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Abstract 

Fibre-reinforced concrete is the concrete with addition of short fibres targeting the improvement of the propriety of this material. 
Its durability is basely connected with the long-term dynamic loading. The main characteristic in that case are the critical stresses. 
The object of this article is steel fibre reinforced concrete (SFRC). For both materials (concrete and SFRC) are also different 
levels of critical stresses: initiation σi and critical σcr. Test findings during compression of concrete samples with and without 
fibre addition by means of acoustic and classical methods is presented. Three kinds of samples are assumed: BZ1 (1% fibres), 
BZ3 (3% fibres) and BZS (without fibre). In the case of concretes from groups BZ1 and BZ3, the level of initiation stresses was 
not found. The process of fibre-reinforced concrete compression has a two-stage character, instead of the process for witness 
concrete destroying is three-stages. It can be stated that the addition of steel fibres has the influence on σ-ε relationship for 
concretes in compression, and the level of critical stresses σcr increases together with the height of the quantity of steel-fibres 
added to the concrete-mixture. During compression the presence of dispersed reinforcement in concrete influences the 
propagation of cracks. 
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1. Introduction 

Fibre-reinforced concrete, with the supplement of steel fibres is commonly applied to make industrial floors as 
well as road and airport runways. Fibre-reinforced concrete is also used to make machine foundations and other 
elements exposed to dynamic loads. In addition, concrete with the supplement of fibres is used as the shotcrete 
technology, for example as casing of the underground structures or at renovation-repair activities. At the same time, 
it should be noted that fibre-reinforced concrete is used more and more often as the material for structural elements. 
An example may be the latest structural solution, the steel-fiber composite floor (Fig. 1) or RC elements absorbing 
energy of destruction in the case of structures exposed to seismic action [1]. An interesting example of fibre-
reinforced concrete application in water construction is the surface slab of the dam in Longshua (China), located in 
the area of seismic impacts [2]. This structure is located in alternately wet and dry environment, and it is periodically 
influenced by large difference in temperatures (during the day and at night). Some of the dam panels were made of 
traditionally reinforced concrete, and some of the same concrete with the supplement of steel fibres. The longest 
panel with fibres has 75 meters and it does not show clear cracks even after the recent earthquake. 
 

 

Fig. 1. Steel-fibre composite floor 

Another example of steel fibres application in the structural elements is a thin shell structure covered buildings 
located in the European Oceanographic Park in Valencia. Structures are a combination of traditionally reinforced 
concrete and fibre-reinforced concrete (Fig. 2, 3). 

 
Fig. 2: SFRC shells made in the European 

Oceanographic Park in Valencia [2] 
Fig. 3: SFRC shells made in the European Oceanographic Park in Valencia [2] 
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Other structures constructed using concrete with supplement of fibre are railway stations made in the Ductal 
technology e.g. Shawnessy Light Rail Transit Station Calgary in Canada [3, 4] or Papatoetoe Railway Station in 
New Zealand [3], tunnels, reservoirs, pools, structures resistant to explosions and other impact loads, elements for 
reinforcement of hills and slopes, pipes and walls (Fig. 4) [5, 6], as well as a number of footbridges for pedestrians 
and bridges (Ductal), among others in Sherbrooke (Canada), in Seoul (Korea), Sakata-Mirai footbridge in Japan [3, 
7], “Point du Diable” Ductal® footbridge in France [8] or the bridge over Shepherds Creek, 150km north of Sydney 
in Australia. 

The essence of adding steel fibres to the concrete matrix is their anchorage force, therefore fibres with deformed 
tips are used. The geometric parameters of the applied fibres are also important. When comparing the graph of σ-ε 
relation for concrete with and without fibres, it can be noticed that the area under the curve, that is the energy needed 
to destroy the element, is greater for a material with the supplement of dispersed reinforcement. At the same time, 
limit deformation accompanying the total destruction of an element is greater for the one made of fibre-reinforced 
concrete [9-14]. 

 
 
It has been confirmed that the process of failure normal and high-strength concretes, as well as some special 

concretes under compression load proceeds in three stages [9, 14, 15]. Particular stages of failure demarcate the 
critical initiating stress i and the critical stress cr. The boundary between the stable initiation stage of cracks and 
the stable cracks propagation are i, while stresses cr demarcate stages of stable and unstable cracks propagation 
[9]. In the light of the presented information, an interesting thing is the fibre-reinforced concrete destruction process 
under compression loading. The purpose of the study is to examine, by means of two methods: the acoustic emission 
method, as well as the measurement deformation method, the process of the fibre-reinforced concrete destruction, 
differing in the content of steel fibres, along with specification of i and cr stress levels, in the function of increase 
in compressive stress levels. Knowledge in this respect seems to be necessary, because, as we can see, fibre-
reinforced concrete has now more and more widespread application in the construction practice, and the knowledge 
on the values of these stress levels is directly connected with the problems of durability and operation of structural 
elements made of these concretes [9]. 

