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Abstract-Suppose the spectrum of a symmetric definite linear pencil is known. This paper 
addresses the question of what can be said about the spectrum when scalar multiples of a rank-one 
update are added to each matrix in the pencil. 

The secular equation for this problem is derived, and from it, a certain separation property is 
found which gives insight into the connection between the eigenvalues before and after modification. 

In the context of structural dynamics, the result characterises the behaviour of a finite-dimensional 
vibrating system undergoing mass and stiffness modifications. 

The result also leads to applications such as a divide and conquer algorithm for the eigenvalues of 
the modified system (so-called matrix tearing) and spectral shifting. An illustrative example is also 
given. @ 2003 Elsevier Ltd. All rights reserved. 

Keywords-Generalized eigenvalue problem, Secular equation, Interlacing eigenvalues, Modified 
vibrating system, Divide and conquer, Matrix tearing. 

1. INTRODUCTION 

The pencil P(X) = A-XB,A,B E FL”‘“, real n-square matrices, is said to be symmetric definite 
if A is symmetric and B is symmetric positive definite. The real scalar X and the associated 
vector y which satisfy 

(A - XB)y = 0, yTBy = 1, 

are called an eigenvalue and normalized eigenvector of P(X). Th e set of eigenvalues of P is called 
its spectrum and is denoted 

a(A,B) = {Xj}~=r=,. (1.1) 
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Eigenproblems such as this arise in the modelling of conservative vibrating systems. There fi 
is called the natural frequency and the vector y its associated mode-shape. Our interest centers 
on systems in which the matrices A and B are modified by the addition to each of a symmetric 
rank-one correction. More precisely, for a given vector u E R” and the two real scalars (Y and ,O, 
we define the eigenvector x and its corresponding eigenvalue p as those which satisfy 

(A + ouu’) x = p (B + /3urrT) x, xT (B + PuuT) x = 1. (1.2) 
In the context of vibrations, modifications such as these represent structural changes in the masses 
and stiffness of the system. We will consider only those modifications ,BuuT which are such that 
the matrix B + puuT is positive definite. 

Denote the spectrum of this modified system by 

o (A + ouuT, B + PuuT) = {/~~}$‘=i. 

In Section 2, we derive the secular equation which charactertises the eigenvalues {pj}y=i of 
the modified system in terms of the {Xj}jn_r, the eigenvalues of the original system, and the 
modifying parameters (Y, p, and u. From this characterisation, a certain separation property of 
the eigenvalues follows. 

These results may be used to shift the eigenvalues of symmetric pencils (Section 3.2), or more 
importantly, they lead, in Section 3 to a divide and conquer algorithm for the solution of a large 
generalized eigenvalue problem with a pair of symmetric tridiagonal matrices. These often arise 
in the finite element models of Sturm-Liouville systems, such as wave propagation in horns or 
the vibrating rod and string. For the standard eigenvalue problem, where only the eigenvalues 
of a large tridiagonal symmetric matrix are required, the current method of choice is divide 
and conquer, sometimes called matrix tearing. However, the QZ method for the generalized 
eigenvalue problem does not respect tridiagonal structure or symmetry and so is inefficient for 
these problems. Thus, there is a need for methods that are efficient on the generalized eigenvalue 
problem for large symmetric tridiagonals. 

The divide and conquer algorithm we present is a generalization of a technique which appears 
to have been first proposed in [l] and later used as the basis for a parallel algorithm in [2]. The 
algorithm is well suited to parallel computation although we do not pursue that here. 

Results which correspond to those in this paper, but which apply to the the standard eigenvalue 
problem, are to be found in [3]. Ch an g es in the spectrum due to mass and stiffness modification 
have also been addressed in [4,5]. 

In Section 3, we describe the divide and conquer method which exploits the secular equation of 
Section 2 to efficiently compute the eigenvalues of a symmetric tridiagonal pair. In Section 4, we 
derive a second-order method for computing the zeros of the secular equation which was presented 
in Section 2. In Section 5.1, we illustrate the method on a small matrix tearing problem and in 
Section 5.2 we report on some numerical tests. Finally, in Section 6, we draw some conclusions 
regarding this work. 

