Journal of Computational and Applied Mathematics 44 (1992) 115–120 North-Holland 115

CAM 1195

A differential inequality for the positive zeros of Bessel functions

E.K. Ifantis and P.D. Siafarikas

Department of Mathematics, University of Patras, Greece

Received 22 May 1991 Revised 21 October 1991

Abstract

Ifantis, E.K. and P.D. Siafarikas, A differential inequality for the positive zeros of Bessel functions, Journal of Computational and Applied Mathematics 44 (1992) 115–120.

It is proved that the positive zeros $j_{\nu,k}$, k = 1, 2, ..., of the Bessel function $J_{\nu}(x)$ of the first kind and order $\nu > -1$, satisfy the differential inequality $j_{\nu,k} dj_{\nu,k} / d\nu > 1 + (1 + j_{\nu,k}^2)^{1/2}$, $\nu > -1$. This inequality improves the well-known inequality $dj_{\nu,k} / d\nu > 1$, $\nu > -1$, which is the source of a large number of lower and upper bounds for the zeros $j_{\nu,k}$, k = 1, 2, ...

Keywords: Differential inequalities; bounds of zeros of Bessel functions.

1. Introduction

The differential inequality

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} > 1,\tag{1.1}$$

where $j_{\nu,k}$, k = 1, 2, ..., is the kth positive zero of Bessel function $J_{\nu}(x)$ of the first kind and order ν , has attracted the attention of many authors. McCann and Love [8] have proved this in the interval $0 < \nu < 0.05$ and used this result to complete the proof of the inequality $j_{\nu,k} > j_{0,1} + \nu$, $\nu > 0$. Elbert and Laforgia [1] have proved (1.1) for $\nu > 0$ and used this result to prove the convexity with respect to ν of the function $j_{\nu,k}^2$ for $\nu > 0$. The authors [4], among other results, have proved inequality (1.1) for $\nu > -1$ and used it to derive several upper and lower bounds for the zeros $j_{\nu,k}$, k = 1, 2, In this paper we prove the inequality

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} > \frac{1}{j_{\nu,k}} + \left(1 + \frac{1}{j_{\nu,k}^2}\right)^{1/2}, \quad \nu > -1,$$
(1.2)

Correspondence to: Prof. E.K. Ifantis, Department of Mathematics, University of Patras, Patras, Greece.

0377-0427/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

which is more stringent than (1.1) for every $\nu > -1$. A consequence of (1.2) is that the functions

$$\sqrt{1+j_{\nu,k}^2} - \ln\left[1+\sqrt{1+j_{\nu,k}^2}\right] - \nu, \quad \nu > -1,$$
(1.3)

and

$$\sqrt{7+j_{\nu,k}^2} - \nu, \quad \nu > -1, \quad \text{provided } j_{\nu,k}^2 > 5.25,$$
(1.4)

increase with ν in the interval $(-1, +\infty)$. From the monotonicity of (1.3) and (1.4) we can find a number of lower and upper bounds for the zeros $j_{\nu,k}$, $k = 1, 2, \ldots$. We note the following two:

$$j_{\nu,k} > \left[\nu + \sqrt{1 + j_{0,k}^2} + \ln \frac{1 + \left(1 + j_{0,k}^2 + \nu^2 + 2\nu\sqrt{7 + j_{0,k}^2}\right)^{1/2}}{1 + \sqrt{1 + j_{0,k}^2}}\right]^2 - 1, \quad \nu > 0, \tag{1.5}$$

and

$$j_{\nu,k}^2 > j_{0,k}^2 + \nu^2 + 2\nu\sqrt{7 + j_{0,k}^2}, \quad \nu > 0,$$
(1.6)

which improve the lower bound $j_{\nu,k} > j_{0,k} + \nu$, $\nu > 0$, proved by different methods in [8] for k = 1 and in [4,7] for $k \ge 1$.

The inequalities (1.5) and (1.6) are reversed for $-1 < \nu < 0$. The upper bounds established now for $-1 < \nu < 0$ are more stringent than the upper bound $j_{\nu,k} < j_{0,k}$, $-1 < \nu < 0$, found in [4].

2. Preliminaries

In this section we present some notations, definitions and known results which are necessary for the proof of the inequality (1.1).

Consider an abstract separable Hilbert space H with the scalar product (\cdot, \cdot) and with the orthonormal basis e_n , $n \ge 1$. The shift operator V is defined as follows: $Vf = \sum_{n=1}^{\infty} (f, e_n)e_{n+1}$, $f \in H$, and its adjoint V^* as: $V^*f = \sum_{n=1}^{\infty} (f, e_{n+1})e_n$. Usually we write $Ve_n = e_{n+1}$, $n \ge 1$, and $V^*e_n = e_{n-1}$, $V^*e_1 = 0$.

