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a b s t r a c t

The current ubiquity of multi-core processors has brought renewed interest in program
parallelization. Logic programs allow studying the parallelization of programs with
complex, dynamic data structures with (declarative) pointers in a comparatively simple
semantic setting. In this context, automatic parallelizerswhich exploit and-parallelism rely
on notions of independence in order to ensure certain efficiency properties. ‘‘Non-strict’’
independence is amore relaxed notion than the traditional notion of ‘‘strict’’ independence
which still ensures the relevant efficiency properties and can allow considerable more
parallelism. Non-strict independence cannot be determined solely at run-time (‘‘a priori’’)
and thus global analysis is a requirement. However, extracting non-strict independence
information from available analyses and domains is non-trivial. This paper provides on
one hand an extended presentation of our classic techniques for compile-time detection
of non-strict independence based on extracting information from (abstract interpretation-
based) analyses using the now well understood and popular Sharing + Freeness domain.
This includes algorithms for combined compile-time/run-time detection which involve
special run-time checks for this type of parallelism. In addition, we propose herein novel
annotation (parallelization) algorithms, URLP and CRLP, which are specially suited to
non-strict independence. We also propose new ways of using the Sharing + Freeness
information to optimize how the run-time environments of goals are kept apart during
parallel execution. Finally, we also describe the implementation of these techniques in our
parallelizing compiler and recall some early performance results. We provide as well an
extended description of our pictorial representation of sharing and freeness information.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The use of multi-core processors is becoming widespread and this is bringing parallel computing clearly into the
mainstream. As an example, most laptops currently on the market contain two cores (capable of running up to four threads
simultaneously) and single-chip, 8-core servers are also in widespread use. Furthermore, the trend is that the number of
on-chip cores will double with each processor generation. In this context, being able to exploit such parallel execution
capabilities in programs as easily as possible becomes more and more a necessity. However, it is well-known [1,42] that
parallelizing programs is a hard challenge. This has brought renewed interest in language-related designs and tools which
can simplify the task of producing parallel programs, and, in particular, in parallelizing compilers and declarative languages.
The interest in declarative programming paradigms is due to the fact that their high-level of abstraction brings significant

advantages to the parallelization task. Logic programs are particularly interesting because on one hand they exhibit these
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favorable characteristics, stemming from their high level and declarative nature, and at the same time they pose, in a
semantically clean and well-understood setting, challenges which relate closely to the most difficult scenarios faced in
traditional parallelization [27]. In particular, interesting challenges faced during the parallelization of logic programs include
the presence of dynamically allocated, complex data structures containing ‘‘(declarative) pointers’’ (logical variables), non-
trivial notions of independence, the presence of highly irregular computations and dynamic control flow, and having to deal
with speculative computations and search. As a result, advances in the parallelization of logic programs also shed light on
the parallelization of current and future imperative languages.
Logic programs exhibit several kinds of parallelism [13,24], amongwhich or- and and-parallelism are themost exploited

in practice. In this paper we concentrate on and-parallelism, whichmanifests itself in applications in which a given problem
can be divided into a number of independent sub-problems. For example, it appears in algorithms where independent,
possibly recursive calls or loop iterations can be executed in parallel (simple, well-known examples are quick-sort or matrix
multiplication). Some examples of systems which exploit and-parallelism are &-Prolog [10,26,29] (and, more recently, its
successor Ciao [28,30]), ROPM [56], AO-WAM [23], ACE [54,55], DDAS/Prometheus [58,59], systems based on the ‘‘Extended’’
Andorra Model [63] such as AKL [41], etc. (please see their references and [24] for other related systems).
The objective of the parallelization process performed by a parallelizing compiler is to uncover as much as possible of

the available parallelism in the program, while guaranteeing that the correct results are computed –i.e., correctness– and
that other observable characteristics of the program, such as execution time, are improved (speedup) or, at the minimum,
preserved (no-slowdown) —i.e., efficiency. A central issue is, then, under which conditions two parts of a (logic) program can
be correctly and efficiently parallelized. All of the systems exploiting and-parallelism mentioned above rely on some notion
of independence (also referred to as ‘‘stability’’ [25]) among non-deterministic goals being run in and-parallel in order to
ensure these important efficiency properties.1 Two basic notions of independence for logic programs are strict and non-
strict independence [33–35]. Other more general notions have been developed based directly on search space preservation
and which are applicable to constraint logic programs [17,18], but herein we concentrate on the former classic notions for
the Herbrand domain.

1.1. Strict independence

Strict independence corresponds to the traditional notion of independence, normally applied to goals [13,21,29]: two
goals g1 and g2 are said to be strictly independent for a substitution θ iff var(g1θ)∩var(g2θ) = ∅, where var(g) is the set of
variables that appear in g . Accordingly, n goals g1, . . . , gn are said to be strictly independent for a substitution θ if they are
pairwise strictly independent for θ . Parallelization of strictly independent goals has the property of preserving the search
space of the goals involved so that correctness and efficiency of the original program (using a left to right computation rule)
are maintained and a no slow-down condition can be ensured [33–35].2
A convenient characteristic of strict independence is that it is an ‘‘a priori’’ condition, i.e., it can be tested at run-time ahead

of the execution of the goals. Furthermore, tests for strict independence can be expressed directly in terms of groundness
and independence of the variables involved. This allows relatively simple compile-time parallelization by introducing run-
time tests in the program, i.e., calls to ground/1 (which tests for groundness of its argument) or indep/2 (which succeeds
if its two arguments share no variables).
As an example, consider the clause fragment ‘‘p(X,Y), q(Y,Z)’’. The run-time tests that ensure the strict independence

of p(X,Y) and q(Y,Z) are ground(X) and indep(Y,Z). Thus, transforming the fragment above into:

( ground(X), indep(X,Y) -> p(X,Y) & q(Y,Z)
; p(X,Y) , q(Y,Z) )

(where ‘‘A -> B; C’’ is the Prolog if-then-else and ‘‘&’’ is the &-Prolog parallel conjunction operator) ensures that p/2 and
q/2will run in parallel if they are strictly independent and sequentially otherwise.

1.2. The parallelization process

A considerable body ofwork exists on the task of automatically parallelizing programs at compile timeusing strict (aswell
as other types of) independence [8,21,48,50]. A detailed overview of this work is beyond the scope of this paper —see [24,27]
for tutorial introductions and additional pointers to literature. We do however provide a brief introduction to the process,
based on the methodology used in the &-Prolog/Ciao parallelizer,3 originally proposed in [36] (see Fig. 1 representing the
parallelization of three generic literals ‘‘g1(...), g2(...), g3(...)’’).

1 It has been noted [27,28] that independent and dependent and-parallelism are simply the application of the same principle, independence, at different
levels of granularity in the computation model.
2 Note that, unlike in functional or imperative programs, the risk involved in running an arbitrary goal in parallel in a logic program is not only that it may
lead to a run-time error or a wrong answer. More subtly, the programmay finish without error and provide the right answer, but only after the exploration
of much larger search spaces (sometimes infinite) than those corresponding to the sequential execution, and, thus, at the cost of significant slow-downs.
3 This parallelizer is part of the Ciao preprocessor, CiaoPP. This system is a state-of-the-art interactive programming environment, which offers abstract
modular interpretation-based analysis, debugging, verification, and optimization —see [30] for a description of the system with pointers to literature.
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Fig. 1. Parallelizing ‘‘g1(...), g2(...), g3(...)’’ in &-Prolog/CiaoPP.