2. THE EIGENVALUES OF THE MODIFIED SYSTEM 
Let Y, regular, be the matrix which simultaneously diagonalizes A and B as 

YTAY = A = diag{Xi, Xz, . . . ,A,}, YTBY = I. 

Multiplying (1.2) on the left by YT gives 

YT (A + CYUU’) YY-lx = pYT (B + PuuT) YY-lx, 

from which 

(2.1) 

(A + aYTuuTY) (Y-lx) = #u (I + /3YTuuTY) (Y-ix) 

easily follows. Setting ti = YTu and Yji = x gives 

(A + cdiT) 2 = /.L (I + pi@) f. (2.2) 

For later use, we denote by ej the j th column of an identity matrix of appropriate dimension. 
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LEMMA 2.1. Suppose the Xj of (1.1) are distinct and Y is such that 

(2.3) 

Assume further, that e;ti # 0 and Xj # o/P for all j. Then, 

(a) (A - PI) is invertible, 

(b) P # dPt 
(c) 2Tti # 0, 
(d) the eigenvector Z of the rank-modified diagonal system (2.2) is a scalar multiple of (A - 

pI)-Iti. 

PROOF. Rearrariging (2.2) gives 

(A - PI)% + (o - pP)Wi = 0. 

Suppose that p = Xj for some j. Then, 

0 = l?: ((A - XjI)k + (Ct! - xj,L3)iiiiTk) 

= ((II - Xj@eTii (iiT%) . 

This implies that QT% = 0 and so 
(A - XjI)k = 0. 

But this together with (2.3), implies that the eigenvector k is a multiple of ej, 5t E span(ej), 
which in turn implies that kTfi = e;ii = 0, a contradiction. Hence, (A - ~1) is invertible and we 
can write 

P = (pp - a)(A - pI)%iiTk (24 

Since x # 0, we have ,U # o/p and tiT% # 0, and the form of? as required by (d) in Lemma 2.1. 1 

THEOREM 2.2. Let u be such that uTYej # 0 for j = 1,2,. . . , n and let Y be such that (2.3) 
holds. Suppose, without loss of generality, that the pj are labeled in nondecreasing order 

Then, the ,LQ are the zeros of the secular equation 

1 - (pp - a)tiT(A - pI)+i = 0, (2.6) 

and consequently, 

Xj L Pj I Xj+l, ifXj < cy 
P’ 

Xj I Pj I ; L /Jj+l I Xj+l, if Xj 5 E < Xj+l, 
P- 

xj I Pj+l 5 Xj+l, if; 5 Xj, 

Xn</+ if A, 5 2. 
P 

(2.7) 

Geometrically, this result can be expressed as follows: the eigenvalues of the new system 
interlace the elements of the set containing the old eigenvalues and the number a/P. 
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PROOF. Suppose first, that the Xj of (1.1) are distinct from each other and the ratio o/p. We 
first prove Theorem 2.2 for the case where the weak inequalities in (2.7) and (2.5) are replaced 
by the strict inequalities. 

Multiplying (2.4) on the left by QT and canceling the term GTk = uTx # 0 gives the secular 
equation (2.6) and any p which satisfies (2:6) is an eigenvalue of the modified system. 

We can consider the left-hand side of (2.6) as a function of the variable p and write it in 
comnonent form as 

Note that g(p) h as, since the fij do not vanish, exactly n zeros. We now show that these zeros 
of g satisfy the interlacing property (2.7). N o component of ti vanishes and so g(p) is a rational 
function with denominator and numerator, each of degree n. It therefore has exactly n zeros 
and n poles. 

Consider first, the case where Xk < o//3 < &+I. Then, for all j 5 k we see, bj%&g account 
of the signs of (P/L - CX) and (Xj - p), that P 

and 
pJy+dP) = --oo. 

3 

Therefore, by the continuity of g between its poles, g(p) has at least one zero in each of the 
intervals (Xj,Xj+r)l j = 1,2,. . ., k - 1. 

Similarly, for the range j > k + 1, where /.J > o//3, we easily see that 

l&g(P) = -m 
3 

and 
lim g(p) = +co, 

p+xj+ 

and we can say that g(p) h as at least one zero in each of the intervals (Xj,Xj+i), j = k + 1, 
k+2,..., n - 1. This accounts for at least n - 2 of its zeros. 

