures may a
come from the same mold.

In conclusion, we have pointed out that theMd of Eq.(7) predicts the correct value of theCP phase of the quar
mixing matrix. Its form is derivable from a discrete family symmetry such asD7, which also works for leptons a
previously shown. Extra Higgs doublets are predicted, but their contributions to flavor-changing interacti
suitably suppressed if their masses are of order a few TeV.
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