2. Tests 

2.1. Materials 

The tests covered 3 series of concretes marked accordingly: BZS, BZ1 and BZ3. These concretes were made of 
Portland cement CEM II/B S-32.5R, aggregate gravel, sand, super plasticizer, and tap water. The size of a maximum 
aggregate grain in these concretes amounted to 16 mm. Compositions of the examined concretes were identical, and 
they differed only in the quantities of used dispersed reinforcement. The composition of concrete mix is specified in 
Tables 1. For concretes of series BZ1 and BZ3, steel fibres were added with the dimensions of 1mm/50mm, in the 
quantity of, accordingly, 1% and 3% as compared to the concrete mass. On the other hand, concrete of BZS series 

Fig. 4: Example of fibre-reinforced concrete tubing element examined in the natural scale [6] 
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was treated as the "witness" concrete and consequently, dispersed reinforcement was not used in it. Steel fibres were 
dosed to the mix in the last stage of mixing. Concrete samples were stored for 28 days in the climate chamber at the 
air temperature of 18˚C (±1˚C) and the relative air humidity of 95% (±5%), and then they were stored in dry-air 
conditions until the test. 

Table 1. Composition specification for the designed concrete mix of the tested concretes BZS, BZ1 and BZ3 

 
2.2. Materials 

2.2.1. Acoustic emission method 

For tests by means of the acoustic emission method, rectangular samples have been prepared, with the 
dimensions of 50×50×100 mm, cut out from larger test elements. As they were being compressed, AE descriptors 
versus time were registered. Compression was performed without friction at the specimen/strength tester plates 
interface. For this purpose the surfaces involved were polished to make them mutually parallel with an accuracy to 
0,05 mm and then lubricated with grease. The investigations were carried out using a Vallen-Systeme AMS3 
acoustic emission measuring set and two VS 150-M sensors with a 100-450 kHz transmission band (Fig. 5). During 
immediate compression of samples, the recorded descriptors of acoustic emission in the function of time were the 
events rate Nzd and the signal effective value RMS [16]. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

No. Composition Quantity 
[kg/m3] 

1 Sand 0-2 mm 630 

2 Multi-fraction gravel 2-8 527 

3 Single-fraction gravel 8-16 724 

4 Cement CEM II/B S-32.5R 325 

5 Water 162 

6 Super plasticizer CHRYSO®  Fluid CE 30 3,25 

7 Steel dispersed fibre according to assumptions 

Fig. 5:Hydraulic testing machine, type 
INSTRON 1126, during test 

Fig. 6: Hydraulic testing machine, type INSTRON 8505, during test 
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2.2.2. Deformation measurement method 

Destructive tests, with the use of the deformation measurement method of cylinder samples with the dimensions 
of 150x300mm. Measurement of deformations was accomplished by means of the MGCplus type measuring system 
by Hottinger Baldwin Messtechnik consisting of AB22A central control unit, ML801 half-bridge multiplex 
tensometric amplifiers and of  

CATMAN 3.11. software for system management, visualization, archiving and data processing. Measurement 
and constraint of the force were done by means of the universal, hydraulic testing machine of INSTRON type, with 
a four-pole 8505 frame and 8505PLUS electronic control unit (tower, console) (Fig. 6). 

Deformation measurements were performed by means of plastic tensometric transducers, type 150/120LY41, by 
Hottinger Baldwin. Tensometers were stuck on two opposite walls parallel to the axis of the compressing force 
impact. The testing procedure consisted of loading the sample in a static manner by controlling machine piston 
displacement. Movement was provided with the speed of 0,5 μm/s. As a result of the tests, measurements were 
obtained from both opposite walls of the sample and then they were averaged. 

2.3. Results 

2.3.1. Results of acoustic emission testing 

Figures 7–9 present the registered AE events rate Nzd  recorded in the function of compression time of concretes 
BZS, BZ1 and BZ3. On the other hand, figures 10–12 present, for these concretes, results of registered signal  

 

 
 
 

Fig. 7. Registered AE events rate Nzd along with the graph 
showing increase in relative compressive stress c/fc in the 

function of failure time in concrete BZS 

Fig. 8. Registered AE events rate Nzd along with the graph 
showing increase in relative compressive stress c/fc in the 

function of failure time in concrete BZ1 

Fig. 9. Registered AE events rate Nzd along with the graph 
showing increase in relative compressive stress c/fc in the 

function of failure time in concrete BZ3 

Fig. 10: Record of the signal effective value (RMS) for 
acoustic emission along with the plotted graph showing the 

increase in relative compressive stress value c/fc in the 
function of failure time in concrete BZS 
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effective value for acoustic emission (RMS) registered in the function of compression time. Figures 7 to 12 also 
include graphs showing the increase in relative compressive stress c/fc versus failure time t and the levels of 
cracking initiating stress i and critical stress cr. In addition, levels of cracking initiating stresses i and critical 
stresses cr were determined, according to the criteria as specified in [9, 14]. Table 2 gathers the values of levels of 
these stresses specified for all tested concrete series. 