At the point p = o/p the function g takes the value 1. .Putting this together with 

we see that g has two zeros in (A,, Xk+i): one between xk and o/p and the other between o/p 
and &+I. This accounts for all n zeros in the case where & < a/@ < &+I, and therefore, 
establishes the result for that case. 

Now consider the case where CY//? < Xi. It is easy to see from its form, that at its poles, Xj, 
j=1,2 7 . . . 7 n, g satisfies 

l&g(P) = --00 
3 

and 
pliy+9(P) = +m 
+3 

Thus, g has at least one zero between each pair of consecutive Xj. This accounts for at least n - 1 
zeros. At the point (Y/P, g takes the value 1. This, together with 
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means that g has at least one zero in the interval between o/p and Xr. Since g has exactly n 
zeros this establishes the result for the case where a/P < Xi. By a similar argument it follows 
that when CY/~ > A,, the interlacing property is satisfied for the case where (2.7), with the weak 
inequality replaced by the strict inequality, holds. 

By a simple continuity argument, it follows that if the assumption of distinctness is dropped, 
then the result (2.7) follows and the theorem is proved. I 

The function g describes the relation between the eigenvalues of the two systems. Its n ze- 
ros {pj}jn_i are the eigenvalues of the modified system, expressed in terms of the eigenvalues of 
the original system. 

In Figure 1, we display an example of the function g(,u) 

g(/J)=l-(3/L-7) (2.9) 

The poles, at 1,2,3, are the eigenvalues of the original system and the zeros, approximately 
1.4196,2.0913,2.9233 are the eigenvalues of the system after rank-one corrections are added to 
each of the matrices in the pencil. 
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Figure 1. The function g(p) of (2.9). 

3. APPLICATIONS 

3.1. A Divide and Conquer Method for the Eigenvalues of a 
Tridiagonal Symmetric Positive Definite Pair 

In this section, we describe one stage of a divide and conquer method which finds the eigenvalues 
of a symmetric positive definite pair and which, for simplicity we assume have dimension 2n. 

The starting data at a typical stage are 

(a) the eigenvalues Al, Az of two pairs of tridiagonal, symmetric matrices Al, B1 and As, Bz, 
the Bi symmetric positive definite, Ai symmetric positive semidefinite, all in R”‘“, 

(b) for j = 1,2, the first and last rows e:Yj and ezYj of the normalized (YTBYj = In) 
eigenvector matrices for the pairs Aj , Bj, 

(c) two real scalars a, 0. 
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Define the vector u E R2n, 

where ei-is the first column on n-dimensional identity and e,, the last. Denote the direct sum 
of A1 and Az by A and similarly for B, 

A= (A1 Az), B=(B1 B2). (3.1) 
We can use the results of the previous section to determine the eigenvalues of the 2n x 2n 

symmetric tridiagonal matrix pencil 

P(X) = A + ouuT - X (B + puu’) , (3.2) 

=A-Ati, (3.3) 
with the obvious definitions. 

The diagonal matrix A is the direct sum of Ai and AZ, and ti is Y*u where Y is the direct 
sum of Yr and Yz. Thus, 

fi=y*u= YTe, 
( >. Y,Tel (3.4 

With these starting data, we can write the secular equation which relates the eigenvalues {Xj};Ei 
of the (unmodified) 2n x 2n pencil P(X) = A - XB with A and B as in (3.1) to the eigenvalues 
of the modified system of (3.2) as 

g(p) = 1 - (pp - (.y) 2 L 
j=l ‘j-‘~ 

(3.5) 

where, as before 
A = diag{Ai, AZ} = diag{Xi, X2, . . . , &I~}, 

and the Gj are the components defined by (3.4). 
We discuss a method to find the zeros of g, which are all simple, in Section 4. 
Once all the eigenvalues {pj}$!, of the modified system have been found, we can use the fact 

established in (d) of Lemma 2.1 to find the eigenvectors of the modified system as follows. It 
suffices to describe the determination of the eigenvector j, corresponding to the eigenvalue p. 

