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Abstract

In this paper, we deal with the relation between the characteristic function of two nonconstant meromor-
phic functions with three weighted sharing values, which improves a result given by H.X. Yi and Y.H. Li.
From this we establish a theorem which improves a result given by P. Li and C.C. Yang.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let f and g be two nonconstant meromorphic functions in the complex plane. It is assumed
that the reader is familiar with the standard notations of Nevanlinna’s theory such as T (r, f ),
m(r,f ), N(r,f ), N(r,f ) and so on, which can be found in [4]. We use E to denote any set of
positive real numbers of finite linear measure, not necessarily the same at each occurrence. The
notation S(r, f ) denotes any quantity satisfying S(r, f ) = o(T (r, f )) (r → ∞, r /∈ E).

Let a be a complex number, we say that f and g share the value a CM provided f − a and
g − a have the same zeros counting multiplicities (see [13]). We say that f and g share ∞ CM
provided that 1/f and 1/g share 0 CM. Similarly, we say that f and g share the value a IM,
provided that f − a and g − a have the same zeros ignoring multiplicities. In addition, we say
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that f and g share ∞ CM, if 1/f and 1/g share the value 0 CM, and we say that f and g

share ∞ IM, if 1/f and 1/g share the value 0 IM. In this paper, we also need the following one
definition.

Definition 1.1. (See [1, Definition 1].) Let p be a positive integer and a ∈ C ∪ {∞}. Then by
Np)(r,

1
f −a

) we denote the counting function of those zeros of f − a (counted with proper

multiplicities) whose multiplicities are not greater than p, by Np)(r,
1

f −a
) we denote the cor-

responding reduced counting function (ignoring multiplicities). By N(p(r, 1
f −a

) we denote the
counting function of those zeros of f − a (counted with proper multiplicities) whose multiplici-
ties are not less than p, by N(p(r, 1

f −a
) we denote the corresponding reduced counting function

(ignoring multiplicities).

In 1975, C.F. Osgood and C.C. Yang [11] proved the following theorems.

Theorem A. Let f and g be two nonconstant entire functions of finite order. If f and g share 0,
1 CM, then

T (r, f ) ∼ T (r, g) (r → ∞). (1.1)

In the paper of C.F. Osgood and C.C. Yang [11], they proposed the following conjecture.

Osgood–Yang’s conjecture. [11, p. 409] Let f and g be two nonconstant entire functions shar-
ing 0, 1 CM. Then

T (r, f ) ∼ T (r, g) (r → ∞, r /∈ E). (1.2)

In 1989, G. Brosch [3] proved the following two theorems.

Theorem B. Let f and g be two nonconstant meromorphic functions sharing three values CM,
then (

3

8
+ o(1)

)
� T (r, f )

T (r, g)
�

(
3

8
+ o(1)

)
(r → ∞, r /∈ E).

In 1990, W. Bergweiler [2] proved the following theorem.

Theorem C. (See [2, Theorem 1].) There exists a set I ⊂ (0,∞) of infinite Lebesgue measure
and there exist meromorphic functions f and g sharing 0, 1 and ∞ CM such that

T (r, f )

T (r, g)
� 2.

Regarding Theorem C, E. Mues [10] proposed the following one conjecture in 1995.

Mues’ conjecture. [10, p. 28] Let f and g be two nonconstant meromorphic functions sharing
0, 1, ∞ CM. Then

1

2
· (1 + o(1)

)
� T (r, f )

T (r, g)
� 2 · (1 + o(1)

)
(r → ∞, r /∈ E). (1.3)
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In 1998, P. Li and C.C. Yang [8] proved the following theorem.

Theorem D. (See [8, Theorem 1].) Let f and g be two nonconstant meromorphic functions
sharing 0,1 and ∞ CM, then for any positive number ε

T (r, g) � (2 + ε)T (r, f ) + S(r, f ). (1.4)

In 2003, H.X. Yi and Y.H. Li affirmatively settle the above two conjectures, and so remove
the ε in (1.4). In fact, they proved the following two theorems.

Let f and g share 0, 1 and ∞ IM, next we denote by N0(r) the counting function of f − g

not containing the zeros of f,1/f and f − 1.

