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Abstract

By solving an infinite nonlinear system of q-difference equations one constructs a chain of q-difference operators.
The eigenproblems for the chain are solved and some applications, including the one related to q-Hahn orthogonal
polynomials, are discussed. It is shown that in the limit q → 1 the present method corresponds to the one developed
by Infeld and Hull.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The discretization of the ordinary differential equations is an important and necessary step toward find-
ing their numerical solutions. In place of the standard discretization based on the arithmetic progression,
one can use a not less efficient q-discretization related to geometric progression. This alternative method
leads to q-difference equations, which in the limit q → 1 correspond to the original differential equations.
The theory of q-difference equations and the related q-special functions theory have a long history (see
e.g., [12]). During the last two decades they have been reviewed because of the great success of the theory
of quantum groups.
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The other crucial way of solving ordinary differential equations is based on the factorization method
first used by Darboux [10]. Later the method was rediscovered many times, in particular by the founders
of quantum mechanics, see [23,11], while studying the Schrödinger equation. We refer to [18] for an
exhaustive presentation of the factorization method. In [16], which is now considered to be fundamental,
Infeld and Hull summarized the quantum mechanical applications of the method. Fixing an infinite system
of Riccati type equations they have constructed a chain of second order differential operators and proposed
some method of solving corresponding eigenproblems.

This paper uses the formalism of the factorization method developed in [14] based on generalized
difference calculus. Other approaches to the factorization method in discrete case may be found, e.g., in
[21,3,2,7,8,13,1].

We construct the chain (71) of second order q-difference operators by solving an infinite nonlinear q-
difference system. This chain depends on a freely chosen function and a finite number of real parameters.
In Section 3 we find a family of eigenvectors for the operators of (71). In Section 4 it is shown that
q-Hahn orthogonal polynomials, which are q-deformation of the classical orthogonal polynomials, form
the family of solutions obtained by our method. Other examples of solutions obtained by the factorization
of q-difference equations are presented in Section 5. Finally, passing to the limit q → 1 in (116), (117)
we obtain some families of solutions for second order differential equations.

2. Factorized chain of the second order q-difference operators

In this section we shall consider the sequence of the second order q-difference unbounded operators

Hk = Zk(x)�qQ
−1�q + Wk(x)�q + Vk(x), k ∈ N ∪ {0}, 0 < q < 1, (1)

acting in the Hilbert spaces Hk . By definition Hk consists of the complex valued functions � : [a, b]q →
C defined on the q-interval

[a, b]q := {qna : n ∈ N ∪ {0}} ∪ {qnb : n ∈ N ∪ {0}} (2)

and square-integrable, i.e. 〈�|�〉k < + ∞, with respect to the scalar products

〈�|�〉k :=
∫ b

a

�(x)�(x)�k(x) dqx. (3)

Let us recall (see [12]) that by definition the q-derivative is

�q�(x) = �(x) − �(qx)

(1 − q)x
(4)

and the q-integral on the q-interval [a, b]q is given by∫ b

a

�(x) dqx :=
∞∑

n=0

(1 − q)qn(b�(qnb) − a�(qna)). (5)

If a = 0 and b = ∞ then∫ ∞

0
�(x) dqx := lim

n→∞

∫ q−n

0
�(x) dqx =

∞∑
n=−∞

(1 − q)qn�(qn). (6)
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In the case if a = −∞ and b = ∞∫ ∞

−∞
�(x) dqx := lim

n→∞

∫ q−n

−q−n

�(x) dqx =
∞∑

n=−∞
(1 − q)qn(�(qn) + �(−qn)). (7)

In the limit q → 1 the above definitions correspond to their counterparts in standard calculus. It will be
assumed that b �= qna, for all n ∈ Z, because in the opposite case the Hilbert space is finite dimensional
and this case will not be discussed in the paper.

