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Abstract

We describe the design and use of Distributed Maple, an environment for executing parallel
computer algebra programs on multiprocessors and heterogeneous clusters. The system embeds
kernels of the computer algebra system Maple as computational engines into a networked
coordination layer implemented in the programming language Java. On the basis of a comparatively
high-level programming model, one may write parallel Maple programs that show good speedups in
medium-scaled environments. We report on the use of the system for the parallelization of various
functions of the algebraic geometry library CASA and demonstrate how design decisions affect the
dynamic behaviour and performance of a parallel application. Numerous experimental results allow
comparison of Distributed Maple with other systems for parallel computer algebra.
c© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper gives a comprehensive overview on the design and the use of “Distri-
buted Maple”, an environment for parallel computer algebra on multiprocessors and
heterogeneous computer clusters. The starting point of our work was in 1998, the goal—to
parallelize parts of the software library CASA (computer algebra software for constructive
algebraic geometry). CASA has since 1990 been developed by various researchers at
RISC-Linz (Mnuk and Winkler, 1996) on the basis of the computer algebra system Maple
(Maple, 2001).

Thus we have developed Distributed Maple as a work platform for parallel and
networked environments (Schreiner, 1998). In contrast to some other related approaches,
the underlying technological basis should be “time-safe” and widely accessible such that
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the developed applications remain useable for the foreseeable future. In particular, the
system should be portable to any new commercial version of Maple, i.e. not require any
special kernel extensions, such that the system and applications can be easily distributed
to other researchers. Furthermore, our goal was to provide an environment where parallel
programming is possible within Maple such that the mathematical programmer does not
have to leave the familiar environment of the computer algebra system.

We have tackled this goal by developing a configurable coordination program that starts
and connects external computation kernels on various machines and schedules concurrent
tasks for execution on them. This program is written in the programming language Java and
can be executed on any machine running some implementation of the Java Virtual Machine.
We have written a small Maple package that implements an interface to the scheduler and
provides a high-level parallel programming model for Maple.

Starting from the initial design (Schreiner, 1999), we have gradually refined and
extended the system, analysed its performance on various platforms (Schreiner, 2000), and
started to introduce fault tolerance features (Schreiner et al., 2001). Also an interface of
the coordination program to the computer algebra system Mathematica has been developed
(Pau and Schreiner, 2000).

For the time being, we have used the Distributed Maple environment for developing
parallel versions of the following CASA functions:pacPlot for the reliable plotting of
algebraic plane curves (Schreiner et al., 2000b; Mittermaier et al., 2000), ssiPlot for the
reliable plotting of surface to surface intersections (Schreiner et al., 2000c), neighbGraph
for the neighbourhood analysis of algebraic curves (Schreiner et al., 2000a). The initial
versions of these algorithms were developed in the frame of the diploma thesis
(Mittermaier, 2000) and later refined and partially replaced (Schreiner, 2001). They also
required the parallelization of various subalgorithms, in particular standard problems
of computer algebra like multivariate resultant computation (Collins, 1971) or real root
isolation (Collins and Akritas, 1976).

While we have based our work on a substantial body of knowledge on systems for
parallel computer algebra (seeSection 2), Distributed Maple incorporates a number of
original ideas:

Time-safety and portability. Distributed Maple is built on top of a state of the art
commercial computer algebra system. In contrast to other developments, the system
only relies on basic interfaces to the Maple kernel and does not require any
kernel extensions. Consequently, Distributed Maple has since 1998 survived four
release changes (Maple 4–7) without major changes. The environment is so portable
that applications can be executed in many different environments (from wide-area
heterogeneous clusters to shared-memory multiprocessors). It is so general that it can
be applied to schedule tasks of other computer algebra systems (e.g. Mathematica).

Abstraction level. Distributed Maple provides a programming model which is based on
functional/logic/dataflow parallelism. Thus it allows the creation of a large number
of implicitly scheduled tasks with automatic resolution of data dependencies and of
globally shared data structures with implicit synchronization. The model therefore
operates on a much higher level of abstraction than other models that only allow
one process per processor and support communication/synchronization by explicit
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message passing. Consequently, Distributed Maple programs can be much more
concise and elegant (i.e. close to the mathematical description of the problem
solution) than programs in other systems.

Fault tolerance. Distributed Maple incorporates extensive support for fault-tolerance
which is novel in this application area in particular and under the restrictions of a
hybrid parallel computing environment in general. This allows us to write programs
that take many days without risking computational loss by the failure of a computing
node or of a communication link. The mechanisms reported in this paper include
the logging of all computed results on stable storage and rescheduling of tasks that
are computed on a failed non-root node. Current developments (not reported in this
paper) deal with mechanisms that even tolerate the failure of the root node.

Applications. We have used Distributed Maple to develop the first parallel versions for
a number of non-trivial applications from algebraic geometry (parallel curve and
surface plotting and parallel neighbourhood analysis). The sequential versions were
available as legacy libraries implemented in Maple; their parallel versions include
multiple parallel subalgorithms and nested parallelization. This is one of the few
examples of the parallelization of complex computer algebra solutions composed
from various algorithms.

Both the Distributed Maple system itself and the library of parallel versions of CASA
respectively Maple algorithms are in stable versions freely available under the GNU
Library General Public License at

http://www.risc.uni-linz.ac.at/software/distmaple.

The rest of this paper is organized as follows. InSection 2, we sketch relevant
work of other researchers on parallel computer algebra. InSection 3, we describe the
architecture and programming interface of the system, analyse its performance on multiple
architectures, and outline its support for fault tolerance. InSection 4we describe the
use of the system for the parallelization of various computer algebra algorithms and
give numerous experimental results on several architectures. InSection 5, we draw our
conclusions. Appendix contains the input data for the benchmarks inSection 4.

2. Related work

Distributed Maple has evolved from our own experience in the development of parallel
computer algebra environments and from learning from the work of other researchers.
In the following, we only cite research that is more or less directly relevant for the
work described in this paper. Many papers on parallel computer algebra can be found in
Della Dora and Fitch (1989), Zippel (1990), Hong (1994)and Hitz and Kaltofen (1997);
summaries are also available in (Roch and Villard (1997)andGautier et al. (2001).

The programming interface of Distributed Maple is based on a para-functional model
as adopted by the PARSAC-2 system (Küchlin, 1990) for computer algebra on a shared
memory multiprocessor. The model was refined in PACLIB (Hong et al., 1995) on which
a para-functional language was based (Schreiner, 1996).

An early approach to use Maple as an engine for parallel computer algebra was
“Sugarbush” (Char, 1990) that used the coordination language Linda to manage concurrent

http://www.risc.uni-linz.ac.at/software/distmaple
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activities on multiprocessors and computer networks. Unlike Distributed Maple, the Maple
kernel was extended by C/Linda primitives for tuple space access and provided a native
Maple/Linda programming interface; similar to Distributed Maple, Sugarbush used the
internal linear expression for communicating task descriptions and results. The system
was used e.g. for parallelizing big number arithmetic (Char and Johnson, 1997); because
of its special kernel it was not distributed and fell out of use with the decline of
Linda support.

Without any special parallel programming support,Wang (1991)used Maple in a
workstation cluster to parallelize the characteristic set algorithm. Maple kernels were
directly started on various machines and communicated by reading and writing to files
in a global network file system. Because of the large process granularity, this approach
nevertheless achieved good speedups.

The‖MAPLE‖ (“Parallel Maple”) environment (Siegl, 1993) used the Guarded Horn
Clause language Strand for coordinating the activities of multiple Maple kernels running
on multiprocessors and computer networks. The programmer wrote programs in Strand
with constructs for evaluating Maple expressions by the Maple kernel linked to the runtime
system on the current processor. The programmer thus dealt with two programming
languages, Strand for writing the parallel program and Maple level for writing the actual
computations. Since the system depended on a special linkable version of the Maple kernel,
it could not be distributed; with the decline of Strand, it fell out of use.