Theorem E. (See [12, Theorem 2.1].) Let f and g be two nonconstant meromorphic functions
sharing 0, 1 and ∞ CM. If

lim sup
r→∞
r /∈E

N0(r)

T (r, f )
>

1

2
, (1.5)

then (1.1) holds. If

0 < lim sup
r→∞
r /∈E

N0(r)

T (r, f )
� 1

2
, (1.6)

then (1.2) holds. If

lim sup
r→∞
r /∈E

N0(r)

T (r, f )
= 0, (1.7)

then (1.3) holds.

Theorem F. (See [12, Corollary 2.2].) Let f and g be two nonconstant entire functions sharing
two finite values CM. Then (1.2) can occur.

Regarding Theorems E and F, it is natural to ask the following two questions.

Question 1.1. Is it possible to remove the condition “r /∈ E” of (1.2) in Theorems E and F?

Question 1.2. (See [5].) Is it really impossible to relax in any way the nature of sharing any one
of 0, 1 and ∞ in Theorems E and F?

In this paper, we shall study the two problems. Next we shall explain the notion of weighted
sharing by the following definition.

Definition 1.2. (See [6].) Let k be a nonnegative integer or infinity. For any a ∈ C ∪ {∞}, we
denote by Ek(a,f ) the set of all a-points of f , where an a-point of multiplicity m is counted m

times if m � k, and k + 1 times if m > k. If Ek(a,f ) = Ek(a, g), we say that f , g share the
value a with weight k.

Remark 1.1. Definition 1.2 implies that if f , g share a value a with weight k, then z0 is a zero
of f − a with multiplicity m (� k) if and only if it is a zero of g − a with multiplicity m (� k),
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and z0 is a zero of f − a with multiplicity m (> k), if and only if it is a zero of g − a with
multiplicity n (> k), where m is not necessarily equal to n. Throughout this paper, we write f , g

share (a, k) to mean that f , g share the value a with weight k. Clearly, if f , g share (a, k), then
f , g share (a,p) for all integer p, 0 � p < k. Also we note that f , g share a value a IM or CM
if and only if f , g share (a,0) or (a,∞), respectively.

Using the idea of weighted sharing, we shall establish the following one theorem, which
improves Theorem E.

Theorem 1.1. Let f and g be distinct nonconstant meromorphic functions sharing (a1,1),
(a2,∞) and (a3,∞), where {a1, a2, a3} = {0,1,∞}. If (1.5) holds, then (1.1) and

T (r, f ) = N0(r) + S(r, f ) (1.8)

still hold, and f is a fractional linear transformation (Möbius transformation) of g. Moreover,
f and g assume one of the following three relations:

(i) f = eγ and g = e−γ ;
(ii) f = eγ + 1 and g = e−γ + 1; and

(iii) f = 1
eγ +1 and g = 1

e−γ +1 ,

where γ is a nonconstant entire function. If (1.6) holds, then there exists a nonconstant entire
function γ , and two positive integers s and k (� 2) satisfying 1 � s � k such that s and k + 1
are mutually prime, such that (1.1) and

N0(r) = 1

k
T (r, f ) + S(r, f ) (1.9)

still hold, and f is not any fractional linear transformation (Möbius transformation) of g, more-
over, f and g assume one of the relations (i)–(iii) of Lemma 2.5 in Section 2 of this paper. If (1.7)
holds and if f is a fractional linear transformation (Möbius transformation) of g, then (1.1) and

N0(r) = 0 (1.10)

still hold. Moreover, f and g assume one of the following three relations:

(iv) f = c(eγ −1)
eγ −c

and g = eγ −1
eγ −c

;

(v) f = c−1
eγ −1 and g = (c−1)eγ

c(eγ −1)
;

(vi) f = eγ −1
c−1 and g = c(eγ −1)

(c−1)eγ ;

where c ∈ C \ {0,1} is some finite complex constant. If (1.7) holds and if f is not any fractional
linear transformation (Möbius transformation) of g, then

N0(r) = S(r, f ) (1.11)

and (1.3) are still valid.