Typically, a dependency graph is first built which in principle reflects the total ordering of statements and calls given by
the sequential semantics. Traditionally, for strict independence each edge in the graph is then labeledwith the run-time data
conditions (the run-time check) that would guarantee independence of the statements joined by the edge. As mentioned
above, in the case of strict independence these conditions are groundness of certain variables or absence of shared variables
among two variables each belonging to one of the two goals being considered (corresponding to the calls to the ground/1
or indep/2 run-time tests).
If the appropriate option is selected, the parallelizer then obtains information about the possible run-time substitutions

(e.g., sharing and freeness information) at all points in the program as well as other types of information from a Global
Analyzer, using techniques [4,5,39,40,49,52] that are generally based on abstract interpretation [16].4 This information
is then used to prove the conditions in the graph statically to be true or false. If a condition is proved to be true, then
the corresponding edge in the dependency graph is eliminated. If proved false, then an unconditional edge (i.e., a static
dependency) is left. Still, in other edges conditions may remain, but possibly simplified.
In the next step the annotator then encodes the resulting graph, producing an ‘‘annotated’’ (parallelized) program. The

techniques used for performing this process depend on many factors including whether arbitrary parallelism or just fork-
join structures are allowed5 and alsowhether run-time independence tests are allowed or not. As an example, Fig. 1 presents
two possible encodings in &-Prolog of the (schematic) dependency graph obtained after analysis. The parallel expressions
generated in this case use only fork-join structures, one with run-time checks and the other one without them.

1.3. Non-strict independence

Non-strict independence is a relaxation of strict independence, defined (for goals) as follows [6,34,35]:

Consider a collection of goals g1, . . . , gn and a substitution θ . Consider also the set of shared variables SH = {v |
∃i, j, 1 ≤ i < j ≤ n, v ∈ (var(giθ) ∩ var(gjθ))}. Let θi be any answer substitution for giθ , i.e., θi is any of the final
substitutions obtained from evaluating giθ using SLD-resolution until an empty resolvent is obtained. We assume
substitutions to be represented using equalities (in CLP style), i.e., a binding of two variables x and y is represented as
x = y. Thus, we consider the bindings x/y and y/x equivalent. We use ∃̇ as usual to represent ‘‘there exists at most
one’’. The given collection of goals is non-strictly independent for θ if the following conditions are satisfied:
• ∀x, y ∈ SH , ∃̇ giθ such that for some answer substitution θi for giθ we have that xθi is not a variable or that x 6= y
and xθi = yθi.
• ∀x, y ∈ SH , if ∃ giθ meeting the condition above, then ∀gjθ, j > i, such that {x, y} ∩ var(gjθ) 6= ∅, gj is a pure goal,
and for all θj partial answer during the execution of gjθ xθj is a variable and xθj 6= yθj if x 6= y.

Intuitively, the first condition of the above definition requires that at most one goal further instantiates a shared variable
or aliases a pair of variables. The second condition requires that any goal to the right of the one modifying the variables be
pure and not ‘‘touch’’ such variables during its execution. This ensures that its search space could not have been pruned by
any bindings made to these variables and therefore it is safe to run it in parallel.
Here pure is applied to a goal that has no extra-logical built-ins which are sensitive to variable instantiation. For example,

if one of the goals to the right of the one modifying the variables contains a call to the Prolog built-in var/1 (which only
succeeds if a variable is free) its search space could be reduced by a binding produced to its left (i.e., earlier, in sequential

4 The parallelizer also receives information from the Side-Effect Analyzer on whether or not each non-built-in predicate and clause of the given program
is pure, or contains a side-effect, and dependencies are added to correctly sequence such side-effects. The parallelizer also receives optionally information
on goal granularity from cost analysis (see [19,20,30,46] and its references) which is used, e.g., to avoid parallelizations when tasks are too small.
5 For an example where expressions do not need to be fork-join see [8,9].
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execution), and this reduction might be lost during parallel execution. Similarly, if one of the goals to the right contains a
call to the Prolog built-in ==/2 (which only succeeds if two variables are identical), its search space could be reduced by a
variable to variable binding produced to its left, which might again be lost during parallel execution. Also some side effects,
such as printing the value of a variable, are obviously sensitive to bindings.6

The definition above is a generalization of that originally given in [34]. In the case in which no information is available
on the purity of goals (and, thus, all goals have to be conservatively assumed to be impure) the definition of non-strict
independence does not need to be based on partial answers and can be simplified as follows:

Consider a collection of goals g1, . . . , gn and a substitution θ . Consider also the set of shared variables SH = {v |
∃i, j, 1 ≤ i < j ≤ n, v ∈ (var(giθ)∩ var(gjθ))}. Let θi be any answer substitution for giθ . The given collection of goals
is non-strictly independent for θ if ∀x, y ∈ SH , at most the rightmost giθ such that x, y ∈ var(giθ) has an answer
substitution θi for which xθi is not a variable or x 6= y and xθi = yθi.

That is, only the rightmost goalwhere a shared variable occurs can further instantiate the variable, and only the rightmost
goalwhere two shared variables occur can alias them. Clearly, this second definition is easier to implement, not only because
no information is needed regarding the purity of the goals, which is in practice actually relatively easy to obtain, but also
because no information is needed regarding partial answers, which in general is more difficult to obtain from analyzers. This
paper is focused mainly on this second definition, although some results are offered for the previous, more general, one.
Clearly, non-strict independence is a more powerful notion than strict independence, since strictly independent goals

are always non-strictly independent. The crucial point is that non-strictly independent goals preserve the same properties
as strictly independent ones with respect to correctness and efficiency in parallel execution [34,35]. In addition, studies
aimed at detecting the intrinsic, ideal amounts of parallelism present in logic programs already pointed out that there is
potential to obtain significant additional speedups from the exploitation of non-strict independence [59]. In practice, non-
strict independence has wide application for example in the parallelization of programs which use difference lists, and
incomplete structures in general. An example of this is the following flatten program, which eliminates nestings in lists
(the Ciao ‘‘pred’’ assertion [30] states that the mode considered implies taking calling flatten/2 with a ground term in
the first argument and a variable in the second):

:- pred flatten/2 : ground * var.

flatten(Xs,Ys) :- flatten(Xs,Ys,[]).

flatten([], Xs, Xs).
flatten([X|Xs], Ys, Zs) :- flatten(X,Ys,Ys1), flatten(Xs,Ys1,Zs).
flatten( X, [X|Xs], Xs) :- atomic(X), X \== []

When run in this ‘‘forwards’’ mode this program unnests a list without copying by creating open-ended lists and passing a
pointer to the end of the list (Ys1) to the recursive call. Since this variable is not bound by the first call to flatten/3 in the
body of the recursive clause, the calls toflatten(X,Ys,Ys1) andflatten(Xs,Ys1,Zs) are (non-strictly) independent
and all the recursions can be run in parallel. Note that Ys1may be aliased to Ys by the first goal, but Ys is known to be free
and not shared with the second goal.
Exploiting non-strict independence is non-trivial due to at least two factors. The first one is that, as mentioned before,

non-strict independence is not an ‘‘a priori’’ condition, i.e., it cannot be expressed simply in terms of run-time tests (without
running the goals). Thus, run-time detection by itself is ruled out. In addition, compile-time detection is complicated by the
fact that non-strict independence is not directly expressed in the same terms as the properties which are usually inferred
by global analyses and some non-trivial translation is required.

1.4. Towards non-strict independence through sharing and freeness

A number of early studies [33–35] suggested that coupling sharing and groundness analysis with freeness analysis could
be instrumental in the detection of both strict- and non-strict independence. This has been one of the motivations behind
the development of analyzers capable of inferring these three types of information [2,12,14,37,38,44,45,51,53,61,64].
The task of providing the bridge between the availability of sharing and freeness information and actually being able

to reason about the non-strict independence of a set of literals was first addressed in [6], which developed concrete
techniques for determining non-strict independence at compile-time. This paper is on one hand an extended and improved
version of [6]. More concretely, we expand [6] by providing extended explanations and a number of corrections, more and
updated examples, updated references, a description of a complete run through the parallelizer including the results from

