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Abstract 

Ifantis, E.K. and P.D. Siafarikas, A differential inequality for the positive zeros of Bessel functions, Journal of 
Computational and Applied Mathematics 44 (1992) 115-120. 

It is proved that the positive zeros j, k, k = 1, 2, . . ., of the Bessel function J,,(x) of the first kind and order 

v > - 1, satisfy the differential inequality ju,k d jv,k /dv > 1 + (1-t jz,k)‘/2, v > - 1. This inequality improves the 

well-known inequality djv,k /dv > 1, v > - 1, which is the source of a large number of lower and upper bounds 
for the zeros jv,k, k = 1,2,. . . . 

Keywords: Differential inequalities; bounds of zeros of Bessel functions. 

1. Introduction 

The differential inequality 

djv,k 
--1, 

dv 
(1.1) 

where jv,k, k = 1, 2,. . . , is the kth positive zero of Bessel function J,(x) of the first kind and 
order y;has attracted the attention of many authors. McCann and Love [8] have proved this in 
the interval 0 < v < 0,OS and used this result to complete the proof of the inequality jy,k >jO,l + 
v’, v > 0. Elbert and Laforgia [l] have proved (1.1) for v > 0 and used this result to prove the 

‘* convexity with respect to v of the function jv,k for v > 0. The authors [4], among other results, 
have proved inequality (1.1) for v > - 1 and used it to derive several upper and lower bounds 
for the zeros jv,k, k = 1, 2, . . . . In this paper we prove the inequality 
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which is more stringent than (1.1) for every v > - 1. A consequence of (1.2) is that the 
functions 

and 

/l--ln[l+/m] -v, v> -1, (I.31 

i 7+jz,, -v, v> -1, provided jz,,>5.25, (1.4) 

increase with v in the interval ( - 1, +m). From the monotonicity of (1.3) and (1.4) we can find 
a number of lower and upper bounds for the zeros jv,k, k = 1, 2,. . . . We note the following 
two: 

2 

jy,k > v+Ja+ln 

[ 

1+(l+j:;,+v”+2v\:1~)1’2 _I 1+/F$i- 1 7 v>O 7 (1.5) 
and 

.l ‘y2,k > ji,k + v2 + 2v/m, v > 0, (1.6) 

which improve the lower bound jv,k > j,, + v, v > 0, proved by different methods in [8] for 
k = 1 and in [4,7] for k 2 1. 

The inequalities (1.5) and (1.6) are reversed for - 1 < v < 0. The upper bounds established 
now for - 1 < v < 0 are more stringent than the upper bound jy,k < jO,k, - 1 < v < 0, found in 
[41. 

2. Preliminaries 

In this section we present some notations, definitions and known results which are necessary 
for the proof of the inequality (1.1). 

Consider an abstract separable Hilbert space H with the scalar product (. , * > and with the 
orthonormal basis e,, YE 2 1. The shift operator I/ is defined as follows: Vf= Ez=,(f, e,)e,+,, 
f~ H, and its adjoint V* as: V*f= EE=,<f, e,+,)e,. Usually we write Ye, = e,,,, yt > 1, and 
V*e, = e,_,, V*e, = 0. 

The operator I/ is an isometry, i.e., a linear operator with the property (( Vf [( = (( f (1, fE H, 
while Y9 is a partial isomety, i.e., linear with the property 

w*fll = ~lrfII”-l(f7 a29 fEH7 (24 
where e, is the first element of the basis e,, n 2 1. This means that V” is an isometry on the 
subspace Hr3{e,). It is well known [3] that the self-adjoint operator 

T,=V+V* (2.2) 

is bounded with )I To (( = 2. Its spectrum is purely continuous and covers the entire interval [ - 2, 
+2]. The diagonal operator 

1 
Lven = -e 

v+n n’ 
n 2 1, (2.3) 
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can be defined for every v # --y1. It is a compact operator because lim, ‘cc (v + n>- ’ = 0. In 
particular, for v real and v > - 1 it is self-adjoint and positive ((LJ, f> > 0, f~ H), so its 
square root L’/’ exists and the self-adjoint and compact operator 