Chan et al. (1994)describes an environment where Maple computations can be
distributed across a network of workstations by use of the DSC system (Diaz et al., 1991)
which on the basis of standard Internet services ships source code and input data to
computers for execution and retrieves the produced output. The parallel programming
model is based on the master–slave paradigm extended by a co-routine like distribution
mechanism; it uses files for communication and is thus close to the system level.
The system was used with good success for the parallelization of various polynomial
algorithms.

The parallel Maple system described inBernardin (1997)extended the kernel by
message passing primitives for the Intel Paragon distributed memory multiprocessor and
provided a corresponding Maple programming interface. On top of the message passing
model, it provided a limited version of a parallel functional model similar to that of
Distributed Maple; however it only allowed the main program to create other tasks (no
nested parallelism). The system was not distributed and is not in use any more.

The FoxBox system (Diaz and Kaltofen, 1998) provides via a Maple interface access to
parallel implementations of polynomial factorization algorithms implemented in C++ on
top of the message passing library MPI. This is a complementary approach to Distributed
Maple and the systems mentioned above, because it allows Maple to use an external parallel
program but not to write a parallel program that uses Maple.

The computer algebra system “muPad” is on the surface similar to Maple. Its kernel
can be dynamically extended by a package for “macro parallelism” implemented in
PVM (Metzner et al., 1999). This package allows us to write master–worker programs
for distributed environments based on the concepts of message passing, global variables
and work groups. The parallel programming model is on a considerably lower level than
Distributed Maple.
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The system “PVMaple” was developed for solving systems of differential equations
(Petcu, 2000). Similar to the Intel Paragon Maple and to muPad, it provides a Maple
interface for writing message passing programs. However, inspired by Distributed Maple,
it uses an external process for performing the actual inter-process communication on top of
PVM; Maple and this process communicate via shared files. The system runs on clusters
of PCs under Microsoft Windows.

An ongoing activity attempts to combine the para-functional language Glasgow Parallel
Haskell (Loidl et al., 1999) with Maple such that (in analogy to‖MAPLE‖) parallel
Haskell programs can coordinate the activities of multiple Maple kernels. Similar to
Distributed Maple and PVMaple, the runtime system is connected via a pipe to a separate
Maple process (Schreiner and Loidl, 2000).

Other activities on parallel computer algebra in distributed environments include
the following ones:Hong (1993) gives a parallel implementation of the quantifier
elimination algorithm for workstation networks on the basis of a distributed version of
SACLIB. Bubeck et al. (1995)describes the DTS distributed thread system which was
implemented on top of PVM and extended the functionality of PARSAC-2 to distributed
environments; it was for instance used to implement a parallel version of multivariate
resultant computation on a workstation cluster.Bertoli et al. (1994)describes a distributed
multiprocessor kernel for the computer algebra library STURM on top of PVM. The
very efficient PAC++ runtime kernel (Gautier and Roch, 1994) supports load balancing in
distributed environments; it has e.g. been used to solve problems with algebraic numbers.
Cooperman (1998)combines the message passing library MPI with the GAP system for
writing parallel GAP programs.

3. The software system

The user interacts with Distributed Maple via a conventional Maple frontend (text
or graphical), i.e. she operates within the familiar Maple environment for writing and
executing parallel programs. Maple commands establish a distributed session in which
tasks are created for execution on any connected machine. The session trace below
demonstrates the use of the environment:



310 W. Schreiner et al. / Journal of Symbolic Computation 35 (2003) 305–347

We first load the filedist.maple which implements the interface to the distributed
backend by a Maple packagedist. By dist[initialize], we ask the system to start
the distributed backend and create two additional Maple kernels on machineaquila
of type linux and on machineandromeda of type octane, respectively. The machine
types are used to lookup the system-specific startup information which is located in a file
dist.systems in the working directory.

After the distributed session has been successfully established, two calls of
dist[start] create two tasks evaluating the Maple expressionsint(x^n, x) and
int(x^n, n), respectively. The twodist[wait] calls block the current execution
until the corresponding tasks have terminated and then return their results. Finally, the
distributed session is closed bydist[terminate].

3.1. Software architecture

The core of Distributed Maple is a scheduler program which is completely independent
and evenunawareof Maple; it can in fact embed and schedule tasks from any kind of
computation kernels that implement a specific communication protocol. Correspondingly
each node connected to a Distributed Maple session comprises two components
(seeFig. 1):

Scheduler. The Java programdist.Scheduler coordinates node interaction. The initial
scheduler process (created by the Maple kernel attached to the user frontend) reads
all system information from filedist.systems; it then starts instances of the
scheduler on other machines.

Maple interface. The file dist.maple read by every Maple kernel implements the
interface between kernel and scheduler. Both components use pipes to exchange
messages (which may embed any Maple objects in the compact linear format that
Maple uses for library files).
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Fig. 1. Software architecture.

After a session has been established, every scheduler instance accepts tasks from the
attached computation kernel and schedules these tasks among all machines connected to
the session. During the execution, additional socket connections between remote scheduler
instances are created on demand.

3.2. Programming interface

Session initialization
In addition to the commandsdist[initialize] and dist[terminate] that

establish respectively end a distributed session, we need a possibility to initialize the Maple
kernels on all machines by loading the code of user-defined functions and the contents of
application-specific Maple libraries.

dist[all](command) lets the Maple statementcommandbe executed on every Maple
kernel connected to the distributed session.

If dist[all] refers to a particular file, (a copy of) this file must be visible on every
machine participating in the session. Thus e.g. a session-wide library may be loaded on
every kernel.

However, based on this command, the application library also defines

‘dist/load‘(fun) loads the code of the functionfun (defined in the current kernel) to
every Maple kernel connected to the session.
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With this command, we can directly disseminate function code from the current kernel to
all remote kernels (“mobile code”).

Functional parallelism
The parallel programming model is based on functional principles which is sufficient

for many computer algebra algorithms:

dist[start](f,a,...) creates a task evaluating the expressionf (a, . . .) and returns a
referencet to this task.

dist[wait](t) blocks the execution of the current task until the task represented byt
has terminated and returns its result. Multiple tasks may independently wait for and
retrieve the result of the same taskt .

The execution of a task may take place on any machine connected to the distributed session
and must therefore not rely on any global Maple variables. When and on which machine
a task is scheduled for execution is entirely in the responsibility of the underlying runtime
system. Tasks may freely create other tasks; arbitrary Maple objects may be passed as task
arguments and returned as task results (including references to other tasks).

However, if a task takes a task identifier as its arguments, it should be created by the
following call:

dist[process](f,a,...) creates a task evaluatingf (a, . . .) and returns a referencet
to this task.The task is executed on a kernel of its own.

The rationale for this command is as follows: tasks created withdist[start] are
scheduled on a fixed number of Maple kernels. If a task is suspended, another task may be
executed on the respective kernel. Since the kernel is single-threaded, the last suspended
task must be the first one to resume execution, i.e. a kernel hosts a whole stack of tasks of
which only the taskt on top is active. Ift waits for the results of a taskt ′ suspended on the
kernel (which may only happen ift was passed the referencet ′ as its argument), program
execution deadlocks. The use ofdist[process] ensures that such deadlock cycles are
avoided.

Non-determinism and speculation
The performance of a parallel program may be improved by processing the results of a

set of tasks not in a predetermined order but in the order in which they happen to arrive.
Therefore we need a non-deterministic form of task synchronization; this is especially
useful in speculative algorithms where some task results may become obsolete.

dist[select](tlist) blocks the execution of the current task untilany task t in the
list of task handlestlist has terminated and returns a listr such thatr [1] is the result
of t andr [2] is the index oft in tlist.

dist[delete](t) announces that the result of taskt is not required any more. If this
task has not yet started execution, it is deleted from the system (however, if it has
already started, it continues execution until termination).

