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Abstract

Ifantis, E.K. and P.D. Siafarikas, A differential inequality for the positive zeros of Bessel functions, Journal of
Computational and Applied Mathematics 44 (1992) 115-120.

It is proved that the positive zeros j, ., k =1, 2,..., of the Bessel function J {x) of the first kind and order
v > —1, satisfy the differential inequality j, ;, dj,, /dv >1+(1+j2,)'/?, v > —1. This inequality improves the
well-known inequality dj, , /dv > 1, v > — 1, which is the source of a large number of lower and upper bounds
for the zeros j, ,, k=1,2,....
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1. Introduction

The differential inequality

djvk
—>1 .
dv ’ (1.1)

where j, ., k=1, 2,..., is the kth positive zero of Bessel function J,(x) of the first kind and
order v, has attracted the attention of many authors. McCann and Love [8] have proved this in
the interval 0 < v < 0,05 and used this result to complete the proof of the inequality j, , > j,, +
v, v > 0. Elbert and Laforgia [1] have proved (1.1) for v > 0 and used this result to prove the
convexity with respect to v of the function jf’k for v > 0. The authors [4], among other results,
have proved inequality (1.1) for » > —1 and used it to derive several upper and lower bounds

for the zeros j,;, k=1, 2,... . In this paper we prove the inequality
djp 1 1)
— > — 4+ 1+2— s V>—'1, (12)
dv ok Jv,k
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which is more stringent than (1.1) for every v > —1. A consequence of (1.2) is that the
functions

1402, —m[1+ 142 ] v, v> -1, (1.3)

and

V71+j2c —v, v>—1, provided j},>5.25, (1.4)
increase with v in the interval (—1, +). From the monotonicity of (1.3) and (1.4) we can find
a number of lower and upper bounds for the zeros j,,, k=1, 2,... . We note the following
two:

) 12
1+ (142, +v2+ 20T +)2,)
Joa> v+ y1+ji, +n -1, v>0, (1.5)
' ' 1+y1+ jg,k

and

PBaZigktviH 20T +i5,, v>0, (1.6)
which improve the lower bound j,, >jg, +v, »> 0, proved by different methods in [8] for
k=1andin[4,7] for k> 1.

The inequalities (1.5) and (1.6) are reversed for —1 < v < 0. The upper bounds established
now for —1 <» <0 are more stringent than the upper bound j, , <j,;, —1 <v <0, found in

[4].

2. Preliminaries

In this section we present some notations, definitions and known results which are necessary
for the proof of the inequality (1.1).

Consider an abstract separable Hilbert space H with the scalar product (-, -) and with the
orthonormal basis e,, n > 1. The shift operator V' is defined as follows: Vf=X%_(f, e )e, .1,
fEH, and its adjoint V' * as: V*f=X"_(f, e,, Je, Usually we write Ve, =e, ,, n>1, and
V*e,=e,_,, V*e,=0.

The operator V is an isometry, i.c., a linear operator with the property (| Vf|=|fl, fE€H,
while V * is a partial isomety, i.e., linear with the property

WAl =VIFIR =1 e)l’s FeH, (2.1)

where e, is the first element of the basis e,, # > 1. This means that }JV'* is an isometry on the
subspace H6{e,}. It is well known [3] that the self-adjoint operator

T,=V+V* (2.2)

is bounded with || T,|| = 2. Its spectrum is purely continuous and covers the entire interval [ -2,
+2]. The diagonal operator

1

v+n

Le = n=1, (2.3)

v'n

€,
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can be defined for every v # —n. It is a compact operator because lim, (v +n) ' =0. In
particular, for v real and v> —1 it is self-adjoint and positive (L, f, f) >0, f€ H), so its
square root L!/? exists and the self-adjoint and compact operator

S, =LY>T,L/? (2.4)

can be defined for every v> —1. One of the results proved in [6] is the following. The
eigenvalues of S, are precisely the values
2
+ e k = 1, 2,

+ cees 2.5
Ju k ( )

where j, ., k=1, 2,..., are the positive zeros of the Bessel function J(x), v> —1. We shall
use here the differential equation

djv,k
dv

which has been proved in [4]. In (2.6), x,(v) is the normalized eigenvector (|| x,(»)| = 1) which
corresponds to the positive eigenvalue 2/j, , of §,. Finally, another result which we shall use
here is the relation

=J,((L,x, (v), x (v)), k=1,2,..., v>—1, (2.6)

|2 2(v +1)

(e, x,(V))| = ——, k=1,2,..., v>—1. (2.7)
]V,k

(See [5] for the proof of (2.7).)