Using proceeding as in the proof of Theorem 1.1 in Section 3 of this paper we easily deduce
the following one theorem, which improves Theorem F.
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Theorem 1.2. Let f and g be two distinct nonconstant entire functions sharing (a1,1) and
(a2,∞), where {a1, a2} = {0,1}. If (1.5) holds, then (1.1) and (1.8) are still valid, and f is a
fractional linear transformation (Möbius transformation) of g. Moreover, f and g assume one
of the relations (i) and (ii) in Theorem 1.1. If (1.6) holds, then (1.1) is still valid and that f is
not any fractional linear transformation (Möbius transformation) of g. Moreover, there exists a
nonconstant entire function γ , and two positive integers s and k (� 2) satisfying 1 � s � k such
that s and k + 1 are mutually prime, and (1.9) still holds. Moreover, f and g assume one of the
following two relations:

(iii) f = ekγ + e(k−1)γ + · · · + 1, g = e−kγ + e−(k−1)γ + · · · + 1;
(iv) f = −ekγ − e(k−1)γ − · · · − eγ , g = −e−kγ − e−(k−1)γ − · · · − e−γ .

If (1.7) holds and if f is a fractional linear transformation (Möbius transformation) of g, then
(1.1) and (1.10) are still valid. Moreover, f and g assume one of the relation (vi) of Theorem 1.1.
If (1.7) holds and f is not any fractional linear transformation (Möbius transformation) of g,
then (1.3) and (1.11) are still valid. Moreover, f and g assume the following one relation:

(v) f = e2πiμ−1
h0−1 , g = e−2πiμ−1

h−1
0 −1

, where μ is a nonconstant entire function, and h0 is a nonconstant

meromorphic function such that if zn is a zero of h0 −1 with multiplicity ν(n) (n = 1,2, . . .),
then zn is also a zero of μ at least with multiplicity ν(n), and such that T (r,h0) = S(r, f ).

P. Li and C.C. Yang [8] proved the following result.

Theorem G. (See [8, Theorem 2].) Let f and g be two nonconstant meromorphic functions
sharing 0, 1 and ∞ CM. If

δ1)(0, f ) + δ1)(1, f ) + δ1)(∞, f ) >
3

2
, (1.12)

where

δ1)(a, f ) := 1 − lim sup
r→∞
r /∈E

N1)(r,
1

f −a
)

T (r, f )
,

a ∈ {0,1,∞} and N1)(r,
1

f −a
) denotes the counting function of the simple a-points of f , then f

is a Möbius transformation of g.

Using the idea of weighted sharing, we shall establish the following one theorem, which
improves Theorem G.

Theorem 1.3. Let f and g be two distinct nonconstant meromorphic functions sharing (0,1),
(1,∞) and (∞,∞). If (1.12) holds, then f is a fractional transformation of g.

2. Some lemmas

Lemma 2.1. (See [7, Lemma 6].) Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1 and ∞ IM, If f is a fractional linear transformation (Möbius
transformation) of g, then f and g satisfy one of the following relations:
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(i) f · g ≡ 1,
(ii) (f − 1)(g − 1) ≡ 1,
(iii) f + g ≡ 1,
(iv) f ≡ cg,
(v) f − 1 ≡ c(g − 1),
(vi) [(c − 1)f + 1] · [(c − 1)g − c] ≡ −c,

where c (
= 0,1) is a finite complex constant.

Lemma 2.2. (See [4, p. 8] or [13, Theorem 1.11].) Let f and g be two nonconstant meromorphic
functions. If f is a fractional linear transformation of g, then

T (r, f ) = T (r, g) + O(1).

Lemma 2.3. (See [6, Lemma 4].) Let f and g be two distinct nonconstant meromorphic functions
such that f and g share (0,1), (1,∞) and (∞,∞). Then

f − 1

g − 1
= eα, (2.1)

f

g
= H, (2.2)

where α is an entire function and H is a meromorphic function with

N(r,H) + N(r,1/H) = S(r, f ). (2.3)

Lemma 2.4. (See [14, Lemma 6].) Let f1 and f2 be two nonconstant meromorphic functions
satisfying

N(r,fi) + N

(
r,

1

f i

)
= S(r), i = 1,2.

Then either

N0(r,1;f1, f2) = S(r)

or there exist two integers s, t (|s| + |t | > 0) such that

f s
1 f t

1 ≡ 1,

where N0(r,1;f1, f2) denotes the reduced counting function of f1 and f2 related to the common
1-point.