The usefulness ofdist[delete] is currently rather limited because it does not abort an
already executing task. We will in the future investigate mechanisms to abort tasks created
through calls ofdist[process] and of tasks created by aborted tasks.
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Shared objects
If a parallel program processes large data in multiple phases with task interaction

between phases, it may be more efficient to let tasks preserve their states across phases
rather than creating for every phase new tasks to which the corresponding data have to be
passed. Therefore we introduce a concept that allows tasks to interact in a safe way by side
effects.

dist[data]() creates anemptyshared object and returns its handled. Any task may use
d to read from or write to the shared object no matter on which machine the task is
executed.

dist[get](d) blocks the execution of the current task until the object referenced byd
is non-empty and then returns its content. Multiple tasks may independently wait for
and retrieve the result of the same objectd.

dist[put](d,v) writes the valuev (which may be any Maple object including tasks and
data handles) into the shared data object referenced byd (overwriting any previously
written value). All tasks blocked ond get released.

dist[clear](d) empties the shared object referenced byd.

Shared objects may be used to implement various forms of inter-task communication, such
as shared memory, single assignment objects, communication channels and non-strict lists
(streams).

Management functions
The programming interface provides a number of functions for managing a distributed

session, e.g. by setting program parameters, generating visualization information (see
Section 3.3.3), or setting the fault tolerance mode (seeSection 3.5). For details, see
Schreiner (1998).

Program skeleton
We demonstrate some of the parallel program constructs introduced in the previous

section by a widely used program skeleton, a data-parallel program where the main
program spawns a number of worker tasks to process part of the input; it then waits for
the results and constructs from them the overall output:
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If the output can be constructed from the task results in any order, we may replace the
second loop by

Especially if there are large variations in the execution times of the individual tasks
(or in the performance of the individual machines), this non-deterministic form of
synchronization is advantageous.

While the above parallel program pattern is easy to use, it does not scale well because
the main program becomes a communication bottleneck. We may solve this problem by
distributing the synchronization by the use of shared data structures; this sort ofdataflow
styleprogram is demonstrated inSection 4.4.2.

3.3. Scheduler operation

The Maple kernel is a single-threaded process which communicates by a simple
communication protocol with the scheduler on the same node. All capabilities for parallel
and distributed program execution are embedded in this scheduler.

3.3.1. Session control
On execution ofdist[initialize], the Maple kernel starts the scheduler on the

current node (theroot) and passes to it the list of machines to be connected to the session.
The root scheduler reads the information in the configuration filedist.systems to startup
schedulers on the remote nodes; the remote schedulers establish socket connections to the
root scheduler and start the corresponding remote Maple kernels.
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Fig. 2. The task scheduler.

Initially, thus there exist only connections between the root node and each remote node.
However, all nodes know of each other, i.e. a node knows the address of a machine and the
number of a port on which (a thread of) the remote scheduler is listening for connection
requests. When a node needs to send a message to one of its peers, it can thus establish
a direct connection for message transfers. The connection remains persistent through the
rest of the session such that no more startup overhead is involved.

If a task is created by a calldist[process] (seeSection 3.2), the scheduler starts an
additional kernel process to which it forwards this task for execution; if the task is blocked
the kernel remains idle until the task can resume execution. After termination of this task,
the additional kernel is retained in a “kernel pool” such that for a new task created by
dist[process], this kernel can be recycled without additional startup overhead.

A watchdog thread in every remote scheduler controls in regular intervals if messages
have been received from the central scheduler. If during the last control period no message
has been received, the watchdog sends a “ping” message to the central scheduler. If
during the subsequent control period no reply is received, the watchdog assumes that the
connection is broken and aborts the external application process and the scheduler process.
Thus we ensure that broken sessions do not lead to stalled remote processes.

3.3.2. Internal operation
The operation of the scheduler is implemented by a number of concurrent threads

as shown inFig. 2. Threads listening on all input channels put the received messages
into a central buffer from where a server thread takes them, processes them, and creates
new messages that are placed in some of the output buffers. Threads listening on the
output buffers take these messages and send them to the corresponding output channels.
This heavily multithreaded implementation of the communication interface simplifies the
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program design and maximizes the overall system throughput; the only synchronization
point between two tasks are the shared message buffers.

After a distributed session has been established, the scheduler accepts tasks from the
Maple process and schedules these tasks among any node connected to the session. A task
is a pair〈t, d〉 wheret is an integer number identifying the task andd is a byte array to be
submitted to the Maple process describing the task to be executed. Initially, the scheduler
informs each Maple process about the range of task identifiers it may use for assignment
to new tasks such that each node in the system can independently create new tasks.

When a task is created, the scheduler allocates a corresponding “empty” slot in the
result table (which will be filled with the result value when the corresponding task will
have completed execution). Thus the result of a task is always stored on the machine where
the task has been created (not necessarily on the machine where it is eventually executed);
from the identifier of a task, the scheduler can determine the node holding a task result and
correspondingly route requests for its result. Additionally each scheduler holds a cache
of all results that it has ever seen such that after the first request to non-local task results
further requests can be immediately satisfied.

If the scheduler cannot immediately deliver a task result requested by the attached
computation kernel, it sends a new task for execution instead. The Maple kernel continues
with the execution of the new task (by recursive invocation of the server loop) until this task
has been completed. If the originally requested result is then available, the kernel continues
with the execution of the previous task; otherwise it receives another task for execution.
In this way every kernel (also the kernel connected to the user interface) permanently
computes as long as sufficiently many tasks are available. Since, the computation kernel is
not multithreaded, a task can only continue execution when all the tasks started later have
terminated (last-in first-out principle).

All remote schedulers send new tasks to the root node scheduler which distributes them
among all machines. Currently a simple load balancing scheme is used where the root node
scheduler assigns new tasks to remote schedulers until the number of not completed tasks
reaches an upper bound; a remote scheduler asks for new tasks whenever the number of
received but not yet started tasks falls below a lower bound. By this “watermark” scheme,
the communication latency for the transfer of a new task (after termination of a task) can
be masked by the execution of an already received task. The load balancing bounds for
each machine can be configured by the user in thedist.systems configuration file.

3.3.3. Visualization
An important help for the performance tuning of parallel programs is a visual repre-

sentation of its dynamic behaviour. The Distributed Maple scheduler supports on-line
visualization as well as post-execution visualization.

If the user issues during the session a calldist[visualize], a window pops up in
which the scheduler on the root node displays his knowledge on the status of each machine
and on the total system utilization (seeFig. 3). This allows us to get a quick overview on
the dynamic behaviour of the parallel program and on the overall state of the distributed
environment.

More information can be produced by issuing a commanddist[trace]. Then a trace
file with detailed event information is produced from which after program execution a tool
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Fig. 3. Session visualization.

dist.visual generates various diagrams in printable format (some examples are shown
in Section 4).

3.4. Performance analysis

The sequential performance of Distributed Maple is determined by Maple. For the
performance of parallel applications, the communication performance is relevant. We
model the communication system by multiple message exchange layers:

• Between Maple and the scheduler process:The Maple kernel linearizes an object in
the heap to a sequence of bytes which is written to a Unix named pipe from where it
is read by a thread of the scheduler process.

• Within the scheduler process:an input thread places the received message into a
memory buffer shared with the server thread.

• Between the scheduler processes:a thread takes a message from the input buffer and
writes it to a socket connected to a scheduler process on a remote machine where a
thread reads the message.

The communication performance of the system is crucially determined by thelatencyof
forwarding a message between two subsequent system layers. We restrict our observations
to the following key times (seeFig. 4):

• Thread roundtrip: the minimum time it takes a message to travel from a thread via a
shared buffer to another thread and back.

• Local roundtrip: the time it takes to query the result of a task stored in the local
scheduler process.

• Remote roundtrip: the time it takes a message to travel from an output thread via a
socket to an input thread and back.

• Pipe out: the time it takes to write a small message to an output stream
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Fig. 4. Communication model.

Table 1
Performance data

Time (ms)
Measurement Linux PC SGI Octane Sun E3000

Thread roundtrip <0.1 <0.1 <0.1
Local roundtrip 0.8 1.2–2 1
Remote roundtrip 31.0 150–300 100
Pipe out 0.5 0.7 0.1
Socket out <0.1 0.4 <0.1
Start overhead 0.2 0.4 0.3
Wait overhead 0.1 0.3 <0.1
Latency 0.5 10–12 0.8
Bandwidth pipe: 1030 kB s−1 853 kB s−1 512 kB s−1

Bandwidth socket: 3938 kB s−1 4100 kB s−1 5120 kB s−1

• Socket out: the time it takes for an output thread to write a small message to a socket
connected to a remote machine.