3. Proof of (1.1)

We set in (2.6) x,(v) =L;'/? u,(v) and obtain
djps . (Loxe(v),x,(»)) . (e (v), wi (v))

a I ) ) P L), e ()

Since L, 'u(v) = 3j, Tou,(v) (which follows easily from the eigenvalue equation S, x,(v) =
2x,(»)/j, ), we find from (3.1):

dj, _ 2(ur(v), ug(v)) _ 2(up(v), ur(v))
dv (Tour(v), up(v)) (Vu(v), up(v)) + (V*ur(v), up(v)) ’
and since (Vu,(v), u,(v)) is real, we have

dj, x _ 2(u(v), u (v)) S lu(v)]
dv 20V *u,(v), up(v)) = [V Fu ()|
But V*u,(v) =X _,(u,(v), e,)e,_,, and due to (2.1):

WV *u, (v)|* = ézi(uk(v), e =lu()I” (), €)' (33)

(3.1)

(3.2)
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From (3.2), because of (3.3), we have

g : 2y ~1/2
Qi Juc(¥)] _ [, 16, )l )
1,2 — 2 : .
Bl P = (), e)[) Jus(¥)]
Now we use the relation (2.7) and find
2
2 2 2
(@), ) = (L2000 €)= —=|(xuw)s ) = = (35)
Jok
Finally,
2
||”k(V)|| = (uk(V)’ “k(V)) = (le/zxk(v)’ Llu/zxk(”)) = (Lyxk(V)’ xk(”))
djv.k/dv N
= —}k— (3.6)
So, from (3.4), because of (3.5) and (3.6), we have
dj, x 2 o

b

>[1- ——,
dv j,,,k djv’k/dv
from which (1.2) follows.
Note that from the relation

djv,k _ 2“”k(")”2
dv (Touk(”), ”k(V))
and the inequality
(Toue(v), w ()| < Toue |- lue) | < Toll ()| = 2 (),

inequality (1.1), which follows from (1.2) for every » > —1, has been found in [4].

4. Monotonicity properties and bounds

From (1.2) we obtain

%[m—lﬂ(l+\/l—+_j37)—v]>0, y> —1. @1

Also since
dj, 4 1 1

> — + — 142, >
dv -]V,k jv,k

4 1/2
1+f—) , v>—1, (4.2)
]V,k

and

7

i 11 v
: 1+ —1| , v> —1, provided jZ, > 5.25, (4.3)

> — + —
dv Jv,k -]V,k

-2
Ju,k
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we obtain from (4.2)
d

E;[m—v]>0, v> —1, (4.4)

and from (4.3)

;,(1;[/13,77 ~v] >0, »>—1, provided j2, > 5.25. (4.5)
From (4.1), (4.4) and (4.5) it follows that the functions

m—ln(Hm)—u, v>—1, (4.6)

m-u v>—1, (4.7)

y7+i2, —v, v> —1, provided j2,>5.25, (4.8)

increase as v increases in the interval (—1, »). Hence, we have the following inequalities for
the zeros j,, of the Bessel function J (x):

L4j2e —Infl+ 142, ) —v> 142, —In[1+J1+j2, |-pn v>u> -1,
, , K, Ky

(4.9)

Vit td —v> il +d —p, v>u> -1, (4.10)
V7 +ile —v>\T+jlc —n, v>p>—1, provided j2, > 5.25. (4.11)

The above inequalities are quite sharp as v — u, since in this limit they become equalities. Also
from (4.9)-(4.11) we can obtain several lower and upper bounds for the zeros Jow k=1,2,...,
of J(z). For example, for p = 0 we find from (4.9) and (4.10) the lower bounds

and

and

| (20T
Jox> [pHTHE +In—— 1y >0, (4.12)
(1+j54)
and
PSRt AT Hi2,, v>0, j2, 2525 (4.13)
These lower bounds improve the lower bound
JPi>iox+vi+2vj,, v>0, (4.14)

proved by different methods in [8] for k = 1 and in [4,7] for k > 1.
Combining the bounds (4.12) and (4.13) we obtain the lower bound

. 5 \2 T
; _ L (142 + 02+ 20T+ 2, )
Jre>|v+Hyl+jy, +1n =
T+ y1+j5,

1, »>0, (4.15)
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which for k£ =1 take the form

2
j20> |v+1.3222807 + In(1+ Vo? + 71507088 » + 6.7831592)] ~1, »>0.
(4.16)

Numerical evidence indicates that (4.16) is sharper for v > 0.99 than the following lower bound:
Jo1>Jo T 1.542889743 v — 0.175493592 v2, v >0, (4.17)

found in [2].
The inequalities (4.12), (4.13) and (4.15) are reversed for —1 < < 0. The upper bounds
established now for —1 < u <0 are more stringent than the upper bound

Juw <Jpxtm, —1<u<0, (4.18)

found in [4].
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