S =,51/2T L’/2 V Y 0 V (2.4) 

can be defined for every v > - 1. One of the results proved in [6] is the following. The 
eigenvalues of S, are precisely the values 

2 
+7, k= 1, 2,..., 

J u,k 
(2.5) 

where jV,k, k = 1, 2,. . . , are the positive zeros of the Bessel function J,(x), v > - 1. We shall 
use here the differential equation 

djv,k 
- =jV,k(LVxk(v), x,(v)), k = 1, 2 ,..., 

dv 
v> -1, (2.6) 

which has been proved in [4]. In (2.6), x,(v) is the normalized eigenvector (11 xk(v) II= 1) which 
corresponds to the positive eigenvalue 2/j,,, of S,. Finally, another result which we shall use 
here is the relation 

I(% xk(v))i2 = 

2(v + 1) 
j2 , k=l,2 ,..., v> -1. (2.7) 
u,k 

(See [5] for the proof of (2.71.) 

3. Proof of (1.1) 

We set in (2.6) x,(v) = L;‘12 u,(v) and obtain 

d-i,,, (L,xk(v),xk(v)) = j 

- =jv,k (Xk(V),Xk(V)) 

(‘k(‘), ‘k(‘)> 

dv v’k ( L,‘u,(v), uk(v)) . 
(3.1) 

Since L;‘u,(v) = ijv,,Touk(v) (which follows easily from the eigenvalue equation sVxk(v) = 
2x,(v)/j,,,), we find from (3.11: 

dj,,, 2(uk(v), ‘k(‘)) 2(uk(v), ‘k(‘)) 

- = (C+,(v), u,(v)) = (vuk(v), uk(v)) + (v*ukb’), Uk@)) ’ dv 

and since (VU,(V), u,(v)> is real, we have 

2(uk(v>, ‘k(‘)) djV,k 11 ‘k(‘) 11 _ 

dv 2( ‘*‘kb+ ‘k(‘)) V*uk(v) iI ’ 

But V*uk(v) = C~=,<u,<v,>, e,)e,_,, and due to (2.1): 

~tV*uk(v)~\2 = nf$“k(v), en)i2 =~bk(v)~~2 -I(“k(v), ‘1)12. 

P-2) 

(3.3) 
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From (3.21, because of (3.31, we have 

d.Lk II Uk(4 II 

> (II Uk(V)ll” - bkW7 4 Iz)'/* 

= 1 _ Pk(4 e1)12 -l’* 
dv L II 44 II2 I * 

Now we use the relation (2.7) and find 

IKUkW~ a* = I( L’,/‘x/Jv), e,) I2 = 

Finally, 

11 uk(v) 11’ = ('k('), 'k(d) = (“,/’ xk(v), Lt'2xk(v>) = (Lvxk(v), xk(v)) 

dj,,,/dv = 
jv,k * P-6) 

So, from (3.41, because of (3.5) and (3.61, we have 

2 
-l/2 

.iy,k d.i,,k/dv ’ ’ 

from which (1.2) follows. 
Note that from the relation 

d&k 2ii ‘k(‘) Ii* 
- = 

dv (TOuk(v>, ‘k@)> 

and the inequality 

@iuk(v), uk<v>>i ~IIT,uk(v)lI.Iluk(v)ll dTOii II”k(v)~~2=2~~uk(v)~~2~ 

inequality (l.l), which follows from (1.2) for every v > - 1, has been found in [4]. 

4. Monotonicity properties and bounds 

From (1.2) we obtain 

&[{s-ln(l+/+i:*)--V]>O’ v>-l. 

Also since 

v> -1, 

and 

djv,k 1 1 
->7+-. dv 

J v,k J u,k 
v > - 1, provided j,‘,, > 5 25, 

(4.1) 

(4.2) 

(4.3) 
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we obtain from (4.2) 

119 

(4.4) 

and from (4.3) 

$[/m -v] >O, v> -1, provided j,2,,>5.25. 