6 In addition, many side effects (and in particular I/O) may need to be serialized, to preserve the order of observables, but that is a separate matter that
is addressed by parallelizers in an orthogonal way to the application of the notion of independence.
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the analyzer for the quick-sort program using difference lists, a more thorough description of the implementation and
the parallelization process (all of it now integrated within the Ciao/CiaoPP system [30]), and a fuller description of the
benchmarks used.
In addition, we propose URLP and CRLP, novel annotation (parallelization) algorithms specially suited to non-strict

independence. We also propose novel techniques for using the Sharing+Freeness information to optimize how the run-
time environments of goals are kept apart during parallel execution. These techniques are quite important for reducing
run-time overhead and thus obtaining speedups. It is interesting to note that, while much progress has been made since [6]
in the analyzers capable of inferring sharing and freeness information, to the best of our knowledge this work (and its
implementation in the context of the Ciao/CiaoPP system) still represents the state of the art in terms of converting such
analysis information into exploitable non-strict independent and-parallelism.
Following [6], we focus on a particular way of expressing sharing and freeness information: the Sharing+Freeness

domain [51]. Concentrating on a particular domain allows a significant degree of precision in the conditions involved, which
are given in such a way that the implementation is straightforward. However, we believe that the ideas presented can also
be used for related domains, provided that these domains give information about variable sharing and freeness.
The rest of the paper proceeds as follows: Section 2 explains the Sharing+Freeness domain (which, as mentioned before,

is the particular abstract interpretation domain forwhich the conditions for parallelism are given), and provides an extended
description of our pictorial representation for the abstract substitutions involved. Section 3 presents the sufficient conditions
for compile-time detection of non-strict independence. Section 4 deals with the combination of compile-time analyses and
run-time checks for detecting non-strict independence, presenting the type of run-time checks required for this type of
parallelism. It also connects this method with the techniques used for the detection of strict independence and shows
that our techniques actually also provide improved run-time checks for strict independence. Section 5 proposes URLP and
CRLP, the new annotation (parallelization) algorithms specially suited to non-strict independence. Section 6 then proposes
techniques for using the Sharing+Freeness information to rename and replace variables in order to optimize how the run-
time environments of goals are kept apart during parallel execution. Section 7 illustrates the techniques proposed by using
them to parallelize a sample program. Section 8 recalls some experimental results showing the speedups obtained in
several programs presenting non-strict independence but no strict independence. Finally, Section 9 provides conclusions
and suggests future work.

2. Understanding Sharing+Freeness abstract substitutions

The Sharing+Freeness abstract domain [51] (other related analyses for which our results may be valid include the
previously mentioned [2,12,14,37,38,44,45,51,53,61,64]) was proposed with the objective of obtaining at compile-time, by
means of an abstract interpretation-based [16] analyzer, accurate variable groundness, sharing, and freeness information for
a program, i.e., respectively, information onwhen a program variable will be bound to a ground term, when a set of program
variables will be bound to terms that do not have variables in common, and when a program variable will be unbound or
bound only to other variables instead of to a complex term.
The abstract domain approximates this information by combining two components (in fact domains per se): the

first component provides information on sharing (aliasing, independence) and groundness [39,40,49,52]; the second one
provides information on freeness.
We will denote a Sharing+Freeness abstract substitution as a pair (sharing, freeness) as in θ̂ = (̂θSH, θ̂FR). To distinguish

abstract substitutions from concrete substitutions abstract substitutions will be represented by Greek letters with a hat,
the same Greek letter without the hat representing a concrete substitution approximated by the abstract one. Sets will be
denoted with square brackets in abstract substitutions (to distinguish them and because of the mnemonic connotations
since they are to be represented in Prolog in the analyzer), and with braces in concrete substitutions (as usual). However,
for conciseness we will drop the commas that separate the elements in the abstract substitutions. Following the standard
notation, we will name the abstraction function α and the concretization function γ .
Informally, an abstract substitution in the sharing domain is a set of sets of program variables (a set of sharing sets),

where sharing sets represent all possible sharing patterns among the program variables. For example, given the following
concrete substitution θ , θ̂SH is its abstraction in the sharing domain:

θ = {X/f(1, a), Y/A, Z/f(A, C, t(B)), W/[B, C], V/D}
θ̂SH =

[
[YZ] [ZW] [V]

]
On the other hand, given the following sharing abstract substitution θ̂SH, the θi are concrete substitutions approximated

by it. The last column in the following represents the sharing sets ‘‘active’’ in each concrete substitution —we say that a set
L ∈ θ̂SH, where θ̂SH is a sharing abstract substitution, is active in a concrete substitution θ ∈ γ (̂θSH) iff L is in the abstraction
of θ :

θ̂SH =
[
[X] [YZ] [ZW]

]
θ1 = {X/A, Y/f(B, 1), Z/B, W/foo}

[
[X] [YZ]

]
θ2 = {X/[ ], Y/A, Z/[B|A], W/t(B)}

[
[YZ] [ZW]

]
θ3 = {X/t(0, 1), Y/atom, Z/A, W/A}

[
[ZW]

]
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Fig. 2. Types of objects in our pictorial representation.

The component described above is essentially the abstract domain of Jacobs and Langen [39,40], for which Muthukumar
et al. proposed more efficient abstract unification algorithms [40,49,52],7 and which has recently received much attention
[2,12,14,37,38,44,61], specially regarding the development of widenings in order to trade precision for performance in
unfavorable cases [45,53,64].
An abstract substitution in the freeness domain is a set of program variables (those that are known to be free). The

concretization of a Sharing+Freeness abstract substitution can be defined as the intersection of the concretizations of its two
components.
The set inclusion relation in the concrete domain induces a partial order on the abstract substitutions, i.e., φ̂ v ψ̂ iff

γ (̂φ) ⊆ γ (ψ̂). The function lub computes the least upper bound of two abstract substitutions φ̂ and ψ̂ by taking the least
upper bound of their sharing and freeness components:

lub(̂φ, ψ̂) = (̂φSH ∪ ψ̂SH, φ̂FR ∩ ψ̂FR)

It is important to point out that the approximations performed by the abstraction function and the lub function with respect
to the sharing component imply that this component can actually represent in a compact way (rather than with an explicit
disjunction) several combinations of sharing patterns. One of the main sources of information in being able to tell these
combinations apart is the freeness information. In fact, sharing information is not independent of freeness information,
since known freeness of certain variables restricts the allowable combinations of sharing sets. The possible combinations
of sharing sets represented by a Sharing+Freeness abstract substitution θ̂ are the subsets of the sharing component (the
S ∈ ℘(̂θSH)) that have one andonly one sharing set including each variable in the freeness component (∀v ∈ θ̂FR∃̇L ∈ Sv ∈ L).
The point above regarding Sharing+Freeness abstract substitutions, which is of great practical importance, may still be

difficult to understand in the terms given so far. It is hoped that with the pictorial representation presented in the following
section these issues will be greatly clarified.

2.1. Pictorial representation of substitutions

We use a pictorial representation of substitutions in the Sharing+Freeness domain [6] in order to make it easier to
understand such abstract substitutions and also to follow the discussions and examples throughout the text. The idea of the
pictures is to make the large amount of information contained in these abstract substitutions more explicit. Fig. 2 illustrates
the different types of objects used in this representation.
Asmentioned before, an abstract Sharing+Freeness substitution is a compact representation of a finite number of possible

Sharing+Freeness situations in the concrete domain. To reflect this, a given Sharing+Freeness abstract substitution can
be represented with a finite number of figures, each figure having the same freeness information (which is definite) but
representing the different alternative coverings of free variables by the sharing sets.
As the Sharing+Freeness abstract substitutions give information in terms of program variables, only these variables

appear in the figures.8 Variables in the freeness component are represented by dots, the rest by circles. The sharing patterns
are represented by lines connecting all the variables of the corresponding sharing set. If the sharing set has only one variable,
and this variable is not in the freeness component, it is represented as a short line coming out of the variable. Note that all
sharing sets that contain no free variables (including those just mentioned involving only one variable), may be either active
or inactive in a concrete substitution, since they represent only ‘‘possible’’ sharing. Rather than having multiple figures for
all the cases involved, all such sets are represented explicitly by lines in a given picture, under the assumption that those
linesmay ormay not be present. Note also that lines connecting free variables on the other hand represent necessarily active
sharing sets and cannot be removed.
The number of lines coming out of a circle represents the number of sharing sets containing the corresponding variable.

However, multiple lines coming out of dots (free variables) all correspond to the same sharing set, since free variables must
be in one and only one active sharing set (this is done to simplify the drawings). If no line comes out of a given dot this
represents a sharing set containing only this variable. Note that a circle connected to one or more lines can in fact represent
a free variable, since the freeness component names only the variables that are definitely known to be free. On the other
hand, an isolated circle represents always a ground variable, since the variable is not a member of any sharing set. The
resulting pictures are hypergraphs, since the edges connect an arbitrary number of vertices.