We compute w = (A-@-%, a scalar multiple of the eigenvectot 2. This calculation requires 
just n flops because ti = Y*u is only a selection operation and (A - ~1) is diagonal. From the 
lemma, we know that w is a scalar multiple of fi, say w = 8% We can find the normalizing 
constant 0 by noting that, substituting Yj, for x in the normalizing relation of (1.2), we get 

ii*Y* (B + Puu*) Y? = 1 

whence, 
BT (I + pY*uu*Y) jt = 1. (3.6) 

We require the first and last elements of x, so we actually compute eTYfi and eznYB, and 
these are rows of Y which were in the data set. This takes us to the point where we have all 2n 
eigenvalues and the first and last eigenvectors of the full tridiagonal matrix pair A, I!I. 

This describes a process that gets us to the next stage of a divide and conquer scheme for 
all the eigenvalues and the first and last rows of the eigenvector matrix of a large tridiagonal 
symmetric positive definite pencil from similar information about two subpencils. 

Computing all the eigenvector data needed for the next stage of this process requires approxi- 
mately 3(2n)2 + 4(2n) = 12n2 + 8n flops. 

A process similar to that of this section can be used to compute the Schur decomposition of a 
symmetric positive definite pencil-from the Schur decompositions of two subpencils by exploiting 
the fact that there are very economical and effective ways of computing the Schur decomposition 
of a diagonal matrix pair 

A+ouuT, I + pull*. 
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3.2. Spectral Shift 

Another use of our result is in the stabilisation of systems modelled by a symmetric positive 
definite system with pencil P(X) = A - XB. Suppose an estimate < exists for the smallest 
eigenvalue Xr. Then any rank one modification of the form (1.2) where CX/~ < E will shift the 
whole spectrum towards the region of stability. It is clear that after such a shift, the largest 
eigenvalue of the shifted system cannot be smaller than the second largest eigenvalue of the 
original system. 

4. THE ZEROS OF THE SECULAR EQUATION 

We can simplify the problem in some situations. Assume for a moment, without loss of gener- 
ality, that 11tij/s = 1. 

If Qj = 0, we can deflate the problem into two smaller subproblems because then the eigen- 
pair Xj, ej of the matrix pair (A, I) is also an eigenpair of the modified system (A + aGliT, 
I + ,&XT). This follows from the fact that e:uj = 0 implies 

(A+aiXT)ej-Xj(I+p QGT) ej = Aej + cditiTej - Xjej - PXjGiiTej 

- Aej - Xjej = 0. - 

Thus, we can restrict our consideration to the case where ;lj # 0 for any j. 
Another case which simplifies occurs when ii = ej, i.e., Cj = 1, and 44 = 0, i # j. Then 

pj = (Ai + a)/(1 + P) is th e only solution of the secular equation, all the other eigenvalues are 
in the spectrum of the pair (A, I) and all the eigenvectors remain unchanged. In particular, ej is 
the eigenvector corresponding to pj because 

(A + aejeT) ej - pi (I + BejeT) ej = Aej + creje:ej - pjoj - ,&ejeTej 

= Xjej + aej - pjej - Ppjej 

= (Xj + a - Pj(l + P))ej 

= 0. 

A fast solver, such as Newton’s method, protected by bisection, would seem to be a natural 
choice for computing the zeros of the secular equation because we know upper and lower bounds 
for each zero and for the derivative of g we have the convenient form 

Instead, however, we follow the line taken in [6,7] and rather than use a locally linear approxima- 
tion as in Newton’s method, we devise a method based on a simple rational, local approximation. 
Thus, at the approximation point pr), we approximate the function g(p) of (3.5) by 

(4.1) 

where the constants c and d are chosen so that 

f (Pi”‘) = 9 (PI”‘) I 

f’ (@) = g’ (p?‘) . 
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The required c and d are 

Our new approximation pLj @+rj = (d $ m)/(c@ + l), the zero off, thus becomes 

$+l) = 
ag ($‘) (g (/p) - 1) - $)gl ($1) (p/J?) -a) 

Pg (PI”‘) (9 (ip) - 1) - 9’ ($‘) (P/p - a) (4.2) 

Suppose P # PI a. Clearly, any point r] for which g(v) = 0 is a fixed point of the equation 
/.A = h(p). F’u th r ermore, if the fixed-point iteration defined by (4.2) converges, then it does so 
with a rate of convergence which is at least quadratic. This follows easily from the fact that the 
numerator of h’(p) is 

-VP - a)dP) b”b)MPL) - l)(PP - a) + 29’(P) (P(s(p) - 1) - g’(p)(Pp - a))], 

which vanishes when g(p) does, and its denominator is 

(PS(P)(l -d/J)) + S’(PW - & 

which does not vanish where g(p) vanishes. Of course, g and g’ cannot vanish together by 
Theorem 2.2. 