From (4.1), (4.4) and (4.5) it follows that the functions 

/m-ln(l+/m)-v, v> -1, 

(4.5) 

(4.6) 

and 

/4+jz,, -v, v> -1, (4.7) 

i 7 +j,“,, -v, v > -1, provided j,‘, > 5.25, (4.8) 

increase as v increases in the interval (- 1, ~1. Hence, we have the following inequalities for 
the zeros jv,k of the Bessel function J,(x): 

/m-ln(l+jm)-v>/q-ln(l+/l)-p v>pL> -1, 

(4.9) 

{&?I-v>{W-/_L, v>/_L>-1, (4.10) 

and 

/m-v>/m-p, v>p> -1, provided jz,,>5.25. (4.11) 

The above inequalities are quite sharp as v + I*, since in this limit they become equalities. Also 
from (4.9)-(4.11) we can obtain several lower and upper bounds for the zeros jV k, k = 1, 2,. . . , 

of J,,(z). For example, for p = 0 we find from (4.9) and (4.10) the lower bounds 

L,k > v+/m+ln 

i 

l+(j,T,k)“2 2_l 1 (1 +ji,k)1’2 ’ v>. ’ 
and 

‘2 1 v,k >j&+v*+2v/+, u>O, j&25.25. 

These lower bounds improve the lower bound 

‘2 .l v,k > j& + v* + 2vj,,, , v > 0, 

proved by different methods in [8] for k = 1 and in [4,7] for k 2 1. 
Combining the bounds (4.12) and (4.13) we obtain the lower bound 

(4.12) 

(4.13) 

(4.14) 

j,‘,, > I v + {m + In 
l+(l+j&+v2+2v/~)1’2 2_1 v>. 

1+/m 
IT ’ 

(4.15) 
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which for k = 1 take the form 

.2 J v,l > [v+1.3222807+In(l+~ y2 + 7.1507088 v + 6.783 1592)]‘- 1, Y > 0. 

(4.16) 

Numerical evidence indicates that (4.16) is sharper for I, > 0.99 than the following lower bound: 

j”,I %,I + 1.542 889 743 v - 0.175 493 592 v2, v > 0, (4.17) 

found in [2]. 
The inequalities (4.121, (4.13) and (4.15) are reversed for - 1 < p < 0. The upper bounds 

established now for - 1 < p < 0 are more stringent than the upper bound 

L <.& + P, -l</.<O, (4.18) 

found in [4]. 

References 

HI 

P-1 
[31 

[41 

151 

161 

[71 

[81 

A. Elbert and A. Laforgia, On the square of the zeros of Bessel functions, SlAM J. Math. Anal. 16 (1984) 
206-212. 
A. Elbert and A. Laforgia, Further results on the zeros of Bessel functions, Analysis 5 (1985) 71-86. 
E.K. Ifantis, On the nature of the spectrum of generalized oscillator phase operators, Lett. Nuovo Cimento 2 (21) 
(1971) 1096-1100. 
E.K. Ifantis and P.D. Siafarikas, A differential equation for the zeros of Bessel functions, Appl. Anal. 20 (1985) 

269-281. 
E.K. Ifantis and P.D. Siafarikas, Inequalities involving Bessel and modified Bessel functions, J. Math. Anal. Appl. 
147 (1990) 214-227. 
E.K. Ifantis, P.D. Siafarikas and C.B. Kouris, Conditions for solutions of a linear first order differential equation 
in the Hardy-Lebesque space and applications, J. Math. Anal. Appl. 104 (1984) 454-466. 
A. Laforgia and M.E. Muldoon, Inequalities and approximations for zeros of Bessel functions of small order, 
SL4M.i. Math. Anal. 14 (1983) 383-388. 
R.C. McCann and E.R. Love, Monotonicity properties of the zeros of Bessel functions, J. Austrd Math. Sot. Ser. 
B 24 (1982) 67-85. 