Let D([a, b]q) be the set of functions on [a, b]q with finite support. It is clear that D([a, b]q) ⊂ Hk

and is dense. Moreover, all domains of Hk contain D([a, b]q).
The scalar products (3) are defined by the weight functions �k : [a, b]q → R, which are related by the

recursion relations

�k−1 = �k�k (8)

and

�k−1 = Q(Bk�k), (9)

where �k , Bk are real valued functions on [a, b]q and the operator Q is defined by the formula

Q�(x) = �(qx). (10)

For the sake of consistency we need to add the conditions

Q(Bk�k) = �k�k (11)

on the functions �k and Bk . Additionally, we impose the boundary conditions

Bk(a)�k(a) = Bk(b)�k(b) = 0. (12)

If we introduce the functions

Ak(x) := Bk(x) − �k(x)

(1 − q)x
, (13)

we can rewrite the formula (11) in the form of q-Pearson equation [22]

�q(Bk�k) = Ak�k . (14)

In the limit q → 1, Eq. (14) corresponds to the Pearson equation which is important for the theory of
classical orthogonal polynomials [9].

We say that the operators Hk admit a factorization if

Hk = A∗
kAk + ak (15)

and

Hk = d−1
k+1(Ak+1A∗

k+1 + ak+1), (16)

where the annihilation operators Ak : Hk → Hk−1 are of the form

Ak = �q + fk (17)
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and fk are real valued functions on the set [a, b]q . The adjoint operators A∗
k : Hk−1 → Hk , called the

creation operators, are given by

A∗
k = (�q + fk)

∗ = Bk(−�qQ
−1 + fk) − Ak(1 + (1 − q)xf k). (18)

The derivation of the formula (18) is given in Appendix A. Note that both domains of Ak , A∗
k contain

D([a, b]q). It follows from (15) that the real valued functions Zk , Wk and Vk are related to fk , Bk , Ak by
the formulas

Zk = −BkQ
−1(1 + (1 − q)id fk), (19)

Wk = Bkfk − Ak(1 + (1 − q)id fk) − q−1BkQ
−1(fk), (20)

Vk = −Bk�q(Q
−1(fk)) − Akfk(1 + (1 − q)id fk) + Bkf

2
k + ak . (21)

Necessary and sufficient conditions for the consistency of factorization formulas (15) and (16) are

�k+1(x) = gk(x)�k(q
−1x), (22)

�k+1(x) = dk+1

gk(x)
�k(q

−1x), (23)

�k(x) − gk(qx)

dk+1
�k(qx)

=
(

q2dk+1Bk(qx) − gk(q
2x)Bk(q

2x)

(1 − q)2q3x2
+ dk+1ak − ak+1

)
gk(qx)

d2
k+1

, (24)

where we have introduced the additional notations

gk(x) := Bk+1(x)

Bk(x)
, (25)

�k(x) := fk(x) + 1

(1 − q)x
, (26)

�k(x) := �2
k(x)�k(x). (27)

The detailed derivation of these formulas is given in Appendix B and in [14].
Relations (22), (23) and (25), (27) allow us to express the functions Bk , �k , �k and �k by the initial data

B0, �0, �0 and �0:

Bk(x) = gk−1(x)gk−2(x) . . . g0(x)B0(x), (28)

�k(x) = gk−1(x)gk−2(q
−1x) . . . g0(q

−k+1x)�0(q
−kx), (29)

�k(x) = dk . . . d1

gk−1(x) . . . g0(q−k+1x)
�0(q

−kx), (30)

�k(x) = (dk . . . d1)
2

gk−1(x) . . . g0(q−k+1x)
�0(q

−kx). (31)
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Substituting (28)–(31) into condition (24) we obtain the infinite sequence of the nonlinear q-difference
equations

�0(x) − dk+1
Gk+1(x)

Gk(qx)
�0(qx)

= Gk+1(x)

(
dk+1ak − ak+1

+q2dk+1gk−1(q
k+1x) . . . g0(q

k+1x)B0(q
k+1x) − gk(q

k+2x) . . . g0(q
k+2x)B0(q

k+2x)

(1 − q)2q2k+3x2

)
,

(32)

where

Gk(x) := gk−1(q
kx)...g0(qx)

(dk . . . d1)
2 for k ∈ N, (33)

G0(x) := 1, (34)

for the functions �0, B0 and gk for k ∈ N ∪ {0}.
One sees from (28)–(31) that the sequence of functions gk , k ∈ N, satisfying (32) defines the chain of

q-difference operators (1) if the first element H0 of the chain is given. So, the problem of construction of
the factorized chain given by (15) and (16) is equivalent to solving of the system of functional equations
(32).