The operator V is an isometry, i.e., a linear operator with the property ||Vf|| = ||f||, $f \in H$, while V^* is a partial isometry, i.e., linear with the property

$$\|V^*f\| = \sqrt{\|f\|^2 - |(f, e_1)|^2}, \quad f \in H,$$
(2.1)

where e_1 is the first element of the basis e_n , $n \ge 1$. This means that V^* is an isometry on the subspace $H\theta\{e_1\}$. It is well known [3] that the self-adjoint operator

$$T_0 = V + V^*$$
 (2.2)

is bounded with $||T_0|| = 2$. Its spectrum is purely continuous and covers the entire interval [-2, +2]. The diagonal operator

$$L_{\nu}e_{n} = \frac{1}{\nu+n}e_{n}, \quad n \ge 1,$$
(2.3)

116

can be defined for every $\nu \neq -n$. It is a compact operator because $\lim_{n\to\infty} (\nu + n)^{-1} = 0$. In particular, for ν real and $\nu > -1$ it is self-adjoint and positive $((L_{\nu}f, f) > 0, f \in H)$, so its square root $L^{1/2}$ exists and the self-adjoint and compact operator

$$S_{\nu} = L_{\nu}^{1/2} T_0 L_{\nu}^{1/2} \tag{2.4}$$

can be defined for every $\nu > -1$. One of the results proved in [6] is the following. The eigenvalues of S_{ν} are precisely the values

$$\pm \frac{2}{j_{\nu,k}}, \quad k = 1, 2, \dots,$$
 (2.5)

where $j_{\nu,k}$, k = 1, 2, ..., are the positive zeros of the Bessel function $J_{\nu}(x)$, $\nu > -1$. We shall use here the differential equation

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} = j_{\nu,k} (L_{\nu} x_k(\nu), x_k(\nu)), \quad k = 1, 2, \dots, \quad \nu > -1,$$
(2.6)

which has been proved in [4]. In (2.6), $x_k(\nu)$ is the normalized eigenvector $(||x_k(\nu)|| = 1)$ which corresponds to the positive eigenvalue $2/j_{\nu,k}$ of S_{ν} . Finally, another result which we shall use here is the relation

$$|(e_1, x_k(\nu))|^2 = \frac{2(\nu+1)}{j_{\nu,k}^2}, \quad k = 1, 2, \dots, \quad \nu > -1.$$
 (2.7)

(See [5] for the proof of (2.7).)

3. Proof of (1.1)

We set in (2.6) $x_k(\nu) = L_{\nu}^{-1/2} u_k(\nu)$ and obtain

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} = j_{\nu,k} \frac{\left(L_{\nu} x_k(\nu), x_k(\nu)\right)}{\left(x_k(\nu), x_k(\nu)\right)} = j_{\nu,k} \frac{\left(u_k(\nu), u_k(\nu)\right)}{\left(L_{\nu}^{-1} u_k(\nu), u_k(\nu)\right)}.$$
(3.1)

Since $L_{\nu}^{-1}u_k(\nu) = \frac{1}{2}j_{\nu,k}T_0u_k(\nu)$ (which follows easily from the eigenvalue equation $S_{\nu}x_k(\nu) = 2x_k(\nu)/j_{\nu,k}$), we find from (3.1):

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} = \frac{2(u_k(\nu), u_k(\nu))}{(T_0 u_k(\nu), u_k(\nu))} = \frac{2(u_k(\nu), u_k(\nu))}{(V u_k(\nu), u_k(\nu)) + (V^* u_k(\nu), u_k(\nu))}$$

and since $(Vu_k(\nu), u_k(\nu))$ is real, we have

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} = \frac{2(u_k(\nu), u_k(\nu))}{2(V^*u_k(\nu), u_k(\nu))} \ge \frac{\|u_k(\nu)\|}{\|V^*u_k(\nu)\|}.$$
(3.2)

But $V^*u_k(\nu) = \sum_{n=2}^{\infty} (u_k(\nu), e_n)e_{n-1}$, and due to (2.1):

$$\|V^*u_k(\nu)\|^2 = \sum_{n=2}^{\infty} |(u_k(\nu), e_n)|^2 = \|u_k(\nu)\|^2 - |(u_k(\nu), e_1)|^2.$$
(3.3)