7 And also an improved precision of the abstract operations, based on considering the concrete information in clause heads and goals, although this can
also be considered an optimization outside the abstract domain.
8 Note, however, that if, as suggested in Section 9, the Sharing+Freeness domain is combined with another domain that introduces new variables (such
as, for example, a depth-k domain [43,57]) then these variables would appear in the Sharing+Freeness component, and, thus, also in the pictures.
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Fig. 3. Examples of representation of abstract substitutions.

A goal is represented like a set in a Venn Diagram, the variables in the set being the goal variables. When we represent
two goals, the first one (in the Prolog textual order) is to the left and the second one to the right, and the variables present
in both goals are placed in the ‘‘intersection’’.
Fig. 3 shows several examples representing different abstract substitutions through the corresponding picture(s). The

number of pictures corresponds to the number of alternative coverings of free variables by the sharing sets.

• In the first example, the abstract substitution is represented with only one picture, as there is only one possible covering
of the free variables by the sharing sets. W is ground, X and Y are free, and Z is a term that contains X.
• The second example, since there are no free variables, also represents an abstract substitution with only one picture. The
two sharing sets represented are therefore optional, so in fact we have four possibilities depending on which of the two
are active.
• In the third example we have two pictures: either the sharing set [XYZ] or the two sharing sets [XW] and [Y] are active,
since these are the two possible coverings of the free variables X and Y. In the first picture W is ground, whereas Z is not
ground and contains the variables X and Y, that are aliased, and may contain more variables. In the second picture, W is
a term that contains X, Y is free and independent from the other variables, Z is also independent from the other variables
(and it may be ground since its sharing set is optional).
• The fourth example shows two pictures, depending on whether [YZW] or [W] is active. In both pictures there is an
optional sharing among X, Y and Z. In the first picture, Y and Z also share the variable W.
• Finally, the fifth example shows three pictures. In the first, the covering of the free variables Y, W and V is performed by
the sharing sets [XY], [W] and [V]; in the second, by [X], [YZ], [W] and [V]; and in the third, by [XYW] and [V]. There are
nomore combinations that cover all the free variables without overlapping. In the first picture, V andWare free variables
and independent, Z is ground, and X contains the free variable Y and possibly others. In the second picture, V and W are
also free variables and independent, Z contains the free variable Y, and X is also independent (as in one of the previous
cases, we do not know if it is free, ground, or otherwise). In the third picture, V is free and independent, Z is ground, and
X contains Y and W, which are aliased, as well as possibly more variables.

3. Conditions for non-strict independence based on Sharing+Freeness analysis results

We now turn to our main objective of describing how conditions for non-strict independence can be derived from
the information present in Sharing+Freeness abstract states obtained from global analysis. In the following we will focus
on the case of analyzing the (non-strict) independence of two literals. This is convenient from a practical point of view
because, as mentioned before, many parallelization algorithms work by repeatedly considering whether two literals are
independent. The algorithms described in this paper are directly aimed at answering such questions for the case of non-
strict independence. The decision of considering the parallelization of pairs of goals is fortunately based on sound theoretical
foundations. Consider, for the case in which no information is available on the purity of goals, the following alternative
definition of non-strict independence:

Given two goals g1 and g2, where g2 is to the right of g1, and a substitution θ . Consider the set of shared variables
SH = var(g1θ)∩ var(g2θ). Goals g1 and g2 are non-strictly independent for θ if for any answer substitution θ1 of g1θ
and for all x, y ∈ SH , xθ1 is a variable and if x 6= y, xθ1 6= yθ1.



D.C. Gras, M.V. Hermenegildo / Theoretical Computer Science 410 (2009) 4704–4723 4711

Based on this definition, the definition involving n goals can be expressed as follows: g1, . . . , gn are non-strictly
independent for a substitution θ if they are pairwise non-strictly independent for θ . Clearly, this is equivalent to the original
definition, and thus considering only pairs of goals can be done without loss of generality.
Now, in order to derive conditions for detecting non-strict independence with respect to the information present in

Sharing+Freeness abstract states, note that our definition of non-strict independence for two goals is given in terms of the
substitutions before and after the execution of the goal to the left, i.e., of its call and answer substitutions. Correspondingly,
in the abstract domain we will consider that goal’s abstract call and abstract answer substitutions.
Before stating the conditions it is important to understand inwhich forma goal can transform its abstract call substitution

into its abstract answer substitution:

• Regarding the freeness component, what it can do is eliminate variables from the component (by instantiating them).9
• Regarding the sharing component, it can eliminate sharing sets (by instantiating its variables to ground terms) or create
more by union of the present sharing sets (by unifying variables from these sharing sets). If a variable in a sharing set is
further instantiated but not made ground, the sharing set remains unchanged. Note also that when a sharing set contains
one or more free variables, if it is active, there is a single shared run-time variable corresponding to these program
variables. Recall also that two sharing sets containing the same free variable cannot be active at the same time.

The following two sections deal with the cases that arise depending on whether purity information is considered or not.

3.1. Conditions disregarding purity of goals

As mentioned before, we will consider the parallelization of pairs of program literals. First, we will state the conditions
without purity information.
Let p and q be two literals, where q is to the right of p. Also let β̂ and ψ̂ be the abstract call and answer substitutions for

p, i.e., the situation is {β̂} p {ψ̂} . . . q. We define the sets:

S(p)=
{
L ∈ β̂SH | L ∩ var(p) 6= ∅

}
ŜH = S(p) ∩ S(q) =

{
L ∈ β̂SH | L ∩ var(p) 6= ∅ ∧ L ∩ var(q) 6= ∅

}
That is, S(p) is the set of all sharing sets of β̂SH that contain a variable from p, and ŜH is the set of all sharing sets of β̂SH that
contain variables from p and from q (that is, the sharing sets that, if active, contain run-time shared variables).
The following are our conditions for non-strict independence between p and q:

C1 ∀ L ∈ ŜH L ∩ ψ̂FR 6= ∅
C2 ¬ ( ∃ {N1,N2, ...,Nk} ⊆ S(p), with card(X) > 1, such that

∀ i, j 1≤ i< j≤k ⇒ Ni ∩ Nj ∩ β̂FR = ∅

∧∃ L ∈ ψ̂SH

(
L =

k⋃
i=1

Ni

)
∧ N1,N2 ∈ ŜH )

Condition C1 dealswith preserving freeness of shared variables. By checking that all sharing sets of ŜH have a free variable
in the abstract answer substitution ψ̂ , we ensure that no run-time shared variable is further instantiated. Note that if there
is more than one free variable in a sharing set, and one of them remains free, the others necessarily remain also free, since
all coincide at run-time when the set is active.
Condition C2 is needed to preserve independence of shared variables: N1...Nk are sharing sets that p can join (thus, they

come from S(p)) to derive the sharing set L of the abstract answer substitution, and at least two sharing sets contain shared
variables (we can always name them N1 and N2). Furthermore, no two sharing sets Ni,Nj contain the same free variable,
since otherwise they cannot be both active in one concrete substitution, making the union impossible. This also ensures,
given that the first condition is met, that N1 and N2 have different shared variables. Intuitively it can be seen that if C1 and
¬C2 holds, p can possibly bind the two independent shared variables.
Fig. 4 shows some situations where either C1 or C2 do not hold. The sharings drawn with thick lines are the faulty ones,

i.e., for C1, the Ls that have no variables in ψ̂FR, and for C2, N1 and N2 in β̂ and L in ψ̂ .

3.2. Conditions considering purity information

This section relies on the assumption that we have purity information, and also that we can compute the least upper
bound of the abstractions of the partial answers of a goal.

9 Note that this is true for pure goals. However, if a goal contains, e.g., a call to var/1 it can actually add to the freeness component: the goal could have
been called with a variable that is not known to the analysis to be definitely free, but, due to the call to var/1, the analysis may be able to determine that
only the calls in which the variable is free can succeed and will leave it free.
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Fig. 4. Situations where the conditions do not hold, and thus the goals are possibly not non-strictly independent.