Let us now present the limit behaviour of the formulas obtained above when the parameter q tends to
1. It is easy to see that the set [a, b]q becomes the interval [a, b] in the limit q → 1 and the scalar product
turns to be

〈�|�〉k =
∫ b

a

�(x)�(x)�k(x) dx, (35)

where the weight function �k(x) satisfies Pearson equation

d

dx
(�kBk) = �kAk , (36)

with the boundary conditions (12). Forq → 1 the operator Q goes to the identity operator and �q −→
q→1

d/dx.

In the limiting case the annihilation and creation operators are of the form

Ak = d

dx
+ fk , (37)

A∗
k = Bk

(
− d

dx
+ fk

)
− Ak (38)

and the operators Hk are given by

Hk = −Bk

d2

dx2 − Ak

d

dx
+ (f 2

k − f ′
k)Bk − fkAk + ak . (39)
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The q-difference equation (1) tends to the differential equation(
Zk(x)

d2

dx2 + Wk(x)
d

dx
+ Vk(x)

)
�k(x) = �k�k(x), (40)

where the coefficients are given by

Zk(x) = −Bk(x), (41)

Wk(x) = −Ak(x), (42)

Vk(x) = (f 2
k (x) − f ′

k(x))Bk(x) − fk(x)Ak(x) + ak . (43)

The recurrence transformations (22), (23) for q → 1 tend to

Bk+1 = dk+1Bk , (44)

Ak+1 = dk+1

(
Ak − d

dx
Bk

)
. (45)

The sequence of q-difference equations (24) tends to the sequence of non-linear differential equations

Bk(f
2
k+1 − f 2

k + f ′
k+1 + f ′

k) − Ak(fk+1 − fk) + 2B ′
kfk+1 − A′

k + B ′′
k = ak − ak+1

dk+1
, (46)

k ∈ N∪{0}. Eq. (46) for Bk(x) ≡ 1 and Ak(x) ≡ 0 was considered in many papers (see [16,18–20,24,25]),
but nevertheless for these differential-difference equations there is no complete theory. One of the methods
for solving (46) is to look for the solutions in the form of infinite series

fk =
∑
i∈Z

f̃i(x)ki (47)

and obtain in this way the conditions on the function f̃i(x). The case of solutions given by the finite series
were considered by Infeld and Hull [16]. The classification of all factorizable one-dimensional problems
is still an open question.

Now, we come back to the general case. Regarding the extreme nonlinearity of system (32), the
possibility to solve it is rather out of question. Therefore, we shall restrict ourselves to the subcase

gk(x) := dk+1q
� for � ∈ R (48)

and consider system (32), which is reduced now to

�0(x) − q��0(qx) = q(k+1)�

dk+1 . . . d1
(dk+1ak − ak+1)

+ q2(k+1)�Qk+1 q2−�B0(x) − B0(qx)

(1 − q)2qx2
, (49)
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as the infinite system of equations on the initial functions B0 and �0. Eliminating �0 from (49) we obtain

(1 − q)2q3−�d−1
1 x2

(
qk�

dk+1 . . . d1
(dk+1ak − ak+1) − d1a0 + a1

)
= q2−�B0(qx) − B0(q

2x) − q2k(�−1)(q2−�B0(q
k+1x) − B0(q

k+2x)), k ∈ N. (50)