Any point E where g(r) = 1 is also a fixed point of p = h(p) but a simple calculation with h’ 
shows that h’(t) = 2 and so such a f is not a point of attraction for this iteration. 

We indicate below how the eigenvaules of the modified system can thus be found reliably with 
a hybrid method that ideally has quadratic convergence. 

5. EXAMPLES 

5.1. An Illustration of Matrix Tearing 

In this section, we illustrate the use of the method with a small example. 
Consider an axially vibrating rod fixed at one end and free to oscillate at the other, with 

length L, modulus of elasticity E, cross-sectional area A, and mass density p. The finite ele- 
ment model of this rod leads to a generalized eigenvalue problem with matrices k, &l which are 
symmetric, tridiagonal, and positive definite. The eigenvalues, which represent the squares of 
the resonant frequencies, together with the squares of the last components of the &&normalized 
eigenvectors, determine the rod’s free end point frequency response function due to a harmonic 
excitation. 
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We consider the uniform case, EA = pA = L = 1, where the rod is modelled by four equal 
elements. The stiflness K and mass fi matrices, both in R2nx2n, for this case are 

K=S 

2-1 0 0 0 0 
-1 2-l 0 0 0 

0 -1 2 -1 0 0 
0 0 -1 2 -1 0 
0 0 0 -1 2 -1 
0 0 0 o-1 1 
410000 
141000 
014100 

r I 

001410’ 
000141 
000012 

(5.1) 

(5.2) 

The first row of Table 1 shows the eigenvalues of this pair and the second and third rows show 
the first and last components of the corresponding eigenvectors. 

Table 1. The eigenvalues and the first and last components of the eigenvectors of the 
pair k and &I. 

j 1 2 3 4 5 6 

& 2.4815 23.3699 70.8756 156.1612 285.2015 410.6475 

eTYej 0.3681 1.0527 1.5743 1.7931 1.5233 0.6234 

eTnPej 1.4223 - 1.4888 1.6298 -1.8563 2.1542 -2.4088 

The starting data, shown in Tables 2 and 3, are the eigenvalues and first and last components 
of the eigenvectors of the n x n submatrices Kr, Mr, and K2, M2 where 

K=6(K1 K2) =6 

4 1 0 
1 4 1 

M=$ (M1 M2)=$ 0 1 3 
3 1 0 
1 4 1 
0 1 2 

Thus, with (Y = -6, p = l/36, and u = (O,O, 1, l,O,O)T, we have 

K=K+auuT, &l=M++uuT, 

Table 2. Spectral data for K1, Ml. 
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Table 3. Spectral data for Kz, MQ. 

j 1 2 3 

4 14.6857 167.2091 432 

eyY2ej 0.6997 2.3609 2.6833 

C?,TY2ej 2.2641 -2.9182 2.6833 

soti=YTuis 
ii = (-0.8591, 1.8807,2.9825,0.6997,2.3609,2.6833)T 

and the eigenvalues of the pair K, M are (in the corresponding order) 

A = diag{Xi, X2,. . . , Xs} 

= diag{30.9992,148.5613,373.6102,14.6857,167.2091,432.0000}. 

The secular equation is 

g(p) = 1 - (36~ + 6) f: ;,’ 
j=l 4 - P 

and its zeros are the pj shown in Table 1. 
We now find the first and last rows of the eigenvector corresponding to the eigenvalue X = 

2.4815. The eigenvector we seek is a scalar multiple 0 of 2 

w = 88 = (A - 2.48151)% 

This matrix multiplication requires only 2n = 6 flops. We find 8 by using the normalization 
condition (3.6). Thus, 

whence, 0 = 0.0736 and so 

? = (-0.4091,0.1748,0.1091,0.7785,0.1946,0.0848)T. 