If we examine the conditions stated in the previous section, we can see that only the behavior of the first literal p is
considered. But if we know that q is pure, the conditions can be further relaxed.
Let us now define our conditions for non-strict independence when q is pure. Let β̂ and ψ̂ be the abstract call and answer

substitutions for p, and let φ̂ be the least upper bound of the abstractions of the partial answers of q when called with β̂ as
the abstract call substitution. The following are our conditions for non-strict independence between p and q in this case:

C1′ ∀ L ∈ ŜH L ∩ ψ̂FR 6= ∅ ∨ L ∩ φ̂FR 6= ∅
C2′ ¬ ( ∃ {N1,N2, ...,Nk} ⊆ S(p) with card(X) > 1, such that

∀ i,j 1≤ i< j≤k ⇒ Ni ∩ Nj ∩ β̂FR = ∅
∧N1 ∩ φ̂FR = N2 ∩ φ̂FR = ∅

∧∃ L ∈ ψ̂SH

(
L =

k⋃
i=1

Ni

)
∧ N1,N2 ∈ ŜH )

Condition C1′ differs from C1 in that it allows p to further instantiate a shared variable, provided that this variable is not
touched by q (q does not further instantiate it under β̂ , so it does not mind whether the variable is free or not). Condition
C2′ now says that the union of N1 and N2 is legal if either of the shared variables in them is not touched by q (note that only
if q further instantiates the two variables it can possibly be affected by these bindings).

4. Run-time checks for non-strict independence

In the previous sections we have proposed conditions to be checked at compile-time in order to decide whether to run
two literals in parallel. However, even if these conditions do not hold, we may yet try to execute them in parallel, provided
that some a priori run-time checks succeed.
The purpose of such run-time checks is to ensure that goals will not be run in parallel when there is no non-strict

independence, while allowing parallel execution in asmany cases as possible when non-strict independence is present. This
fact will be determined from the combination of compile-time analysis and the success of the run-time checks previous to
the execution of the goals. Note that this is meaningful because the sharing component represents possible, not definite
sharing sets. Thus we may want to generate a test that determines in which particular case we are, when at least one case
allows parallelization, but the others may not.
We proceed by analyzing what to do when the conditions to be checked at compile-time proposed in previous sections

are violated. Due to the complexity of the special case when the second literal is pure, here wewill only consider the general
case. Thus, we concentrate on analyzing how to proceed when each of the conditions of the general case is violated.

4.1. Condition C1 violated

[∃ L ∈ ŜH L ∩ ψ̂FR = ∅]
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Fig. 5. Example applications of the four checks.

In this case we need run-time checks to ensure that the sharing sets L ∈ ŜH not obeying C1 (‘‘illegal sharing sets’’) are not
active. But, if the rest of the sharing sets in β̂SH cannot cover all the free variables of β̂FR without overlapping, it is impossible
for all the illegal sharing sets to be inactive, so the goals are definitely not non-strictly independent. Otherwise, we must try
to generate the least number of checks which covers every illegal sharing set without affecting the legal ones (to preserve
parallelism in valid situations).
There are several checks that can be used to prevent the illegal sharing sets from being active. In the description of the

checks below we say informally ‘‘X has property P’’ to mean that the term to which the variable X has been bound (i.e., Xθ )
satisfies property P. The order in which such checks must be tried is the following:

• If there exists a variable X such that it appears only in illegal sharing sets, then the check ground(X) (‘‘X is bound to a
ground term’’) covers those illegal sharing sets containing X.
• Suppose that there exists a variable X and a list F of free variables from β̂FR such that, for the sharing sets containing X,
illegal ones do not contain variables of F , and legal ones contain at least one. Then the check allvars(X,F ) (‘‘every
variable in X is in the listF ’’) covers all the illegal sharing sets containing X, and only those. In fact, the check ground(X)
above is a special case of this when F = [ ]. Note that if X ∈ var(p) ∩ var(q) then we are always in this case, since all
sharing sets containing X are in ŜH, so the ones that are legal contain free variables that remain free after executing p,
and those that are illegal do not.
• If there exist two variables X and Y such that all sharing sets containing both are illegal, then the check indep(X,Y) (‘‘X
and Y do not share variables’’) covers those illegal sharing sets.
• For each of the remaining illegal sharing sets, we choose two variables X and Y which are members of the set, such that
X ∈ var(p) and Y ∈ var(q). Note that the sharing sets in ŜH have a variable in both var(p) and var(q) or have one
variable in var(p) and another variable in var(q). And, since the illegal sharing sets are in ŜH, if they cannot be covered
by the allvars/2 check then they are in this case. Furthermore, the legal sharing sets that contain both X and Y are for
this very reason also in ŜH, so they have free variables that remain free after executing p. Let F be the set of these free
variables. Then the check sharedvars(X,Y,F ) (‘‘every variable shared by X and Y is in the list of variablesF ’’) covers
all the illegal sharing sets containing X and Y, and only those. Also, the check indep(X,Y) is a special case of this when
F = [ ].

Fig. 5 gives examples showing how the checks restrict the possible sharing sets.

4.2. Condition C2 violated

[ ∃ {N1,N2, ...,Nk} ⊆ S(p), with card(X) > 1, such that
∀ i, j 1≤ i< j≤k ⇒ Ni ∩ Nj ∩ β̂FR = ∅

∧∃ L ∈ ψ̂SH

(
L =

k⋃
i=1

Ni

)
∧ N1,N2 ∈ ŜH ].

Once the checks for C1 have been computed, and taking into account only the sharing sets not rejected by these checks, the
second condition is treated.
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Fig. 6. Restriction of the possible sharing sets by the checks make the goals non-strictly independent.

Fig. 7. Restriction of the possible sharing sets performed by the checks.

Now, for each L in the above formula, we compute the different groups of N1...Nk that p can join to give the sharing set L,
without taking into account the number of sharing sets Ni that are in ŜH. The groups that have more than one sharing set in
ŜH are the ‘‘illegal’’ groups. If there are no legal groups, and L is necessarily active in ψ̂ (this is so if L contains free variables
that do not appear in other sharing sets of ψ̂SH), then necessarily p binds shared variables, so the goals are definitely not
non-strictly independent. Otherwise, we need checks as for the first condition, now ensuring that at least one sharing set of
each illegal group is not active, without affecting if possible sharing sets of the legal groups.
For example, supposewe are trying to parallelize the expression ‘‘p(X,Y,Z,U), q(X,Y,W,V)’’ and the abstract call and

answer substitutions for p(X,Y,Z,U) are β̂ =
([
[X] [XZ] [Y] [Z] [ZW] [U] [UW] [WV]

]
, [YUV]

)
and ψ̂ =

[
[X] [YU] [UW]

[WV]
]
, [YV]

)
. We have that ŜH =

[
[X] [XZ] [Y] [ZW] [UW]

]
, and the illegal sharing sets for the first condition are [X], [XZ],

[ZW] and [UW]. The checkground(X) covers the first two, and the checkallvars(W,[V]) the last two (without affecting
other sharing sets). The second condition holds, so we are ready to parallelize the two literals, the result being:

( ground(X), allvars(W,[V]) -> p(X,Y,Z,U) & q(X,Y,W,V)
; p(X,Y,Z,U) , q(X,Y,W,V) )

where ‘‘A -> B; C’’ is the Prolog if-then-else and ‘‘&’’ is the (&-Prolog) parallel operator. Fig. 6 shows the restriction of the
possible sharing sets made by the checks, and how this restriction makes the goals non-strictly independent.