• Start overhead: the time for the linearization of a call dist[start](f,0).
• Wait overhead: the time the linearization of a call dist[wait](0) takes.
• Latency: the minimum time difference between two messages sent by a remote node

and received by the local Maple kernel.

In addition we capture the time that it takes to transfer large objects between two Maple
kernels by two parameters:

• Pipe bandwidth: the amount of data that can be communicated per time unit between
a Maple kernel and the Java scheduler (within a node).

• Socket bandwidth: the amount of data that can be communicated per time unit
between two instances of the Java scheduler (across nodes).

These times become critical (only) in applications where the linearized Maple objects
become large, i.e. several hundreds of kBs or more.

The times in Table 1 refer to two Linux 2.2 PCs with PIII@500 MHz processors
connected by a 100 Mbit Ethernet, two SGI Octanes with R10000@250 MHz processors
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and connected by a 100 Mbit Ethernet, and a Sun E3000 bus-based shared memory
multiprocessor with 250 MHz UltraSPARC processors.

In total, the performance is apparently determined by two parameters:

1. The remote roundtrip time, i.e. the time required for a message to cycle via sockets
between two Java processes. This roundtrip time is an order of magnitude larger than
the actual latency, i.e. the minimum time distance between subsequent elements of a
stream of messages.

2. The pipe bandwidth, i.e. the amount of data communicated per second between
Maple and the scheduler. This rate is much smaller than the socket bandwidth and
thus becomes a bottleneck for inter-Maple communication.

The first issue is the price we pay for the abstractions provided by the software layers
of the JVM. The second issue shows that for the transfer of large objects between Maple
kernels the speed of the processor is the limiting factor rather than the capacity of the
network; this could only be overcome by letting the nodes within a process communicate
via shared memory rather than sockets.

3.5. Fault tolerance

The only mechanism originally available in Distributed Maple for dealing with faults
was the watchdog mechanism described in Section 3.3 for shutting down the system in
case of failures. However, as we begin to attack larger and larger problems, the meantime
between session failures (less than a day) becomes a limiting factor in the applicability of
the system.

There are numerous possibilities for faults that may cause a session failure: a machine
becomes unreachable (usually a transient fault, i.e. the machine is rebooted or is
temporarily disconnected), a process in the scheduling layer or in the computation layer
crashes (a bug in the implementation of the Java Virtual Machine, of the Java Development
Kit, of Maple, or of Distributed Maple itself) or the computation itself aborts unexpectedly
(a bug in the application). While the last issue can be overcome and the Distributed Maple
software itself is very stable, there certainly exist bugs in the lower software levels that are
out of our control; machine/network/operating system faults may happen in any case.

We have therefore started to investigate how to introduce fault tolerance mechanisms
that let the system deal with faults in such a way that the time spent in long running session
is not wasted by an eventual failure. We start with a simple version of the system model on
which the following explanations are based.

3.5.1. System and execution model
A session comprises of a set of nodes each of which holds a pair of processes: a kernel

and a scheduler. Initially, a single task runs on the root kernel; this task may subsequently
create new tasks which are distributed via the schedulers to other kernels and may in turn
create new tasks.

The programming model described in Section 3.2 gives rise to the execution model
depicted in Fig. 5: a kernel may emit a message task : 〈t, d〉 where t is the identifier of
a task and d represents its description. This message needs to be eventually forwarded
to some idle kernel which then returns a message result : 〈t, r〉 where r represents the
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Fig. 5. Execution model.

computed result. When a kernel emits a wait : 〈t〉, the currently executing task is assumed
to be blocked until the scheduler responds with the corresponding result. If this result is not
available, the kernel is blocked; therefore the scheduler may submit to this kernel another
task for execution. When this new task terminates, the scheduler may send the awaited
result to the kernel or again submit another task for execution.

A task identifier t is a pair 〈n, i〉 where n refers to the node where the task was created
and i is a counter. The address n encoded in t serves as the rendezvous point between the
node n′ computing the result r of t and any node n′′ requesting r . When a scheduler on n
receives a task : 〈t, d〉 from its kernel, it allocates a result descriptor that will eventually
hold r ; the task itself is scheduled for execution on n′. When a kernel on n′′ issues a
wait : 〈t〉, the scheduler on n′′ forwards a request : 〈t, n′′〉 to n. If r is not yet available,
this request is queued in the result descriptor. When the kernel on n′ eventually returns the
result : 〈t, r〉, the scheduler on n′ forwards this message to n, which sends a reply : 〈t, r〉
to n′′.

3.5.2. Logging results: first-order tasks
A first step towards fault tolerance is to log task results on stable storage. We assume that

the root has access to a writable file system. If a session fails, we can re-run it without re-
executing the tasks whose results have been logged. Our first focus is on programs whose
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Fig. 6. Logging results: fist-order tasks.

tasks are first order: no task description d and no task result r contains any task identifier t ,
i.e. task identifiers are not passed as parts of task arguments/results (see Fig. 6):

Logging. When the root receives a task : 〈t, d〉, it computes a hash code h(d) and appends
to file taskid. h(d) the task identifier t . Then the root starts an asynchronous thread
to write the task description d into a new file descr. t . When a node sends a
result : 〈t, r〉 to some node n different from the root, it forwards a copy to the
root. When the root receives this result, it creates an asynchronous thread to write
the task result r into a new file result. t .

All data are written in a format that enables a reader to recognize incomplete
writes. At any time, taskid. h(d) holds a sequence of task identifiers t (the last
of which may be incomplete) for which there may exist description files descr. t
and/or result files result. t (both with possibly incomplete contents). When the
session terminates normally, the files are discarded.

Recovery. When a session is re-started after a failure, the root may receive from a node
n a task : 〈t, d〉 such that a file taskid. h(d) exists. If for some complete task
identifier t ′ in this file there exist file descr. t ′ with a complete description identical
to d and file result. t ′ with a complete result r , the root need not schedule t but
may immediately return result : 〈t, r〉 to n.

The mechanism is simple and efficient: the only overhead occurs on the root for writing
the log files and the potential sending of duplicate results to the root.

3.5.3. Logging results: higher-order tasks
Assume that a task t creates another task and embeds its identifier t ′ in result r . If r

is logged and the session fails, in the recovery session this result may be read from the
log such that task identifier t ′ is re-created. A task may subsequently issue a wait : 〈t ′〉
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referring to a no longer existing task or, even worse, to a task that computes a different
result than in the failed session.

In order to allow higher-order tasks, i.e. tasks which receive task identifiers as
arguments or return them as results, we introduce a session identifier which distinguishes
task identifiers from different sessions. In an original session, the session identifier is
initialized to 0 and a file session is written with content 0. In a recovery session, the
previous identifier s is read from session, the new identifier is taken as s + 1 and
overwrites the content of session. If the recovery session also fails, a new recovery
session may be initiated and thus the identifier may grow to an arbitrary size (subject to an
implementation limit).

A task identifier now is a triple 〈s, n, i〉 that refers to the session s in which the task was
created. We generalize the logging and recovery mechanism as follows:

Logging. When a non-root kernel creates a task, the scheduler forwards it to the root and,
until it receives an acknowledgment message from the root, does not process any
further messages from the kernel. On receipt of this message, the root creates an
entry in the corresponding hash file, writes synchronously the description and then
returns the acknowledgment which enables the scheduler to process further kernel
messages.

A task t that has created another task t ′ is thus not able to disseminate the identifier
t ′ before the description of t ′ is appropriately logged on the root. Consequently, if a
logged task result contains a reference to t ′, it is guaranteed that the root holds the
description of t ′ in the log.

Recovery. We now have to deal with task identifiers that may (via logged descriptions or
results) refer to previous sessions: the root handles such tasks.

If a kernel on node n issues a wait : 〈t〉 where the session identifier of t is not
that of the current session, the scheduler on n sends a request : 〈r, n〉 to the root. If
the root receives this request, it looks up whether it holds a result descriptor for t ; if
yes, it proceeds as usual, i.e. it responds with the result or, if this is not yet available,
queues the request in the descriptor.