Note that the last n components of the 2n-dimensional row vector 

eTY = (eTYl,oT) 

vanish, as do the first n of e&Y. Thus, we compute the required first component of the eigen- 
vector x by multiplying eTYi with the first three components of 2, and similarly, we get the last 
component of x by multiplying e:Yz with the last three components of P. 

The first phase is completed once we have the first and last components of the eigenvectors 
for all the eigenvalues. This process encapsulates the essentials of one complete stage in a divide 
and conquer algorithm which may be applied to find all the eigenvalues of a large tridiagonal 
symmetric positive definite pencil. 

We emphasize that the whole calculation was done without ever using eigenvector components 
not in the first or last row. This fact is important in large problems. 

5.2. Numerical Results 

In this section, we report on the performance of our method for the problem of the previous 
section but with n = 128 (instead of n = 6 as in the illustrative example above). All calculations 
were performed in MATLAB, running on an IEEE floating point standard machine with a machine 
epsilon of 2.22 x 10-16. 
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The matrices k, &?I for this example have diagonal and subdiagonal elements like those of (5.1) 
and (5.2) except that the scale factors 6 and l/36 are here replaced by n and l/(6&), with n = 128. 
The required eigenvalues 

cli = 6n2 (l - ‘OS tj) 
(2 + COSQ)’ 

j=l,2 )...) 71, 

now range (approximately) from 2.46743 to 196585. The exact eigenvector matrix is X = [zij] = 
sin (itj). 

A history table showing the number of iterations used for each eigenvalue and showing each 
bisection step by the letter “b” and each rational step by the letter Y is displayed in the 
Appendix. The relative error for each of the computed eigenvalues is also displayed. 

All the eigenvalues were found to a relative error smaller than 9.9 x lo-r3, i.e., within the 
preset tolerance of. 10-12. In fact, many eig envalues were found to limiting accuracy, a result of 
the quadratic convergence of the rational iteration. 

We also tested the method on a variety of other matrix problems, some with random matrices 
and some with structured form. The empirical evidence from the application of this method 
suggests that the number of iterations required for each eigenvalue is, on average, about eight. 
We therefore estimate the number of flops required to find all 2n eigenvalues from the secular 
equation to be 18(2n)(2n + 5) 

Together with the flop count for the eigenvector calculations of Section 3, the total flop count 
for this process is 21(2n)(2n + 5). Of course, for an n x n system the count would be 21n(n + 5). 

5.3. The Practical Zero-Finding Algorithm 

As noted before, the algorithm used is bisection protected rational approximation iteration. 

ALGORITHM STEPS. 

(a) Merge the ratio a/P with the Xj and sort them. 
(b) Set a tolerance E. 
(c) Start the search for the next p. Go to the next interval. 

(i) If the interval width is smaller than 2e, set /.~j = Xj. 
(ii) Compute where to set left and right boundaries so that the computation of g will not 

overflow. 
(iii) If g vanishes at either end we have the next p. Go to the next interval. 
(iv) If g has the same sign at both ends of the interval then, compute g at the left-hand 

side of the interval. If g > 0 and the left end point is smaller than a/P or if g < 0 
and the left end point is greater than a//?, then set p to the left-hand side end of the 
interval. Otherwise, set y to the right-hand side end of the interval. 

(v) If none of the above conditions are met, then the function has a sign change between 
the currently set left and right endpoints. We can now iterate for the zero. The 
iteration starts with the midpoint of the interval and computes a rational approx- 

(k+l) imation according to (4.2). If the resulting pj is inside the current bracketing 
interval, choose two of the endpoints which preserve bracketing. Otherwise, choose 
the midpoint of the interval as the next approximation. 

(vi) Termination criteria. We stop if 
(1) after two rational steps, the difference between successive iterates is smaller than E, 
(2) the length of the bracketing interval falls below 2e, or 
(3) if the function value goes to floating zero. 

6. CONCLUSIONS 
We have characterised the eigenvalues of a symmetric definite linear pencil modified by having 

scalar multiples of a rank-one update added to each of the matrices in the pencil. This is done 
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via the secular equation for the system, which expresses the eigenvalues of the modified system 
in terms of the eigenvslues of the original system and the modification. An interlacing property, 
which generalizes the well-known interlacing property for the corresponding modified standard 
eigenvalue problem, has been presented. These results provide a means of developing algorithms 
for the eigenvalues of certain modified systems (so-called matrix tearing) and spectral shifting. 
The algorithm suggested in the text may have application in the determination of the eigenvalues 
of large tridiagonal systems on parallel architectures. 