4.3. Improved run-time checks for strict independence

It is worth pointing out that if no information is obtained from the analysis (or no analysis is performed), and thus
the abstract substitutions are >, the run-time checks computed by the method presented here correspond exactly to
the conditions traditionally generated for strict independence (shared program variables ground, other program variables
independent, see e.g. [33–35] for more information). This is correct, since in absence of analysis information only strict
independence is possible, and shows that themethod presented is a strict generalization of the techniques which have been
previously proposed for the detection of strict independence.
It can be easily shown how the tests reduce to those for strict independence: since there are no free variables in the

abstract substitutions, every sharing set of ŜH is illegal with respect to the first condition. These sharing sets contain a
shared program variable (and are covered by a ground/1 check on each) or program variables of both goals (covered by an
indep/2 check on every pair).
For example, if we have an expression ‘‘p(X,Y) & q(Y,Z)’’ with β̂ =

([
[X] [Y] [Z] [XY] [XZ] [YZ] [XYZ]

]
, [ ]
)
(i.e., >,

equivalent to no information), then we have ŜH =
[
[Y] [XY] [XZ] [YZ] [XYZ]

]
. The check ground(Y) covers all the illegal

sharing sets except [XZ], which is covered in turn by the check indep(X,Z). Fig. 7 depicts how the checks restrict the
possible sharing sets.
Also, in the presence of Sharing+Freeness abstract information, the tests made with this method are equivalent or better

than the traditional tests simplified with this information, even if only strict independence is present. As an example,
let us study the case of the expression ‘‘p(X,V,W) & q(Y,Z)’’ with β̂ =

([
[V] [VX] [Y] [XY] [Z] [XZW] [W]

]
, [V]

)
(see

Fig. 8). The traditional test for strict independence would be indep(V,Y), indep(X,Y), indep(W,Y), indep(V,Z),
indep(X,Z), indep(W,Z) (perhaps written as indep([V,X,W], [Y,Z])). With the analysis information above, it is



D.C. Gras, M.V. Hermenegildo / Theoretical Computer Science 410 (2009) 4704–4723 4715

Fig. 8. Restriction of the possible sharing sets performed by either check.

simple to deduce that the tests indep(V,Y), indep(W,Y) and indep(V,Z) are not needed. Not so obvious is to deduce
that one of the indep(X,Z) or indep(W,Z) tests can also be eliminated. So, in this latter case we come up with the
simplified test indep(X,Y), indep(X,Z), or indep(X,[Y,Z]).
On the other hand, applying the method presented here, we have that ŜH =

[
[XY] [XZW]

]
. Both sharing sets are illegal,

since they do not contain free variables. The legal sharing set that contains X contains also the free variable V, and the two
illegal sharing sets contain X but not this free variable, soallvars(X,[V]) ensures that the illegal sharing sets are inactive,
without affecting any legal sharing set. This test is clearly cheaper than the other, since it only needs to traverse X, whereas
the other needs to traverse also Y and Z (in the worst case).

5. Parallelization under NSI: The URLP and CRLP algorithms

We now turn our attention to how, using the conditions stated in previous sections, an automatic parallelizer can insert
into the program clauses parallel operators which allow exploiting and-parallelism (the annotation).
As mentioned in the introduction, in the traditional approach to annotation, input code is processed by and Annotator, or

‘‘parallelizer’’, which explores the bodies of clauses in the given program or module looking for statements and procedure
calls which are candidates for parallelization. A number of such algorithms has been proposed [4,5,8,21,30,48,50], including
the now classic CDG, UDG, and MEL algorithms [48,50].
However, these annotation algorithms, which were designed with strict independence in mind, are not well suited for

parallelization using non-strict independence for a number of reasons. The MEL algorithm can in principle be used for non-
strict independence, but it is a simplistic algorithm which cannot create nested parallel expressions, and can thus in some
casesmiss opportunities for parallelism [48,50]. The CDG and UDG algorithms aremore interesting, graph-based algorithms
which allow nested parallel expressions. These algorithmsmay however reorder the literals found to be independent, which
is valid for strict independence but not for non-strict independence, because the latter is not symmetric.
As an alternative, we have developed a new algorithm for annotation specially suited to the characteristics of non-strict

independence and with simplicity and efficiency in mind. A decision in the design has been to give priority to unconditional
parallelism: if we know that two literals are independent without the need for run-time tests, we should always execute
them in parallel, even if this prevents the exploitation of further conditional (that is, uncertain) parallelism. The MEL
algorithm for strict independence, for example, fails to do this.
The non a priori nature of non-strict independence (and thus the need for correct information from global analysis)

combined with the fact that we do not want herein to rerun the analysis on the parallelized expressions (i.e., we would like
for simplicity to take as input the analysis results for the sequential program), leads us to another restriction: that conditional
parallelism will involve only pairs of goals. This is because the run-time tests computed are based on properties about run-
time instantiations of program variables in certain points of the program, and thus can only be safely placed in those points.
For example, if wewanted to run in parallel three literals, the independence test for the last two is only applicable just before
the second one, but we had to include it before the first one. Of course a reanalysis of the program should give the necessary
information to compute the test in this case. This is certainly a possibility [31,32], but beyond the scope of this paper.
In fact, this last restriction has some practical repercussions: it keeps the conditional parallel expressions simple, and

ensures that, if there exists parallelism between two contiguous atoms, something will run in parallel (this is not true with
the CDG or MEL algorithms). The intuition is that it is not worth making complex conditional expressions, which are costly
to generate and costly to execute, when we have little information about the runtime values of the variables. Rather, it
is preferable to possibly exploit less parallelism in a clause by executing fewer tests than to try to execute the maximum
number of literals in parallel in the best case, at the expense of having to run complex tests at run-time and risking losing all
the parallelism in the cases that are not so favorable. This intuition is certainly supported by experimental data in the case
of strict independence [4,5].
The following two sections present the two steps that comprise the annotator. The first step identifies unconditional

parallelism, that is, parallelism that does not need run-time tests. The second step, executed only when run-time tests are
allowed (normally controlled by a compiler switch), adds conditional parallelism to the parallel expressions computed by
the first step. This guarantees the objective of giving priority to unconditional parallelism over conditional parallelism.
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Fig. 9. Rewriting rules of the URLP algorithm.

5.1. Unconditional annotation: The URLP algorithm

The unconditional annotator, named URLP (Unconditional Recursive Linear Parallelizer), shows a similar degree of
parallelization as UDG, but preserving always the original order of the literals in the clause. It is a heuristic algorithm (as
CDG), but does not use dependency graphs. Instead it performs a series of rewritings, startingwith the sequence of literals of
the body of the clause, and applying from left to right the rewriting rules of Fig. 9, in the order inwhich they are enumerated,
until no further changes can be made.
The first rule is obvious: two contiguous literalswhich are independent can be executed in parallel. The second rule states

that when we have a parallel expression followed by a single literal, then that literal can be executed in parallel with the
members of the parallel expression fromwhich it is independent, but it must wait until the end of the execution of all goals
fromwhich it depends. The third rule is the reciprocal to the second: when we have a parallel expression (or a single literal)
followed by a parallel expression, then the members of the last parallel expression which are independent from the first
expression can be executed in parallel with it, and the rest must wait until the end of its execution.
Since at each step a simple and correct rule is applied, it can be easily shown that the overall parallelization is correct. To

ensure optimality, however, we would need in the general case to provide the execution times of the goals, which is beyond
our scope (see [19,20,30,46,47] and their references).
This algorithm has some advantages over UDG: in UDG, in order to compute the dependency graph, every possible

dependency between pairs of literals has to be computed. In URLP, however, some checks can be saved, since for example if
we have the body clause ‘‘a, b, c ’’ and we have found that b depends on a and that c depends on b, we do not need to check
the possible dependency between a and c .
As an example of the operation of URLP, consider the parallelization of the body of a clause, which we will schematically

represent as ‘‘a, b, c, d, e, f , g ’’, where the dependencies given by the conditions of Section 3 are dep(a, b), dep(b, e),
dep(b, f ), dep(c, e), dep(d, g), and dep(f , g) (we denote by dep(X, Y ) that Y is depends on X). The steps followed by the
algorithm are shown below:

Step Expression Rule used Applied to
0 a, b, c, d, e, f , g 1 b, c
1 a, b&c, d, e, f , g 2 b&c, d
2 a, b&c &d, e, f , g 2 b&c &d, e
3 a, d&(b&c, e), f , g 2 d&(b&c, e), f
4 a, d&(b&c, e, f ), g 1 e, f
5 a, d&(b&c, e&f ), g 3 a, d&(b&c, e&f )
6 (a, b&c, e&f )&d, g

In comparison with the final parallel expression above, the parallelization produced by UDG is ‘‘c &d&(a, b, f ), e&g ’’,
where the relative order of execution of the literals e and f has been reversed, which, asmentioned before, should be avoided
for non-strict independence. Fig. 10 presents the results graphically.