Lemma 2.5. (See [14, proof of Theorems 1 and 2].) Let f and g be two distinct nonconstant
meromorphic functions sharing 0, 1 and ∞ CM, and let N0(r) 
= S(r, f ). If f is a fractional
linear transformation of g, then

N0(r) = T (r, f ) + S(r, f ). (2.4)

If f is not any fractional linear transformation of g, then

N0(r) � 1

2
T (r, f ) + S(r, f ), (2.5)

and f and g assume one of the following three relations:
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(i) f ≡ e(k+1)γ −1
esγ −1 , g ≡ e−(k+1)γ −1

e−sγ −1 ;

(ii) f ≡ esγ −1
e(k+1)γ −1

, g ≡ e−sγ −1
e−(k+1)γ −1

;

(iii) f ≡ esγ −1
e−(k+1−s)γ −1

, g ≡ e−sγ −1
e(k+1−s)γ −1

,

where γ is a nonconstant entire function, s and k (� 2) are positive integers such that s and
k + 1 are mutually prime and 1 � s � k.

Lemma 2.6. (See [9, Lemma 2.5].) Let s (> 0) and t are mutually prime integers, and let c be
a finite complex number such that cs = 1, then there exists one and only one common zero of
ωs − 1 and ωt − c.

Lemma 2.7. (See [13, proof of Theorems 1.12 and 1.13].) Let f be a nonconstant meromorphic
function, and let

F =
p∑

k=0

akf
k
/ q∑

j=0

bjf
j

be an irreducible rational function in f with constant coefficients {ak} and {bj }, where ap 
= 0
and bq 
= 0. Then

T (r,F ) = dT (r, f ) + O(1),

where d = max{p,q}.

Lemma 2.8. (See [1, Theorem 1].) Let f and g be two distinct nonconstant meromorphic
functions sharing (a1,1), (a2,∞) and (a3,∞), where {a1, a2, a3} = {0,1,∞}. If f is not any
fractional linear transformation of g, then

T (r, f ) + T (r, g) = N

(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r,f ) + N0(r) + S(r, f ).

Lemma 2.9. (See [6, Lemma 2].) Let f and g be two distinct nonconstant meromorphic functions
sharing (0,1), (1,∞) and (∞,∞). Then

N(2

(
r,

1

f

)
+ N(2

(
r,

1

f − 1

)
+ N(2(r, f ) = S(r, f ).

3. Proof of theorems

Proof of Theorem 1.1.
We discuss the following two cases.

Case 1. Suppose that f is a fractional linear transformation of g. Noting that f and g share 0,
1 and ∞ IM, from Lemma 2.1 we easily deduce that f and g share 0, 1 and ∞ CM, so from
Lemma 2.2 we get (1.1). We discuss the following two subcases.

Subcase 1.1. Suppose that

N0(r) 
= S(r, f ). (3.1)
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Then from (3.1) and Lemma 2.1 we easily deduce that f and g assume one of the relations
(i)–(iii) in Lemma 2.1. From (i)–(iii) in Lemma 2.1 we easily deduce (i)–(iii) in Theorem 1.1,
respectively, and from (i)–(iii) in Lemma 2.1 we also deduce (1.8).

Subcase 1.2. Suppose that (1.11) holds. Then from Lemma 2.1 we easily deduce that f and g

assume one the relations (iv)–(vi) in Lemma 2.1. From (iv)–(vi) in Lemma 2.1 we easily deduce
(iv)–(vi) in Theorem 1.1, respectively, and from (iv)–(vi) in Lemma 2.1 we also deduce (1.10).

Case 2. Suppose that f is not any fractional linear transformation of g. Noting that f and g

share 0, 1 and ∞ IM, we easily deduce

S(r, g) = S(r, f ). (3.2)

Let (2.1), (2.2) and

h0 = eα

H
. (3.3)

Then from (2.1), (2.2), (3.2) and (3.3) we easily deduce

H 
≡ 0,1,∞, h0 
≡ 0,1,∞, (3.4)

and

N

(
r,

1

h0

)
+ N(r,h0) = S(r, f ). (3.5)

Again from (2.1), (2.2) and (3.3) and (3.4) we easily deduce

f = eα − 1

h0 − 1
(3.6)

and

g = e−α − 1

h−1
0 − 1

. (3.7)

Noting that f is not any fractional transformation of g, from (2.1), (2.2), (3.6) and (3.7) we easily
see that none of eα , H and h0 is a constant, and that

f − g = (eα − 1)(1 − e−αh0)

h0 − 1
. (3.8)

From (3.2), (3.3), (3.5)–(3.8) we easily deduce

N0(r) = N0
(
r,1; eα,h0

) + S(r, f ) = N0
(
r,1; eα,H

) + S(r, f ). (3.9)

We consider the following two subcases.