If the root does not hold a result descriptor for t , it creates one and queues the
request there. It then looks up file result. t for the result of t logged in a previous
session. If this file exists and holds a complete result r , the scheduler writes r into
the descriptor and responds with reply : 〈t, r〉.

Otherwise, the scheduler looks up descr.t (which must exist by the above
logging mechanism) for the description d of t . The scheduler creates a new task :
〈t, d〉 which is handled as usual. When a kernel issues a result : 〈t, r〉 for a task t of
a previous session, the scheduler forwards this result to the root.

This mechanism guarantees that a recovery session s can complete the execution of a
previous session using all results logged in any session s′ < s.

3.5.4. Tolerating node failures
The previous sections dealt with mechanisms to ensure that after a failure a recovery

session may reuse previously computed results. In this section, we sketch a mechanism
that enables a session to cope with faults without aborting. We restrict our attention to
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the following scenario: a machine executing a non-root node becomes unreachable (stop
failure) and the root continues operation with the remaining nodes (if the root fails, the
session also fails).

A necessary condition to detect this failure is that the root cannot contact a node for
a certain period of time. We thus let the root periodically check whether a message has
been recently received from every node and, if not, send a ping message that has to be
acknowledged. If no acknowledgment arrives within a certain time bound, this node is
considered as dead. This does not necessarily mean that the node is actually dead; it may
be slow in responding, the connection to the root may have been transiently interrupted
or connections to other nodes may still exist. We must therefore assume that even a dead
node may send messages to the root or to any other node. Thus, when the root designates a
node as dead, it informs all other nodes correspondingly: every node closes the connection
to the dead node and ignores any remaining messages from this node (such messages may
arrive before the actual closing of the connection).

There are two main problem that the root now has to deal with:

1. the management of all result descriptors that have been stored on the dead node, and
2. the rescheduling of all tasks that were executing on the node at the time of its alleged

death.

Since the root is in charge of task scheduling, the root sees every task created in the session.
Furthermore, by the logging mechanism discussed in the previous sections, the root sees
every result computed in the session. For every node n, the root can therefore maintain two
sets Tn and Sn :

1. Tn denotes all tasks scheduled on n; for a subset T r
n the results are available (in the

logging files). All tasks in Tn −T r
n have to be executed again; the root puts them back

into the pool of tasks to be scheduled for execution.
2. Sn denotes all tasks or shared objects whose descriptors are stored on n; for a subset

Sr
n the results are available (in the logging files). The root becomes the owner of

elements in Sn ; it allocates the corresponding result descriptors and, for all elements
of Sr

n , fills them with results.
Subsequently, every node will send requests for a result in Sn to the root. However,

there may be still outstanding requests sent to n but not yet answered at the time of
its death. Every node n′ therefore holds a table Rn of all request : 〈t, n′〉 messages
sent to node n but not yet answered by a reply : 〈t, r〉. When n is marked dead, the
node re-sends all messages in Rn to the root which will eventually answer them.

Thus all tasks scheduled on an eventually dead node n are executed (possibly on a
different node n′) and every descriptor originally housed by n finds a new home on the root
to which all open and all future requests are redirected.

3.5.5. Summary
In contrast to other approaches, the Distributed Maple environment that operates with an

essentially functional parallel programming model can tolerate faults with relatively simple
mechanisms, i.e. without global snapshots as required in message passing programs. The
runtime overhead imposed by the logging mechanism is very moderate; adding tolerance
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of node failures on top does then not require much extra overhead. One reason for this
simplicity is the delegation of all logging activities to a single root node that also performs
the task scheduling decisions (and remains a single point of failure); the model is therefore
not scalable beyond a certain number of nodes. However, it is suitable for the system
environments that we have used up to now (≤30 nodes). Recently, we have extended the
model to avoid the still existing single point of failure (the root).

4. Applications

A major motivation for the development of Distributed Maple was the parallelization
of parts of CASA, a Maple library developed by various researchers at RISC-Linz for
solving problems in algebraic geometry (Mnuk and Winkler, 1996). The basic objects of
CASA are algebraic sets represented e.g. as systems of polynomial equations. Algebraic
sets represented by bivariate polynomials model plane curves. Algebraic sets represented
by trivariate polynomials model surfaces in space; intersections of such surfaces define
space curves.

We have developed novel parallel variants of various CASA algorithms, many of them
originating in the diploma thesis (Mittermaier, 2000). For this purpose, we have also
implemented known parallel variants of some basic Maple functions. We are going to
sketch these before we turn to the parallel CASA algorithms.

The exact inputs of all benchmarks are listed in the Appendix.

4.1. Parallel Maple functions

4.1.1. Bivariate resultant computation
In the context of CASA, we are interested in computing the resultant of two bivariate

polynomials over the integers. The following description of a parallel algorithm for solving
this problem is composed from material of Schreiner (1999).

Based on Collins (1971), various parallel versions of the modular algorithm have been
implemented on workstation networks (Seitz, 1990; Bubeck et al., 1995) and on shared
memory machines (Hong and Loidl, 1994; Schreiner, 1996). Their common idea is to
compute the resultants in the individual modular domains in parallel; they differ in their
approaches to combine the modular resultants to yield the integer resultant. We apply the
idea used by Hong and Loidl (1994) where the sequential structure of the combination
phase is maintained but the individual resultant coefficients are computed in parallel.

The parallel algorithm is sketched in Fig. 7. In the actual implementation each task
computes multiple modular resultants respectively multiple coefficients of the integer
resultant. By adjusting the number of elements computed per task we can effectively
control its grain size. For estimating the execution time of a “mresultant” task we use
the complexity bound given in Collins (1971) multiplied by an experimentally determined
constant for the processor speed.

We have benchmarked the parallel resultant algorithm with three sample inputs (taken
from the plotting of algebraic plane curves, see Section 4.2) for which the sequential
program takes on a PIII@450 MHz PC 448, 63, and 977 s respectively. The parallel
variant was executed on a 24 processor heterogeneous computer cluster, an 18-processor
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Fig. 7. Parallel resultant computation.

116822 201052

Fig. 8. Bivariate resultant computation.

Sun HPC 6500 system, and a Linux-based Beowulf cluster with 16 compute nodes linked
by two 100 Mbit switched Ethernets. Relative to a PIII@450 MHz processor, the raw
computing powers of cluster, Sun and Beowulf are (for 16 processors) 8.95, 11.68, and
22.83, respectively.

The trace in Fig. 8 illustrates a sample execution in the heterogeneous cluster with 24
processors listed on the vertical axis; each line denotes a task executed on a particular
machine. We can clearly distinguish the modular resultant computation phase with many
tasks saturating all processors from the combination phase where only few tasks are
created.
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Fig. 9. Bivariate resultant computation: experimental results.

Fig. 9 lists the execution times for each input in each system environment with a
varying numbers of processors. The subsequent row of diagrams visualizes the absolute
speedups Ts/Tn (where Ts denotes the sequential execution time and Tn denotes the
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parallel execution time with n processors), the second row visualizes these speedups
multiplied with n/

∑n
i=1 pi (where pi denotes the relative performance of processor i ), the

third row visualizes the scaled efficiency, i.e. Ts/Tn
∑n

i=1 pi , which compares the speedup
we actually got to an upper bound of the speedup we could have got. The markers �,
+, and ×, denote execution on cluster, Sun, and Beowulf, respectively. We see that for
Example 3 all three environments give similar scaled speedups while in the small Example
2 the heterogeneous cluster environment significantly lags behind. On the other hand, the
Beowulf cluster with its fast communication fabric gives in all examples the best speedups.

We may contrast the above figures to other results from literature: Seitz (1990) reports
for a problem whose sequential execution took 1153 s a speedup of 12 with a cluster
of 16 Sun workstations. Bubeck et al. (1995) reports for a problem whose sequential
execution took 2500 s a speedup of 5.5 on a cluster of 13 Sun workstations. The PACLIB
implementation on a shared memory machine achieved with 16 processors a speedup of
11.5 for a problem whose sequential execution took 180 s (Hong and Loidl, 1994). The pD
implementation on a shared memory processor achieved a speedup of 11.5 for a problem
whose execution took 160 s (Schreiner, 1996). Thus our results seem to be better than the
ones reported for clusters and comparative to those reported for shared memory machines.