5.2. Conditional annotation: The CRLP algorithm

Once the URLP algorithm has computed an (unconditional) parallel expression, one more step is needed to be able to
exploit further parallelism through the use of run-time tests. The two steps comprise what we call the CRLP algorithm
(Conditional Recursive Linear Parallelizer).
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Fig. 10. Example parallelizations using URLP and UDG.

The algorithm examines the input parallel expression to find sequences of literals not yet parallelized, and transforms
them inserting the appropriate tests. Let Exp be one of these sequences, then par(Exp) is the transformed expression,
defined as:

par((p,q,. . . )) =


p, par((q,. . . )) if nsi(p,q) = false
p & q, par(. . . ) if nsi(p,q) = true
( nsi(p,q)→ p & q, par(. . . )

; p, par((q,. . . )) ) otherwise

where nsi(p,q) is the test that ensures non-strict independence between literals p and q (from Section 4.3), but taking into
account also the tests already verified by preceding expressions of the branch —this is why nsi(p,q) can be just true.
It can be easily shown that this simple algorithmmeets the restriction that conditional parallelism involves only pairs of

literals, and also that it ensures that if there exists parallelism in two contiguous atoms, something will run in parallel.

6. Separating environments: Renaming and replacing variables

When using non-strict independence, and in order to prevent partial answers of a branch that ultimately fails from
pruning the search space of other goals to the right, in the theoretical model parallel goals are in principle assumed to
run in independent environments (see [34]). When running parallel goals in a distributed environment this separation often
occurs naturally since inmany implementations the process of sending a goal involvesmaking a copy and performing ‘‘back-
unification’’ upon return. However, in many efficient shared-memory implementations goals can often ‘‘see’’ the bindings
made by other goals executing concurrently which share variables with them. A simple method for preventing this is to
add to the code calls to Prolog’s copy_term which copy every goal (except one) before running it in parallel and, after
the parallel conjunction, unify the original goals and the copied versions, in a similar way to what is done in distributed
implementations. However, this solution is inefficient, both in time and memory.
Our objective herein is to optimize the environment separation process, by using the information available from global

analysis and the annotation process to pre-compile at least part of the separation operations, eliminating asmuch as possible
unneeded rewritings. Note that simply renaming compile-time variables is not sufficient in general since such variables can
be bound at run-time to complex terms containing shared variables. For these cases we will define the following predicate:

replace_vars([X1, . . . , Xn],[X′1, . . . , X
′
n],Z,Z′) :-
Z′ is a term equal to Z but with variables X′1, . . . , X

′
n

in place of variables X1, . . . , Xn, respectively
It can be easily shown that this predicate is generally more efficient than copy_term: the latter copies all the term

structure (except perhaps, in optimized implementations, some completely ground substructures), whereas the former
can also avoid copying non-ground substructures which do not contain variables to be renamed. Furthermore, using
copy_term, when re-unifying the copies one has to unify the entire goals, whereas usingreplace_vars only the renamed
free variables must be re-unified.
We are interested in the potential run-time shared variables, but note that by applying the independence conditions

and/or the run-time tests, we ensure that these are the free variables (those of β̂FR) that appear in the sharing sets of SH
(extending this concept to an arbitrary number of literals). Given a goal to be executed in parallel, we can compute the
required variable renamings and replacements required for that goal by considering each sharing set of SH as follows:

• If the sharing set does not contain any variables of the goal, nothing must be done.
• If the sharing set contains only one variable of the goal, and the variable is free, only a simple renaming of this variable
is needed.
• Else, we need to replace a free variable of the sharing set with a new one in each variable of the goal present in the sharing
set (if the goal has free variables in the sharing set, one of them is used to make the replacement).

More precisely, the concrete transformation proceeds as follows:
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V = {U, Y}, R(V ) = {V} V = {W}, R(V ) = {V, X}
V R transformation V R transformation

p(T, V, W) ∅ {V} rv(U, V) {W} {V} ren(W), rv(W, V)
q(U, V, W, X, Y) {U, Y} {V} ren(U), rv(U, Y), rv(U, V) {W} {V, X} ren(W), rv(W, V), rv(W, X)
r(W, Z) ∅ ∅ ∅ {W} ∅ ren(W)

Fig. 11. Environment separation example.

Fig. 12. Representation of the effect of variable replacement in a parallel expression.

• Group into sets the free variables that appear in the sharing sets of SH, so that those that appear in the same sharing set
are grouped together, and the rest form sets with a single element. The motivation is that if two free variables appear in
the same sharing set, they are possibly aliased at run-time, and thus they need to be processed together.
• For each of those sets of free shared variables V :
. Compute R(V ) = {w | ∃ L ∈ SH ∃v ∈ V v ∈ L ∧ w ∈ L ∧ w /∈ V }, i.e., the set containing the variables that appear in
the sharing sets of SH with variables from V , excluding those of V . Thus, they possibly contain at run-time variables
from V .
. Then, for each literal p, the necessary renamings or replacements related to V are computed. LetV = var(p)∩ V and
R = var(p)∩ R(V ). We will represent a renaming of a variable v as ‘‘ren(v)’’ and a replacement of a variable v inside
w as ‘‘rv(v,w)’’. There are three cases:

V = ∅,R = ∅ → none.
V = ∅,R 6= ∅ → rv(v,w) for eachw ∈ R, where v ∈ V .
V 6= ∅ → ren(v), rv(v,w) for eachw ∈ (R ∪ V−{v}), where v ∈ V

. Since for each V we need to transform all the literals except one, the literal with themost expensive transformation is
not considered. Replacements are more expensive than renamings, and replacements in ordinary variables are more
expensive than replacements in free variables (which are in fact conditional unifications).

• Once the transformations for all the sets of variables have been computed, then for each literal the replacements in the
same variable are joined in a replace_vars predicate. Unification (‘‘back-binding’’) literals must be included after the
parallel conjunction for all the free variables renamed or replaced. Note that one side of these unifications is always a
free variable, since the conditions ensure that the first literal does not instantiate shared variables.

As an example, consider the parallel expression p(T,V,W) & q(U,V,W,X,Y) & r(W,Z), with the abstract call sub-
stitution β̂ =

([
[T] [UV] [UVY] [VWX] [X] [XY] [Z]

]
, [TUWY ]

)
. The shared sharing sets are SH =

[
[UV] [UVY] [VWX]

]
. We have

two sets of free variables from SH: {U, Y} and {W}, with R({U, Y}) = {V} and R({W}) = {V, X}. Fig. 11 shows, for each of these
sets, and for each literal, the values ofV andR and the transformation needed. In both columns we discard the transforma-
tion for the q/5 literal. The two replacements for the p/3 literal are on the same variable, so theymust be joined. Therefore,
the parallel expression is transformed into:

replace_vars([U,W],[U1,W1],V,V1),
p(T,V1,W1) & q(U,V,W,X,Y) & r(W2,Z),
U=U1, W=W1, W=W2

Fig. 12 illustrates in our pictorial representation the transformation done. The bidirectional arrows show the bindings
performed by the back-binding literals. There are two situations depending on the covering of the free variables by the
sharing sets.
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:- module(qsortdl,[qsort/2],[assertions]).

:- pred qsort/2 : ground * var.

qsort(I,O) :- % [[O]],[O]
qsort(I,O,[]). % [],[]

qsort([],L,L).
qsort([X|Xs],L,L2) :- % [[L],[L2],[Sm],[La],[L1]],[L,Sm,La,L1]

part(Xs,X,Sm,La), % [[L],[L2],[L1]],[L,L1]
qsort(Sm,L,[X|L1]), % [[L,L1],[L2]],[L1]
qsort(La,L1,L2). % [[L,L2,L1]],[]

part([],_,[],[]).
part([E|R],C,[E|Sm1],La) :- % [[La],[Sm1]],[La,Sm1]

E=<C, % [[La],[Sm1]],[La,Sm1]
!,
part(R,C,Sm1,La). % [],[]

part([E|R],C,Sm,[E|La1]) :- % [[Sm],[La1]],[Sm,La1]
E>C, % [[Sm],[La1]],[Sm,La1]
part(R,C,Sm,La1). % [],[]

Fig. 13. Example program to be parallelized.