Subcase 2.1. Suppose that (3.1) holds. Then from (3.1) and (3.9) we deduce

N0
(
r,1; eα,H

) 
= S(r, f ). (3.10)

Thus from (2.3), (3.10) and Lemma 2.4 we easily see that there exist two integers s and t (|s| +
|t | > 0) such that

esαH t ≡ 1. (3.11)
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Substituting (2.1) and (2.2) into (3.11) we get

f s(f − 1)t ≡ gs(g − 1)t . (3.12)

Noting that f is not any fractional transformation of g, from (3.12) we deduce that s 
= 0, and
t 
= 0 and |s| 
= |t |, so from (3.12) we easily deduce that f and g share 0, 1 and ∞ CM. Thus
from Lemma 2.5 we get (2.5), from (2.5) and (3.1) we easily deduce (1.6). Moreover, f and g

assume one of the three relations (i)–(iii) in Lemma 2.5, and by simply calculating we easily
deduce (1.9).

Suppose that f and g assume the relation (i) in Lemma 2.5, then

f ≡ e(k+1)γ − 1

esγ − 1
, g ≡ e−(k+1)γ − 1

e−sγ − 1
, (3.13)

where γ is a nonconstant entire function, s and k (� 2) are positive integers such that s and
k + 1 are mutually prime and 1 � s � k. It follows by Lemma 2.6 that ω = 1 is the only one
common zero of P1(ω) = ωk+1 − 1 and P2(ω) = ωs − 1, so from (3.13) and Lemma 2.7 we
easily deduce (1.1).

Suppose that f and g assume one of the relations (ii) and (iii) in Lemma 2.5. In the same
manner as above we easily deduce (1.1), (1.6) and (1.9).

Subcase 2.2. Suppose that

N0(r) = S(r, f ), (3.14)

which implies (1.7). On the other hand, from (3.14) and Lemma 2.8 we easily deduce

T (r, f ) + T (r, g) = N

(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r,f ) + N0(r) + S(r, f )

= N

(
r,

1

g

)
+ N

(
r,

1

g − 1

)
+ N(r, g) + S(r, f )

� 3T (r, g) + S(r, f ),

which implies that

T (r, f ) � 2T (r, g) + S(r, f ). (3.15)

Similarly

T (r, g) � 2T (r, f ) + S(r, g). (3.16)

From (3.2), (3.15) and (3.16) we deduce (1.3).

Theorem 1.1 is thus completely proved. �
Proof of Theorem 1.3. Suppose that f is not any fractional transformation of g. Then from
Theorem 1.1 we get (1.3). On the other hand, from Lemmas 2.8 and 2.9 we easily deduce

T (r, f ) + T (r, g) = N

(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r,f ) + N0(r) + S(r, f )

= N1)

(
r,

1
)

+ N1)

(
r,

1
)

+ N1)(r, f ) + N0(r) + S(r, f ),

f f − 1
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namely

T (r, f ) + T (r, g) = N1)

(
r,

1

f

)
+ N1)

(
r,

1

f − 1

)
+ N1)(r, f ) + N0(r) + S(r, f ). (3.17)

We discuss the following two cases.

Case 1. Suppose that (3.14) holds. Then from (1.3), (3.14), (3.17) and (3.2) we easily deduce

3

2
T (r, f ) � N1)

(
r,

1

f

)
+ N1)

(
r,

1

f − 1

)
+ N1)(r, f ) + S(r, f ), (3.18)

which implies that

δ1)(0, f ) + δ1)(1, f ) + δ1)(∞, f ) � 3

2
, (3.19)

which contradicts (1.12).

Case 2. Suppose that (3.1) holds. Then in the same manner as in Subcase 2.1 of the proof of
Theorem 1.1 we easily deduce (2.5) and (3.12), and deduce that f and g share the 0, 1 and ∞
CM. From (3.12) and Lemma 2.7 we easily deduce

T (r, f ) = T (r, g) + O(1). (3.20)

From (2.5), (3.17) and (3.20) we easily deduce (3.18). From (3.18) we easily deduce (3.19),
which contradicts (1.12).

Theorem 1.3 is thus completely proved. �
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