Table 2.  Composition specification for the designed concrete mix of the tested concretes BZS, BZ1 and BZ3 

 
Like for the acoustic emission method, levels of cracking initiating stresses i and critical stresses cr for 

deformation measurement method were determined, according to the criteria as specified in [9, 14]. Values of levels 
of these stresses are gathered in Table 3. 
 The graphs (Fig. 13) imply that along with growth in the quantity of steel fibres in concrete, the maximum stress 
achieved by concrete also grows, and a along with it - the limit deformation accompanying total destruction. For mix 
BZS (0% of fibre) the maximum stress was 35,58MPa, for mix BZ1 (0.5% of fibre) – 37,52 MPa and for mix BZ3 
(3% of fibre) – 41,99MPa. 
 The more fibre was added to the concrete matrix, the larger the area under the curve, which means that more 
energy is needed to destroy such an element. 

Tests conducted using methods indicated that the process of destruction process for concretes BZ1 and BZ3 
containing dispersed reinforcement, loses its three-stage character. It is not possible to determine, in these concretes, 
the levels of cracking initiating stresses i. In the case of these concretes, we can rather speak of "temporary" stable 
propagation of micro-cracks, passing next into "temporary" sudden propagation of micro-cracks. It should be 
assumed that during failure, the presence of dispersed reinforcement in concrete reduces propagation of cracks and 
contributes to reduction in stresses concentration at the places of defects and structure discontinuity. 

Concrete 
Stress level values 

i [-] 
variation 

factor cr [-] 
variation 

factor 

BZS 0,33 1,92 0,78 1,15 

BZI not observed - 0,80 1,32 

BZ3 not observed - 0,81 1,30 

Fig. 11: Record of the signal effective value (RMS) for 
acoustic emission along with the plotted graph showing the 

increase in relative compressive stress value c/fc in the 
function of failure time in concrete BZ1 

Fig. 12: Record of the signal effective value (RMS) for 
acoustic emission along with the plotted graph showing the 

increase in relative compressive stress value c/fc in the 
function of failure time in concrete BZ3 
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Table 3. Levels of cracking initiating stresses i and critical stresses cr specified by means of Deformation measurement method, in the 
examined concretes BZS, BZ1 and BZ3 

 
On the other hand, when it comes to stresses cr, tests indicated that in concretes of BZ1 and BZ3 series, the level 

of these stresses is slightly higher as compared to the "witness" BZS concrete, not containing dispersed 
reinforcement and is, accordingly, 0,80 and 0,81 c/fc in concretes of BZ1 and BZ3 series and 0,78 c/fc in "witness" 
BZS concrete. At this point it is worth noting some analogy between the fibre-reinforced concrete failure process 
and the failure process of concrete saturated with methyl methacrylate [9, 17] 

3. Conclusion 

The conducted tests indicated that the course of destruction process of concretes containing dispersed 
reinforcement in the quantity of 1 and 3% loses its three-stage character. It is not possible to determine in these 
concretes the levels of stresses initiating cracking i . For these concretes we may rather refer to "temporary" stable 
propagation of micro-cracks, developing, in turn, into "temporary" sudden propagation of micro-cracks. It should be 
assumed that during destruction, the presence of dispersed reinforcement in concrete hinders propagation of cracks 
and contributes to a reduced concentration of stresses at the places of defects and discontinuities in the structure [16, 
18].  

Added fibers make cement matrix somehow "sown together". Under the impact of load, energy cumulates to be 

Concrete 
Stress level values 

i [-] 
variation 

factor cr [-] 
variation 

factor 

BZS 0,33 2,45 0,78 1,78 

BZI not observed - 0,80 1,84 

BZ3 not observed - 0,81 1,50 

Fig. 13: Comparative graph of sigma – epsilon dependences for compressed concretes of mix BZ1, BZ3 and BZS 
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finally released at a level of critical stresses that is higher than for "witness" concrete. So that an element with the 
addition of steel fibers would be destroyed, adhesion between cement matrix and aggregate must be lost, fibers must 
detach from the matrix, the matrix must be cut along fibers or fibers should rupture. The addition of fibers gives 
concrete elements greater ductility. 

At this point, it is worth noting some analogy between the fiber-reinforced concrete destruction process and the 
process of destruction of concrete saturated with polymer: methyl-methacrylate [9, 16, 17]. The test proved that in 
polymer-impregnated concrete being compressed it is not possible to determine unambiguously the level of stresses 
initiating cracking i. As a result of reinforcement of the concrete structure with polymer inclusions, three-stage 
character of destruction is lost. In addition, the level of critical stresses for concrete saturated with methyl-
methacrylate is higher than for witness concrete. 
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