7. Example parallelization of a program

As an example, in this section we show how to apply the proposed methods to a concrete program (quick-sort using
difference lists) in order to exploit the non-strictly independent and-parallelism it contains. Although the program is small,
we think that it illustrates the techniques proposed, and it is compact enough to allowpresenting the information inferred by
the Sharing+Freeness analyzer and the resulting parallelization process. The program is listed in Fig. 13. Again, the Ciao pred
assertion defines the mode of use. This can often be inferred throughmodular analysis from the module calling qsort/2 in
this qsortdlmodule, making the assertion potentially unnecessary. The abstract states actually inferred at each program
point by the Ciao preprocessor using the Sharing+Freeness domain are shown as comments.
We will concentrate on the parallelization of the qsort/3 predicate. First, we will analyze whether it is possible to

parallelize the first and second literals of the recursive clause of qsort/3, so we have that p = part(Xs,X,Sm,La) and
q = qsort(Sm,L,[X|L1]), and the abstract substitutions involved are β̂ =

([
[L] [L2] [Sm] [La] [L1]

]
, [L Sm La L1]

)
and

ψ̂ =
([
[L] [L2] [L1]

]
, [L L1]

)
. Then, we compute the set ŜH =

[
[Sm]

]
. Condition C1 is not met, since ‘‘Sm’’ is not in ψ̂FR, and

furthermore this is a free variable that does not appear in another sharing set in β̂SH, so it is sure that the goals are not non-
strictly independent. In a similar manner it can be shown that the first and third literals of the clause are not non-strictly
independent either.
Finally, let us try with the second and third literals in the same clause. Now p = qsort(Sm,L,[X|L1]), q =

qsort(La,L1,L2), β̂ =
([
[L] [L2] [L1]

]
, [L L1]

)
and ψ̂ =

([
[L L1] [L2]

]
, [L1]

)
. The shared sharing sets are ŜH =

[
[L1]

]
.

But now the conditions hold: L1 ∈ ψ̂FR and no sharing sets meet ¬C2. Thus in this case we have non-strict independence,
and no run-time checks are needed (note also that the literals are not strictly independent, since they share the free variable
‘‘L1’’). A simple renaming of L1 ensures environment separation (although it is not strictly needed in this case). The URLP
parallelizer thus turns the original qsort/3 predicate definition into:

qsort([],L,L).
qsort([X|Xs],L,L2) :- part(Xs,X,Sm,La),

qsort(Sm,L,[X|L1P]) & qsort(La,L1,L2), L1 = L1P

where ‘‘&’’ is again the (unconditional) parallel operator.

8. Implementation and some experimental results

An exhaustive study of the amount of non-strict and-parallelism that can be obtained from real programs using
these techniques is beyond the scope of this paper. However, we include for completeness the results from a number of
experiments performed in [6] with a small number of programs that have literals which are non-strictly independent but
no literals which are strictly independent. The programs used in this experiment are:

• array2list: a subroutine of the SICStus Prolog ‘‘arrays.pl’’ library which translates an extensible array into a list of index-
element pairs. The input array used to measure the speedups had 2048 elements.
• flatten: the subroutine shown in the introduction which flattens a list of lists of any nesting depth into a plain list. The
speedups were measured with an input list of 987 elements with a recursive ‘‘depth’’ of 7.
• hanoi_dl: thewell-known benchmark that computes the solution of the towers of Hanoi problem, but programmedwith
difference lists. It was run for 13 rings.
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Fig. 14. Speedups of several programs with non-strict independence.

• qsort_dl: the quick-sort sorting algorithm using difference lists of Section 7. The speedups were measured sorting a list
of 300 elements.
• sparse: a subroutine that transforms a binary matrix (in the form of list of lists) into a list of coordinates of the positive
elements, i.e., a sparse representation. It was run with an input matrix of 32×128 elements, with 256 positive elements.

In order to generate these results the relevant parts of the &-Prolog parallelizing compiler were modified to be able to
parallelize programs using non-strict independence and Sharing+Freeness information. This implied essentially adding the
URLP/CRLP algorithms to the set of ‘‘annotators’’ supported (plus adding the new replace_vars library predicate, the
new run-time tests, etc. to the libraries to be included at run time) and implementing the conditions of Section 3. These
modifications were later incorporated into the Ciao preprocessor. In all cases unconditional parallelism was generated (i.e.,
no run-time checks were necessary for these programs).
Using this setup the programs were automatically parallelized and then executed using from 1 to 10 processors on the

previously mentioned &-Prolog system [10,26,29], an efficient parallel implementation of full Prolog capable of exploiting
and-parallelism among (possibly non-deterministic) goals. The experiments were run on a Sequent Symmetry which, while
a slow machine by today’s standards, is quite related architecturally to modern multicore servers such as, for example, an
8-core Sun Fire T2000. The results are given in Fig. 14. Speedups are relative to the execution time on one processor of the
original (unparallelized) program. The slight slowdown exhibited by the parallelized program on one processor w.r.t. the
sequential program is due to the (small) overhead introduced by the parallel conjunctions (&) with respect to sequential
sequencing [35]. More concretely, the performance on one processor of the &-Prolog version used in these tests, when
running a parallelized program, is about 95% of the performance of the sequential system on which it is based (an early
version of SICStus Prolog [7]), itself a high-performance and popular Prolog system.
Since the results improve significantly on the raw speed of the sequential program on a competitive Prolog

implementation it can be argued that the speedups are meaningful and useful. Note that none of these programs obtains
any speedup if parallelized using strict independence. Again, it is beyond the scope of this paper to study the amount of
non-strict and-parallelism that can be obtained from real programs using the proposed techniques, but we include these
early results because we believe that they are encouraging.

9. Conclusions and future work

While ‘‘non-strict’’ independence offers clear advantages over ‘‘strict’’ independence in terms of generality and the
amount of parallelism it can exploit, its compile-time/run-time detection is also clearly more involved. The techniques that
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we have presented are based on the availability of certain information about run-time instantiations of program variables
– sharing and freeness – for the inference of which a significant amount of compile-time technology is available. We have
presented techniques for combined compile-time/run-time detection of non-strict independence, proposing specialized
classes of run-time checks for this type of parallelism as well as algorithms for implementing such checks. We have also
proposed the URLP/CRLP annotation (parallelization) algorithms, which are specially suited to non-strict independence as
well as novel ways of using the Sharing+Freeness information to optimize how the run-time environments of goals are kept
apart during parallel execution. An example of the application of the proposedmethods to a concrete program has also been
given, along with the output as obtained by our integrated compiler (now within CiaoPP) which combines the techniques
proposed with a Sharing+Freeness analyzer, and the URLP/CRLP-based parallelizer (annotator). We have also included some
early experimental speedup results obtained for this and other programs presenting non-strict independence.
Our work makes it possible also to understand more clearly in what way the Sharing+Freeness analysis itself can be

improved to increment the amount of parallelism that can be exploited automatically. The firstway to do this is by combining
Sharing+Freenesswith other analyses that can improve the accuracy of the sharing and freeness information. A class of such
analyses includes those that use linearity, such as the Asub domain [60] (among others [2,12,14,37,38,44,61]). Some such
combinations have been incorporated in the past in our system by using the techniques described in [11], and the results
are used by the non-strict independence parallelizing compiler by simply focusing only on the Sharing+Freeness part.
However, the improvement that can be obtained by these means is still limited by the fact that the sharing and freeness

information remains restricted to variables which appear in the program. Additional improvements can be achieved by
gaining access to information inside the terms to which program variables are bound at run-time, in order to check the
possible instantiation states of the variables which appear inside these terms. To achieve this goal, sharing and freeness
can be integrated (by using again the techniques of [11] or [15]) with other analyses, like the depth-k [43,57] domain, or,
even better, ‘‘pattern’’ [15] or ultimately recursive type analyses (e.g., [3,22,62]). We expect the approach presented for
simple Sharing+Freeness to be still valid directly or with small modifications for these more sophisticated types of analyses.
For example, if a depth-k analysis is used in combination with Sharing+Freeness, the information on sharing and freeness
obtainedwill then refer to the variables in the depth-k terms, but the same parallelization conditions presented in this paper
would apply, by applying them to those new variables and their sharing and freeness information before and after execution
of goals.
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