Now, we shall look for the solution of (50) in the form

B0(x) = x�
∑
n∈Z

bnx
n, (51)

where � ∈ [0, 1). Substituting (51) into (50) and comparing the coefficients in front of xn we obtain the
expressions for ak ∈ R:

ak+1 = dk+1 . . . d1q
−�k

(
−a0

[�k]
[�] + a1

d1

[�(k + 1)]
[�] − qb2[�k][�(k + 1)

)
, k ∈ N, (52)

where [�] = (1 − q�)/(1 − q), and the function B0:

B0(x) = b2x
2 + b1x

2−� + b0x
2−2�, (53)

where b2, b1, b0 ∈ R. From (53) and (49) we have
(i) if � �= 0, then

�0(x) = q�+1b2

(1 − q)2 + q�(d1a0 − a1)

(1 − q�)d1
+ hx−� + q1−�b0

(1 − q)2 x−2�, (54)

where h ∈ R;
(ii) if � = 0, then

�0(x) = h and d1a0 = a1, (55)

where h ∈ R. Finally, substituting (48) into (28)–(31) we find the following transformation formulas:

Bk(x) = q�kdk . . . d1B0(x), (56)

�k(x) = q�kdk . . . d1�0(q
−kx), (57)

�k(x) = q−�k�0(q
−kx), (58)

�k(x) = q−�kdk . . . d1�0(q
−kx), (59)
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where B0, �0 are given by (53), (54) and (55), respectively. The functions �0 and �0(x) are related to A0
and �0 by

�0(x) = b2x
2 + b1x

2−� + b0x
2−2� − (1 − q)xA0(x), (60)

�0(x) =
√

�0(x)

�0(x)
. (61)

At the moment, given the functions B0, �0, we can use (56)–(59), (13), (14), (26) and (27) in order to
express the functions Ak , fk and �k:

Ak(x) = q�kdk . . . d1(q
−kA0(q

−kx) + [−2k]b2x

+ [k(� − 2)]b1x
1−� + [2k(� − 1)]b0x

1−2�), (62)

fk(x) = q−�kf0(q
−kx) − 1 − qk(1−�)

(1 − q)x
, (63)

�k(x) = q−�k(k+1)/2

dkd
2
k−1 . . . dk

1

�0(q
−kx)∏k−1

n=0(b2q−2nx2 + b1qn(�−2)x2−� + b0q2n(�−1)x2−2�)
(64)

by A0, f0 and �0. From conditions (13), (14), (26) and (27) we see that the functions A0, f0, �0 are related
by

�0(x) = q2b2x + b1q
2−�x1−� + b0q

2(1−�)x1−2�

b2x + b1x1−� + b0x1−2� − (1 − q)A0(x)
�0(qx), (65)

(
f0(x) + 1

(1 − q)x

)2

= �0(x)

b2x2 + b1x2−� + b0x2−2� − (1 − q)xA0(x)
. (66)

So, further we shall assume that the function A0(x)/B0(x) is continuous in 0. Under this assumption we
obtain from (65) and (66)

f0(x) =
√

�0(x)

b2x2 + b1x2−� + b0x2−2� − (1 − q)xA0(x)
− 1

(1 − q)x
, (67)

�0(x) = 1

b2x2 + b1x2−� + b0x2−2�

∞∏
n=0

⎛⎝Qn 1

1 − (1−q)x(A0(x)

(b2x2+b1x2−�+b0x2−2�)

⎞⎠ . (68)

This means that one finds the explicit formulas for the annihilation and creation operators

Ak = �q − 1

(1 − q)x
+ q−�k

√
�0(q−kx)

�0(q
−kx)

, (69)

A∗
k = dk . . . d1

(
−q�k(b2x

2 + b1x
2−� + b0x

2−2�)

(
�qQ

−1 + 1

(1 − q)x

)
+
√

�0(q−kx)�0(q
−kx)

)
(70)
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and from this the explicit expression for Hk

Hk = dk . . . d1

⎛⎝−(1 − q)q−1x3(b2 + b1x
−� + b0x

−2�)

√
�0(q−(k+1)x)

�0(q
−(k+1)x)

�qQ
−1�q

+
⎛⎝−q−1x2(b2 + b1x

−� + b0x
−2�)