From (3.2), because of (3.3), we have

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} > \frac{\|u_{k}(\nu)\|}{\left(\|u_{k}(\nu)\|^{2} - \left|\left(u_{k}(\nu), e_{1}\right)\right|^{2}\right)^{1/2}} = \left(1 - \frac{\left|\left(u_{k}(\nu), e_{1}\right)\right|^{2}}{\left\|u_{k}(\nu)\right\|^{2}}\right)^{-1/2}.$$
(3.4)

Now we use the relation (2.7) and find

$$\left|\left(u_{k}(\nu), e_{1}\right)\right|^{2} = \left|\left(L_{\nu}^{1/2}x_{k}(\nu), e_{1}\right)\right|^{2} = \frac{1}{\nu+1}\left|\left(x_{k}(\nu), e_{1}\right)\right|^{2} = \frac{2}{j_{\nu,k}^{2}}.$$
(3.5)

Finally,

$$\|u_{k}(\nu)\|^{2} = (u_{k}(\nu), u_{k}(\nu)) = (L_{\nu}^{1/2} x_{k}(\nu), L_{\nu}^{1/2} x_{k}(\nu)) = (L_{\nu} x_{k}(\nu), x_{k}(\nu))$$
$$= \frac{dj_{\nu,k}/d\nu}{j_{\nu,k}}.$$
(3.6)

So, from (3.4), because of (3.5) and (3.6), we have

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} > \left(1 - \frac{2}{j_{\nu,k} \,\mathrm{d}j_{\nu,k}/\mathrm{d}\nu},\right)^{-1/2},$$

from which (1.2) follows.

Note that from the relation

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} = \frac{2\|u_k(\nu)\|^2}{(T_0 u_k(\nu), u_k(\nu))}$$

and the inequality

$$|(T_0u_k(\nu), u_k(\nu))| \le ||T_0u_k(\nu)|| \cdot ||u_k(\nu)|| \le ||T_0|| ||u_k(\nu)||^2 = 2||u_k(\nu)||^2$$
,
inequality (1.1), which follows from (1.2) for every $\nu > -1$, has been found in [4].

4. Monotonicity properties and bounds

From (1.2) we obtain

$$\frac{\mathrm{d}}{\mathrm{d}\nu} \Big[\sqrt{1+j_{\nu,k}^2} - \ln\Big(1+\sqrt{1+j_{\nu,k}^2}\Big) - \nu \Big] > 0, \quad \nu > -1.$$
(4.1)

Also since

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} > \frac{1}{j_{\nu,k}} + \frac{1}{j_{\nu,k}}\sqrt{1+j_{\nu,k}^2} > \left(1 + \frac{4}{j_{\nu,k}}\right)^{1/2}, \qquad \nu > -1, \tag{4.2}$$

and

$$\frac{\mathrm{d}j_{\nu,k}}{\mathrm{d}\nu} > \frac{1}{j_{\nu,k}} + \frac{1}{j_{\nu,k}} \left(1 + \frac{7}{j_{\nu,k}^2} \right)^{1/2}, \qquad \nu > -1, \text{ provided } j_{\nu,k}^2 > 5.25, \tag{4.3}$$

we obtain from (4.2)

$$\frac{\mathrm{d}}{\mathrm{d}\nu} \Big[\sqrt{4 + j_{\nu,k}^2} - \nu \Big] > 0, \quad \nu > -1,$$
(4.4)

and from (4.3)

$$\frac{\mathrm{d}}{\mathrm{d}\nu} \left[\sqrt{j_{\nu,k}^2 + 7} - \nu \right] > 0, \quad \nu > -1, \text{ provided } j_{\nu,k}^2 > 5.25.$$
(4.5)

From (4.1), (4.4) and (4.5) it follows that the functions

$$\sqrt{1+j_{\nu,k}^2} - \ln\left(1+\sqrt{1+j_{\nu,k}^2}\right) - \nu, \quad \nu > -1,$$
(4.6)

$$\sqrt{4+j_{\nu,k}^2}-
u, \quad \nu > -1,$$
(4.7)

and

$$\sqrt{7} + j_{\nu,k}^2 - \nu, \quad \nu > -1, \text{ provided } j_{\nu,k}^2 > 5.25,$$
(4.8)

increase as ν increases in the interval $(-1, \infty)$. Hence, we have the following inequalities for the zeros $j_{\nu,k}$ of the Bessel function $J_{\nu}(x)$:

$$\sqrt{1+j_{\nu,k}^{2}} - \ln\left(1+\sqrt{1+j_{\nu,k}^{2}}\right) - \nu > \sqrt{1+j_{\mu,k}^{2}} - \ln\left(1+\sqrt{1+j_{\mu,k}^{2}}\right) - \mu \quad \nu > \mu > -1,$$
(4.9)

$$\sqrt{j_{\nu,k}^2 + 4} - \nu > \sqrt{j_{\mu,k}^2 + 4} - \mu, \quad \nu > \mu > -1,$$
(4.10)

and

$$\sqrt{7+j_{\nu,k}^2} - \nu > \sqrt{7+j_{\mu,k}^2} - \mu, \quad \nu > \mu > -1, \text{ provided } j_{\nu,k}^2 > 5.25.$$
 (4.11)