4.1.2. Real root isolation
The problem of isolating the real roots of A ∈ Q(x) can be efficiently solved by

the modified Uspensky algorithm (Collins and Akritas, 1976). The major idea for the
parallelization of this algorithm is based on its divide and conquer structure by executing
each recursive branch in parallel. However, as has been noted in Collins et al. (1990), for
most concrete polynomials this “search tree” is very unbalanced with a few long branches
and a small average number of nodes (about 2) in every level. To utilize the available
computing resources, we thus apply speculative parallelism resources. In each recursive
step, we split the interval not only into two subintervals but into 2s subintervals for some
s ≥ 1. The case s = 1 corresponds to the standard method; if s > 1, we widen the search
tree by a factor of 2s−1 and flatten it by a factor of s. This strategy increases the potential
for parallelism but also the amount of work done in the algorithm. The core of the parallel
algorithm is depicted in Fig. 10.

We have benchmarked the program on a cluster of 20 Linux-PCs linked by 100
Mbit Ethernet lines and on a 128 processor SGI Origin 3800 distributed shared memory
multiprocessor. We benchmarked four sample inputs for which the execution of the
sequential CASA function realroot sb (which is 2–5 times faster than the Maple
function realroot) takes on a Pentium III@640 MHz 20, 26, 85, 104 s and on the Origin
23, 33, 109, 107 s, respectively. Examples 1 and 2 are polynomials of degrees 73 and
81 taken from runs of pacPlot described in Section 4.2; Example 3 is the Chebyshev
polynomial T110 (where T1(x) = x and Tn+1(x) = 2xTn(x) − Tn−1(x)) which has a wide
and deep search tree; Example 4 is the Mignotte polynomial x100 − 2(5x − 1)2 whose
search tree is narrow and deep. Examples 3 and 4 thus describe the best and the worst-case
scenario for real root isolation; Examples 1 and 2 are typical intermediate cases. Fig. 11
shows the trace of Example 2 with s = 2 and 8 processors on the cluster.

Fig. 12 gives the execution times for the four examples in both environments
(cluster and origin) with a varying number of processors and speculation parameter s
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Fig. 10. Parallel real root isolation.

6777359460

Fig. 11. Real root isolation.

(1, 2, 3, 4 denoted by markers +,×,�,� in the subsequent diagrams). All in all, the
examples suggest that speculating too much in real root isolation usually hurts; limited
speculation with s = 2 may improve the results a bit (but also deteriorate them a bit).
However, for isolating very close roots, speculation is essential to gain any speedups at all.
A prosaic reason for the limited speedups is that the chosen examples are not very big;
this reflects the fact that realroot isolation is a subalgorithm typically applied in the context
of larger applications (as shown in the following sections). If the inputs were larger, these
applications would usually run into other time or memory limits.
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Fig. 12. Real root isolation: experimental results.

Collins et al. (1990) describes a shared memory parallel implementation of the bisection
method. On a 20 processor Encore Multimax, a speedup of 2.5 was achieved for a randomly
generated polynomial of degree 40 (sequential execution time about 4 s) and a speedup of
about 4.6 for an artificial polynomial of degree 20 with 20 roots (sequential execution time
about 5 s). Our parallel implementation compares favourably with this one.
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Fig. 13. Maple implicitplot versus CASA pacPlot.

The distributed memory implementation of Decker and Krandick (1999) parallelizes
polynomial arithmetic in each node of the search tree. With 20 Cray T3E processors,
speedups of 15 and 13 are reported for random polynomials with 2000 bit integer
coefficients (sequential execution time 80 s respectively 40 s); a speedup of 15 is reported
for a Chebyshev polynomial for which sequential execution takes 25 s; a speedup of 3
with four processors is reported for a Mignotte polynomial for which sequential execution
takes 70 s. This C-based implementation uses arbitrary precision floating point interval
arithmetic which is much more efficient than our Maple-based version. It thus achieves
its speedups with polynomials that are orders of magnitudes larger than those in our
benchmark.

The original presentation of speculative real root isolation in Mittermaier (2000) is
based on a more complex task management scheme. However, the above scheme is not
only simpler but also gives considerably better speedups.

4.2. Plotting of algebraic plane curves

One problem in algebraic geometry is the reliable plotting of algebraic curves.
Conventional methods often yield qualitatively wrong solutions, i.e. plots where some
“critical points” (e.g. singularities) are missing. For instance, the left diagram in Fig. 13
shows a plot of the plane curve 2x4 − 3x2y + y4 − 2y3 + y2 generated by Maple’s
implicitplot. The numerical approximation fails to capture two singularities; even if
we improve the quality of the diagram by refining the underlying grid, only one of the
missing singularities emerges. On the other hand, CASA’s pacPlot produces the correct
diagram shown to the right. This is achieved by a hybrid combination of exact symbolic
algorithms for the computation of all critical points and of fast numerical methods for the
interpolation between these points (Nam, 1994). Our presentation of the parallelization of
this algorithm is based on Schreiner et al. (2000b) and Mittermaier et al. (2000).

pacPlot proceeds in three steps to plot an algebraic curve a:

1. Compute the critical points of a in the y-direction and sort them according to their
y-coordinates.

2. Intersect a with the horizontal lines that lie in the middle of the stripes determined
by the y-coordinates of the critical points.
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Fig. 14. Computation of critical points.

3. Trace a from each intersection point in both directions towards the border points of
the stripe.

The algorithm spends virtually all computation time in Step 1, the computation of the
critical points of a. The problem of this step is, given some a(x, y) ∈ Q[x, y], to find
every real solution (“ root” ) 〈x, y〉 ∈ R × R of the system S := {a = 0, ∂a/∂x = 0}. Since
exact arithmetic in R is not possible, each root 〈x, y〉 is actually “ isolated” by a pair of
intervals 〈[x ′, x ′′], [y ′, y ′′]〉 with x ′, x ′′, y ′, y ′′ ∈ Q such that 〈x, y〉 is the only root of S
with x ′ < x < x ′′ and y ′ < y < y ′′.

The algorithm computing the set of all intervals that isolate the critical points
is sketched in Fig. 14. This algorithm contains various improvements introduced by
Mittermaier (2000); they already reduce the computation time by an order of magnitude.
Our experimental results thus measure the parallelization speedups against this improved
version.

We have parallelized this algorithm on various levels (underlined in Fig. 14):

1. parallel resultant computation,

2. parallel real root isolation,

3. parallel solution test,

4. parallel interval refinement.
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Fig. 15. Plotting of algebraic plane curves.

Parallel resultant computation and parallel real root isolation were discussed in
Section 4.1. The tests which of the candidates 〈x, y〉 are indeed solutions of the given
system can be performed in parallel in a straightforward fashion. Likewise, we can
apparently refine all isolating intervals in parallel to the desired accuracy.

We have benchmarked the parallel variant of pacPlot with four randomly generated
algebraic curves for which the sequential program on a PIII@450 MHz PC takes 6870,
470, 155, and 11,748 s respectively. The parallel variant has been executed in three system
environments consisting of 24 processors each: a cluster of four SGI Octane dual-processor
machines and 16 Linux PCs, a SGI 2000 multiprocessor, and a cluster of four dual-
processor Octanes and 16 processors of the Origin multiprocessor. The raw computing
powers of cluster, Origin, and mixed configuration relative to a PIII@450 MHz processor
are 18.3, 17.1, and 18.7, respectively.

The profile in Fig. 15 illustrates the execution of Example 2 in a cluster with 16
processors listed on the vertical axis (eight Octane processors above eight Linux PCs)
and each line denotes a task executed on a particular machine. We can clearly distinguish
the real root isolation phase followed by the phases for resultant computation, the second
real root isolation, the solution checks and the solution refinements (their relative weights
are very different for other inputs).