APPENDIX 

NUMERICAL RESULTS 
Here we display, for the problem treated in Section 5, the eigenvalues of the l&G pair, the 

relative error of the computed eigenvalues (compared against the exact eigenvalues for the proh- 
lem), and an iteration history. Each letter “b” represents a bisection step that occurred in the 
solution process for that eigenvalue and each ‘Y’ represents a rational iteration step. 

E’value Rel Error Iteration history 
-~_--~---~---~--~_--~---~~--~~--~~--~~--~~-~~--~~--~~-~~- 

2.5 -3E-013 1 bbbbbbbbbbbbbrrrrrr 
22.2 4E-014 2 rrrrr 
61.7 -4E-015 3 rrrr 

121 .O 5E-015 4 rrrr 
200.1 -9E-015 5 rrrr 
299.0 iE-014 6 rrr 
417.9 7E-015 7 rrr 
556.7 4E-015 8 rrrr 
715.7 lE-015 9 rrrr 
894.8 3E-015 10 rrrr 

1094.2 -iE-015 II rrrr 
1313.9 3E-015 12 rrrr 
1554.3 -2E-015 13 rrrr 
1815.3 -2E-015 14 rrrr 
2097.1 OE+OOO 15 rrrbrbbbbbbbbbbbbbbbbbbbbbbbbrb 
2399.9 3E-015 16 rrrbrbbbbbbbbbbbbbbbbbbbbbbbbbbbrb 
2723.9 -8E-016 17 rrrbbbbrb 
3069.3 -3E-013 18 rrr 
3436.3 -2E-015 19 rrrr 
3825.1 -4E-014 20 rrr 
4235.9 2E-016 21 rrrr 
4669 .O -8E-016 22 rrr 
5124.7 OE+OOO 23 rrrr 
5603.2 OE+OOO 24 rrr 
6104.8 -3E-016 25 rrrbbbbbbrb 
6629.8 -2E-014 26 rrr 
7178.5 8E-016 27 rrrbbbbrr 
7751.3 -iE-01% 28 rrr 
8348.5 -4E-016 29 rrrbrbbbbbbbbbbbbbbbbbbbbbbbrb 
8970.4 -6E-013 30 rrr 
9617.4 -lE-015 31 rrrbrbbbbbbbbbbbbbbbbbbbbbbbbbbbrb 