The above inequalities are quite sharp as $\nu \to \mu$, since in this limit they become equalities. Also from (4.9)–(4.11) we can obtain several lower and upper bounds for the zeros $j_{\nu,k}$, k = 1, 2, ..., of $J_{\nu}(z)$. For example, for $\mu = 0$ we find from (4.9) and (4.10) the lower bounds

$$j_{\nu,k} > \left[\nu + \sqrt{1 + j_{0,k}^2} + \ln \frac{1 + (j_{\nu,k}^2)^{1/2}}{(1 + j_{0,k}^2)^{1/2}}\right]^2 - 1, \quad \nu > 0,$$
(4.12)

and

$$j_{\nu,k}^2 > j_{0,k}^2 + \nu^2 + 2\nu\sqrt{7 + j_{0,k}^2}, \quad \nu > 0, \ j_{0,k}^2 \ge 5.25.$$

$$(4.13)$$

These lower bounds improve the lower bound

$$j_{\nu,k}^2 > j_{0,k}^2 + \nu^2 + 2\nu j_{0,k}, \quad \nu > 0,$$
(4.14)

proved by different methods in [8] for k = 1 and in [4,7] for $k \ge 1$.

Combining the bounds (4.12) and (4.13) we obtain the lower bound

$$j_{\nu,k}^{2} > \left[\nu + \sqrt{1 + j_{0,k}^{2}} + \ln \frac{1 + \left(1 + j_{0,k}^{2} + \nu^{2} + 2\nu\sqrt{7 + j_{0,k}^{2}}\right)^{1/2}}{1 + \sqrt{1 + j_{0,k}^{2}}}\right]^{2} - 1, \quad \nu > 0, \qquad (4.15)$$

which for k = 1 take the form

$$j_{\nu,1}^{2} > \left[\nu + 1.322\,280\,7 + \ln\left(1 + \sqrt{\nu^{2} + 7.150\,708\,8\,\nu + 6.783\,159\,2\,}\right)\right]^{2} - 1, \quad \nu > 0.$$

$$(4.16)$$

Numerical evidence indicates that (4.16) is sharper for $\nu \ge 0.99$ than the following lower bound:

$$j_{\nu,1} > j_{0,1} + 1.542\,889\,743\,\,\nu - 0.175\,493\,592\,\,\nu^2, \quad \nu > 0, \tag{4.17}$$

found in [2].

The inequalities (4.12), (4.13) and (4.15) are reversed for $-1 < \mu < 0$. The upper bounds established now for $-1 < \mu < 0$ are more stringent than the upper bound

$$j_{\mu,\kappa} < j_{0,k} + \mu, \quad -1 < \mu < 0,$$
(4.18)

found in [4].

References

- [1] A. Elbert and A. Laforgia, On the square of the zeros of Bessel functions, SIAM J. Math. Anal. 16 (1984) 206-212.
- [2] Á. Elbert and A. Laforgia, Further results on the zeros of Bessel functions, Analysis 5 (1985) 71-86.
- [3] E.K. Ifantis, On the nature of the spectrum of generalized oscillator phase operators, *Lett. Nuovo Cimento* 2 (21) (1971) 1096-1100.
- [4] E.K. Ifantis and P.D. Siafarikas, A differential equation for the zeros of Bessel functions, *Appl. Anal.* 20 (1985) 269-281.
- [5] E.K. Ifantis and P.D. Siafarikas, Inequalities involving Bessel and modified Bessel functions, J. Math. Anal. Appl. 147 (1990) 214–227.
- [6] E.K. Ifantis, P.D. Siafarikas and C.B. Kouris, Conditions for solutions of a linear first order differential equation in the Hardy-Lebesque space and applications, J. Math. Anal. Appl. 104 (1984) 454-466.
- [7] A. Laforgia and M.E. Muldoon, Inequalities and approximations for zeros of Bessel functions of small order, SIAM J. Math. Anal. 14 (1983) 383-388.
- [8] R.C. McCann and E.R. Love, Monotonicity properties of the zeros of Bessel functions, J. Austral. Math. Soc. Ser. B 24 (1982) 67–85.