The table in Fig. 16 lists the execution times measured in each environment for each
input with varying numbers of processors; the following diagrams display the same
information as described in Section 4.1.1. The markers +, ×, and � denote execution on
cluster, Origin, and in the mixed configuration, respectively.

Analysing the experimental data gives some interesting results. Most obviously, the
speedup for larger examples is better than with smaller ones; for instance, in Example 1
the Cluster/mixed configuration gives an absolute speedup of 16 but only a speedup of 5
for Example 2. The Origin operates in Example 1 with scaled efficiencies close to 1 and
gives in Example 4 (which has very large intermediate data) due to its high-bandwidth
interconnection fabric for smaller processor numbers significantly better results than the
other environments. Especially with 16–24 processors, however, in all examples the scaled
speedups/efficiencies of the cluster compete with (are equal or higher than) those of the
Origin. Moreover, the cheap Linux PCs in the cluster give overall better performance than
the much more expensive Silicon Graphics machines.

When we consider the execution times of the parallel subalgorithms (not listed due to
lack of space) individually, we realize that the speedups are partially much higher than
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Fig. 16. Plotting of algebraic plane curves: experimental results.

the speedup of the overall algorithm. In Example 2 with 24 processors, the parallelization
of resultant computation gives absolute speedups of 10.2 (cluster), 10.2 (Origin), and 7.9
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(mixed). The parallelization of the checking phase gives absolute speedups of 12.3, 14.1,
and 16.1 of the respective configurations. Although both phases together account for almost
80% of the total work, the less efficient parallelization of the remaining (much shorter)
phases limits the overall speedup.

In Schreiner (2000) we give additional timings on a Sun HPC 6500 shared memory
multiprocessor and on a dedicated Beowulf cluster; they are in some cases significantly
better than the above figures.

4.3. Plotting of surface to surface intersections

The CASA function ssiPlot generalizes pacPlot to the three-dimensional case: it
solves the problem of reliably plotting algebraic space curves defined by surface to surface
intersections. The following presentation of the parallelization of this algorithm is based
on Schreiner et al. (2000c).

The solution idea is analogous to the one sketched in Section 4.2 for the two-
dimensional case: we first determine the critical points of a in one coordinate direction,
say z. These points define planes along the other two coordinate directions. The collection
of these planes partition the space into a number of subsequent layers. Within each layer,
we determine starting points on the curve from which we may safely trace the simple
branches of a by numerical methods.

Again, the algorithm spends most of the execution time on the computation of the
critical points which is crucially different from the two-dimensional case. Now the
problem is, given two surfaces f (x, y, z), g(x, y, z) ∈ Q[x, y, z], to find every real root
〈x, y, z〉 ∈ R3 of the system { f = 0, g = 0, Jx ( f, g) = 0}, where Jx ( f, g) is the
Jacobian of f and g with respect to y and z. Since exact arithmetic is not possible in
R, each root 〈x, y, z〉 is actually isolated by a triple of intervals 〈[x ′, x ′′], [y ′, y ′′], [z′, z′′]〉
where x ′, x ′′, y ′, y ′′, z′, z′′ ∈ Q such that 〈x, y, z〉 is the only root of the system for which
x ′ < x < x ′′, y ′ < y < y ′′, and z′ < z < z′′.

Isolating intervals for the z-coordinates of the critical points are determined by first
computing the determinant j (x, y, z) ∈ Q[x, y, z] of Jx , then computing the Dixon
resultant d(z) ∈ Q(z) of f , g, and j , and finally isolating the real roots of d . The most
time-critical part is the computation of d(z) which at once eliminates several variables
of a polynomial system while preserving the common roots. The d(z) is computed from a
matrix D by fraction-free Gaussian elimination as depicted in Fig. 17. After each reduction
step, the entries of D represent rational functions; they have to be normalized to simple
polynomials. In this subalgorithm, ssiPlot spends 60–80% of the total execution time.

To speed up ssiPlot, we apply parallelism in various subalgorithms, the most
significant one is the computation of d(z) from D. In iteration k of the outer loop,
we compute all the (k − r) ∗ (k − c) new elements of D in parallel (the underlined
part in Fig. 17). Having selected the number of tasks t (which is usually greater than
the number of processors to improve load balancing), we thus start a task for every
(r − k) ∗ (c − k)/t elements. While the number of matrix elements per task thus decreases
with increasing k, the coefficient sizes of the corresponding polynomials increase and
polynomial simplification becomes more complex. Thus the overall task grain size actually
grows which allows us to exploit the available parallelism efficiently.
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Fig. 17. Computation of Dixon resultant.

RealRoot Initial BranchesDixon

Fig. 18. Plotting of algebraic space curves.

We have benchmarked the parallel variant of ssiPlot with four random curves for
which the sequential program takes on a PIII@450 MHz PC 2119, 475, 1523, and 5973 s,
respectively. The parallel variant was executed in the same environment as described
in Section 4.2. The diagram in Fig. 18 generated from a trace file illustrates a sample
execution in the cluster configuration with 24 processors; we see the Dixon resultant
computation phase followed by the phases for real root isolation, initial point computation,
and branch computation. The number of tasks in the later stages of the first phase is
limited by the number of matrix elements to be updated. The increased complexity of
each matrix element computation however yields tasks of much larger grain size than in
the beginning.

The table in Fig. 19 lists the execution times for each input in each environment
with varying processor numbers; the following diagrams display the same information as
described in Section 4.1.1. Sometimes, the benchmarks apparently yield too good results:
for processor numbers up to four or even eight, we get scaled efficiencies between 1 and 2.
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Fig. 19. Plotting of algebraic space curves: experimental results.

These superlinear speedups are caused by the increased amount of heap memory in all
Maple kernels which reduces the garbage collection times correspondingly. Only for larger
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Fig. 20. Computation of derivatives of total order i + 1.

processor numbers, the parallelization overhead outweighs these gains. In most cases the
cluster/mixed configuration gives results that are as good as or even better than on the
Origin. This indicates that the capacity of the 100 Mbit switched Ethernet is for this
computation sufficiently high and/or that Distributed Maple on the Origin is comparatively
less efficient.

4.4. Neighbourhood analysis of algebraic curves

A singularity of an algebraic curve is called ordinary, if its multiplicity denotes
the number of tangents through this point. An important subproblem in the rational
parameterization of algebraic curves (Sendra and Winkler, 1990) is to transform a curve
Ci that has non-ordinary singularities into a curve Ci+1 where a non-ordinary singularity
is resolved into ordinary ones. The following presentation of the parallelization of the
transformation of Ci to Ci+1 is based on Schreiner et al. (2000a, 2001).

The most time-consuming part of the transformation is the computation of all
singularities of a homogeneous polynomial p(x, y, z) in two steps:

1. (b, n) := derivatives(p)
Let dv

u ∈ Q(x, z) be ∂p(x, 1, z)u+v/∂xuzv of total order u + v. We compute a
sequence [bi ]n

i=0 where b0 is the greatest square free divisor (gsfd) of p(x, 1, 0),
bi+1(x) is the greatest common divisor (gcd) of bi (x) and of all du

v (x, 0) with
u + v = i + 1, and n is the smallest order such that deg bn = 0. The roots of
bi (x) are the x-coordinates of all singularities (x, 1, 0) of order at least i + 1. The x-
coordinates of all singularities (x, 1, 0) of order i are thus the roots of bi−1(x)/bi (x)

for 1 < i ≤ n. The partial derivatives of total order i + 1 are generated from (and
overwrite) the derivatives of order i as shown in Fig. 20.

2. S := singularities(b, n)
Let qi denote bi−1/bi for 2 ≤ i ≤ n. Every root a of qi is the x coordinate of a

singularity (a, 1, 0) of multiplicity i ; S is the set of all such (i, (a, 1, 0)).

The first step accounts for most of the computation time of each curve transformation.
Our goal is therefore to speed it up by parallelization.

4.4.1. Parallel algorithm: manager–worker style
Fig. 20 suggests to organize the computation of all dv

u in a triangular matrix shown in
Fig. 21: each line i contains all dv

u with u + v = i , each column j contains all dv
j , i.e.
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Fig. 21. The matrix of partial derivations.

the matrix holds at position (i, j) the derivative di− j
j . The basic parallelization idea is to

compute all those positions (i, j) with i ≥ j in parallel whose data dependencies have
been resolved, i.e. for which (i − 1, j) is available (if i > j ) respectively (i − 1, j − 1) is
available (if i = j ).