10290.0 -8E-013 32 rrrbb 
10988.4 -iE-015 33 rrrbrbbbbbbbbbbbbbbbbbbbbbrb 
11713.1 -iE-012 34 rrrbbr 
12464.6 -6E-016 35 rrrbrbbbbbbbbbbbbbbbbbbbbbbrb 
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13243.2 IE-016 36 rrrr 
14049.4 -6E-016 37 rrrbrbbbbbbbbbbbbbbbbbbbrb 
14883.8 -lE-015 38 rrrbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbrr 
15746.7 IE-016 39 rrrr 
16638.6 2E-016 40 rrrbrb 
17560.2 6E-016 41 rrrr 
18511.8 5E-013 42 rrrbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
19494.1 -lE-015 43 rrrr 
20507.5 -4E-016 44 rrrr 
21552.7 -1E-015 45 rrrr 
22630.2 5E-016 46 rrrr 
23740.5 -8E-016 47 rrrr 
24884.4 -4E-016 48 rrrr 
26062.3 -2E-015 49 rrrr 
27275.0 9E-016 50 rrrbbbbbbbbbbbbbbbbbbbbbbbbbrb 
28522.9 -2E-015 51 rrrr 
29806.9 -2E-015 52 rrrr 
31127.4 -3E-015 53 rrrr 
32485.2 -4E-015 54 rrrr 
33880.8 -3E-015 55 rrrr 
35315.0 -2E-014 56 rrrr 
36788.4 -5E-015 57 rrrr 
38301.5 -2E-013 58 rrrr 
39855.2 -8E-015 59 rrrr 
41450.0 -9E-016 60 rrrrbbbbbbbbbbbbbbbbbbbbbbbbrb 
43086.5 -iE-014 61 rrrr 
44765.4 -3E-015 62 rrrrr 
46487.3 -iE-014 63 rrrr 
48252.8 2E-016 64 rbbbbbbrrrrrrrrrr 
50062.3 4E-016 65 rrrbbbbbbbbbbbbbbbbbbbbbbbbrbbbbbrb 
51916.6 -6E-016 66 rrrrrr 
53816.1 -1E-015 67 rrrbbrbrb 
55761.2 -2E-015 68 rrrrr 
57752.4 -iE-015 69 rrrr 
59790.2 7E-016 70 rrrrbbbbbbbbbbbbbbbbbbbbbbbbbrr 
61874.9 -8E-016 71 rrrr 
64006.7 7E-016 72 rrrrbbbbbbbbbbbbbbbbbbbbbbbbbbbbrb 
66185.9 -6E-013 73 rrrbbbb 
68412.6 -lE-015 74 rrrrbbbbbbbbbbbbbbbbbbbbbbbbbrb 
70687.0 -2E-015 75 rrrr 
73009.0 -7E-013 76 rrrr 
75378.6 -3E-013 77 rrr 
77795.5 -4E-013 78 rrrr 
80259.4 -lE-014 79 rrr 
82769.9 -3E-013 80 rrrr 
85326.5 3E-016 81 rrbbbbbbbbbbbbbbbbbbbbbbbbbbrb 
87928.3 -2E-013 82 rrrr 
90574.6 -lE-013 83 rrr 
93264.3 -2E-013 84 rrrr 
95996.2 -lE-012 85 rrrbr 
98768.9 -1E-013 86 rrrr 

101580.7 lE-015 87 rrrbbbbbbbbbbbbbbbbbbbbbbbbbbbbrb 
104429.9 -1E-013 88 rrrr 
107314.4 -8E-016 89 rrrbbbbbbbbbbbbbbbbbbbbbbbbbbrb 
110232.0 -9E-014 90 rrrr 
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113179.9 -6E-016 91 rrrbbbbbbbbbbbbbbbbbbbbbbbbbbrb 
116155.5 -8E-014 92 rrrr 
119155..7 -2k-015 93 rrrr 
122177.1 -7E-014 94 rrrr 
125216.0 -3E-015 95 rrrbbbrb 
128268.4 -6E-014 96 rrrr 
131330.1 -9E-016 97 rrrr 
134396.5 -4E-014 98 rrrr 
137462.7 -3E-015 99 rrrr 
140523.5 -3E-014 100 rrrr 
143573.3 -2E-014 101 rrrr 
146606.3 -2E-614 102 rrrr 
149616.5 -9E-014 103 rrrr 
152597.2 -9E-015 104 rrrr 
155542.0 -4E-013 105 rrrr 
158443.8 -3E-015 106 rrrr 
161295.4 -6E-013 107 rrrrbbb 
164089.6 -lE-015 108 rrrr 
166818.7 -2E-015 109 rrrrr 
169475.1 IE-015 110 rrrbbrb 
172051.1 -8E-016 III rrrrbrb 
174538.8 -3E-013.112 rrr 
176930.4 IE-015 113 rrrrbrb 
179218.2 OE+OOO 114 rrrbrb 
181394.5 -lE-014 115 rrrrr 
183451.7 -5E-014 116 rrrr 
185382.7 -6E-016 117 rrrrrr 
187180.3 -lE-012 118 rrrrbbbbb 
188837.9 2E-016 119 rrrrrr 
190349.2 -4E-014 120 rrrrr 
191708.4 -2E-015 121 rrrrrrr 
192910.0 -9E-014 122 rrrrrr 
193949.3 -3E-013 123 rbbbbrrrr 
194822.0 -2E-013 124 rbbbbrrrrr 
195524.5 -2E-015 125 rbbrbrrrrrrrr 
196054.1 -2E-015 126 rbbbbrrrrrrbrb 
196408.3 -7E-015 127 bbbbbrrrrrrrr 
196585.8 -2E-015 128 bbrbbrrrrrbbrb 
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