However in order to increase its granularity, a task should compute multiple matrix
elements, i.e. we have to block the computation accordingly. We achieve this by
partitioning the triangular matrix into square blocks of size m ∗ m (for some blocking
factor m) that comprise all partial derivatives that are computed by the same task. The
blocks along the diagonal boundary of the triangular matrix are themselves triangular and
only have to compute (m2 − m)/2 elements.

The tasks are created by a main program which computes iteratively the d0
u , i.e. the

derivatives along the diagonal boundary of the matrix. When it has computed the diagonal
boundary of a triangular block, it starts a corresponding task that computes the remainder
of this block. When a task has terminated, the main program starts a new task for computing
that square block that is adjacent to the lower boundary of the result block.

Actually, the result of a task need not be the values of all dv
u in the corresponding block

because we are only interested in

1. the last line of the block which is required by the task computing the adjacent block;
2. the gcd of each line of the block which is required by the main program to compute

the greatest common divisor of the whole matrix line.

Since the gcd is commutative and associative, the program may receive in any order the
results computed by the tasks of line i and combine them with the current value of bi . In a
final step, bi+1 is then combined with bi .

To let the algorithm efficiently execute on a machine with a limited number of
processors, we have to adopt an appropriate scheduling strategy: initially, tasks are created
for computation of the first p triangular blocks. Whenever a task terminates, we “enable”
the adjacent square block whose computation thus becomes possible; if the terminated



W. Schreiner et al. / Journal of Symbolic Computation 35 (2003) 305–347 339

Fig. 22. The parallel algorithm: manager–worker style.

29961 56701 29961 56701

Fig. 23. Manager–worker parallelism.

task has computed a triangular block (and it was not one of the p initial tasks), we also
enable the subsequent triangular block. Among all enabled blocks, we choose a block with
minimum line index, because its computation may make the computation of blocks with
larger indices superfluous. When the termination criterion is detected in line i , only those
tasks will be started that operate on lines with indices less than i ; when no more task is
active, the algorithm terminates.

We have benchmarked the program with four examples for which the sequential
computation on a PIII@450 MHz Linux PC takes 552, 198, 402, and 1798 s, respectively.
The examples were extracted from the resolution of the singularities of four artificially
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Fig. 24. Experimental results.

generated curves in which they represented the most time-consuming part (88, 85, 95, and
95% of the total runtime). The program has been executed in two environments: a SGI
Origin 2000 multiprocessor (64 R12000@300 MHz, 24 processors used) and a cluster of
four SGI Octanes (2 R10000@250 MHz each) and of 16 of the Origin processors. The table
in Fig. 24 lists the execution times; the subsequent diagrams display the same information
as described in Section 4.1.1.
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Fig. 25. Data dependencies.

While the parallelization achieved some speedup, the utilization diagram of a sample
run in the right of Fig. 23 shows that there is much room for improvement: rarely all
machines are busy, in average only about 50% of the computing resources are utilized.
Apparently, the manager is not able to issue parallel tasks at a rate that is sufficiently high to
provide idle machines with work, i.e. the explicit task scheduling becomes a performance
bottleneck.

4.4.2. Parallel algorithm: dataflow style
Because of the low utilization of the manager–worker solution, Schreiner (2001)

explores a solution where tasks are created whenever their data dependencies have been
resolved. This “dataflow” solution exhibits all parallelism inherent in the problem and
leaves the scheduling details to the runtime system.

We decompose the triangle matrix of partial derivatives as shown in Fig. 25: the
decomposition yields uniform square blocks of size m2 (for some m) such that each block
can be identified by the coordinate (i, j) of its upper point denoting d j

i and contains all

dv
u with 0 ≤ u < i + m and 0 ≤ v < j + m. Once d j

i is known, all other elements of
the block can be determined by derivation with respect to x or z, respectively. As in the
original algorithm, we compute within a block the gcd of all dv

u with the same sum u + v

which then contributes to the result vector bu+v . However, now the lines/columns of each
block run diagonal to the computation of the derivatives as sketched by the grey arrow in
Fig. 25.

Since all elements in a block can be computed from the first element d j
i , we can start

the computation of a block when one of the following condition holds:

• i = 0 and d j−1
i is known.

• j = 0 and d j
i−1 is known.

• i > 0 and j > 0 and

– d j−1
i is known or

– d j
i−1 is known.

The main program starts the tasks in some order compatible with the task dependencies
and passes to each task the references to those tasks that the new task potentially depends
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Fig. 26. The parallel algorithm: dataflow style.

on. Then the program waits for all tasks (i, j) in the order of increasing i + j , combines
the computed gcds with the vector b and signals by updating n whether the computation
can be prematurely terminated. All tasks whose results are not required any more are then
stopped. The main program is depicted in Fig. 26.

We have benchmarked the program in a cluster of Linux PCs with problems 1, 2, and
4 described in Section 4.4.1. Fig. 27 illustrates an execution of Example 1 with block size
m = 4. In the new algorithm, all machines get saturated for 65% of the computation time.
The overall utilization is about 75%.

The actual execution times of the new algorithm in comparison with the execution times
of the old algorithm are listed in Fig. 28: the top row of diagrams shows the execution time
of the programs, the bottom row shows the speedup that the new algorithm gains over the
original one with the following variants:
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Fig. 27. Dataflow parallelism.
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Fig. 28. Execution times and speedups.

• O: the original algorithm.
• N4, N5: the new algorithm with non-deterministic task selection in the main program

with block sizes m = 4 and 5.
• D4, D5: the new algorithm with deterministic selection in the main program (t :=

first(tset)) with block sizes m = 4 and 5.

All variants of the new algorithm are considerably faster than the original version
with an average improvement of 1.8 (Example 1) respectively 2.2 (Examples 2 and 3).
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We could thus reduce the sequential execution time from 552, 198 s, respectively 1798 s
on a PIII@450 MHz PC down to a parallel execution time of 14, 6 s, respectively 29 s. The
fact that the speedups are drastically superlinear is caused by the changed order in which
the greatest common divisors are computed (also in the original parallel algorithm); this is
a hint for a general algorithmic improvement of the sequential algorithm.

5. Conclusions

The main advantage of Distributed Maple is that it represents on the basis of a wide-
spread commercial computer algebra system a reliable, portable and easy to use platform
for the development of parallel computer algebra algorithms. Provided that the algorithms
exhibit sufficient parallelism with medium to large grain size (at least 1 s), we can
expect reasonable speedups in environments with up to 30 machines/processors or so. The
comparatively high-level parallel programming model and the supporting visualization
tools allow us to experiment with little effort on different parallelization strategies for a
given problem and to investigate the effects on dynamic behaviour and performance.

On the other hand, the hybrid nature of the environment and its high level of abstraction
require a number of compromises such that we cannot expect to get the fastest possible
parallel solution for a given problem. Given enough time and manpower, a native C
implementation on the basis of a message passing library such as MPI or PVM will
always yield a more efficient implementation. Nevertheless for the many computer algebra
programmers that want to get rather good parallelization success with limited efforts on
the basis of existing Maple code, Distributed Maple provides a powerful work platform.

Acknowledgements

Karoly Bosa has implemented under the supervision of Wolfgang Schreiner the fault
tolerance mechanisms described in Section 3.5. Many of the parallel algorithms described
in Section 4 have in their initial versions been developed by Christian Mittermaier under
the supervision of Wolfgang Schreiner. Franz Winkler has initiated the parallelization of
parts of CASA and thus triggered the development of Distributed Maple. Furthermore,
he has provided insight on the mathematical details of the CASA algorithms that was
fundamental for their parallelization. This work is supported by grant SFB F013/F1304 of
the Austrian Science Foundation (FWF).

Appendix

The inputs for the benchmarks presented in Section 4 are available at
http://www.risc.uni-linz.ac.at/software/distmaple/benchmarks.
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