√
�0(q−(k+1)x)

�0(q
−(k+1)x)

+
√

�0(q−kx)�0(q
−kx)

⎞⎠ �q

+ b2 + b1x
−� + b0x

−2�

(1 − q)2

⎛⎝q1+k� − (1 − q)x

√
�0(q−(k+1)x)

�0(q
−(k+1)x)

⎞⎠
+ q−�k�0(q

−kx) − 1

(1 − q)x

√
�0(q

−kx)�0(q−kx)

−q−�(k−1)

(
a0

[�(k − 1)]
[�] − a1

d1

[�k]
[�] + qb2[�(k − 1)][�k]

)⎞⎠ , (71)

which depend only on a function A0.
The chains of operators Ak , A∗

k and Hk appearing in (69), (70) and (71) in the limit q → 1 are given
by

Ak = d

dx
+ f0(x) + k(� − 1)

x
, (72)

A∗
k = dk . . . d1

(
B0(x)

(
− d

dx
+ f0(x) + k(� − 1)

x

)
− A0(x) + k

d

dx
B0(x)

)
, (73)

Hk = dk . . . d1

(
−B0(x)

d2

dx2 − (A0(x) − kB ′
0(x))

d

dx

+
(

f 2
0 (x) − f ′

0(x) + 2k(� − 1)

x
f0(x) + k(� − 1)(k(� − 1) + 1)

x2

)
B0(x)

−
(

f0(x) + k(� − 1)

x

)
(A0(x) − kB ′

0(x)) − a0(k − 1) + a1

d1
k − b2�2k(k − 1)

)
, (74)

where

Bk(x) = dk . . . d1B0(x), (75)

Ak(x) = dk . . . d1

(
A0(x) − k

d

dx
B0(x)

)
, (76)

fk(x) = f0(x) + k(� − 1)
1

x
, (77)

�k(x) = 1

dkd
2
k−1 . . . dk

1

�0(x)

Bk
0 (x)

(78)
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and the functions B0, f0 and �0 have the form

B0(x) = b2x
2 + b1x

2−� + b0x
2−2�, (79)

f0(x) =

⎧⎪⎪⎨⎪⎪⎩
−b2(� + 1)x + d1a0−a1

�d1
x − b1h̃x1−� − b0(1 − �)x1−2� + A0(x)

2(b2x2 + b1x2−� + b0x2−2�)
for � �= 0,

− �̃

2

1

x
+ A0(x)

2(b2 + b1 + b0)x2 for � = 0,

(80)

�0(x) = 1

B0(x)
e
∫ x

0 (A0(t)/B0(t)) dt . (81)

Summing up we see that the construction presented above gives us the nontrivial chain of Hamiltonians
(71) parameterized by the freely chosen function A0 and the real parameters b0, b1, b2, h, a0, a1, � and
dk , k ∈ N.

3. Eigenvalue problem for the chain of operators

We shall be interested in solving the eigenvalue problems

Hk�k = �k�k for k ∈ N ∪ {0}. (82)

If the operators Hk admit the factorization given by (15) and (16), then the eigenvalue (82) is equivalent
to the two equations

A∗
kAk�k = (�k − ak)�k , (83)

Ak+1A∗
k+1�k = (dk+1�k − ak+1)�k . (84)

From (83) and (84) one gets

Hk+1A∗
k+1�k = dk+1akA∗

k+1�k (85)

if

Hk�k = ak�k (86)

or equivalently, if

Ak�k = 0. (87)

Let us remark here that from (84) it follows that A∗
k+1�k ∈ Hk+1. The formulas (84) show also that the

application of Ak+1 to A∗
k+1�k turns it back to the eigenvector of Hk proportional to the eigenvector �k .

Therefore, in the case when �k = ak the eigenvalue problem (82) is reduced to Eq. (87) which is a first
rank q-difference equation, i.e.

�k(x) = q�k

(1 − q)x

√
�0(q

−kx)

�0(q−kx)
�k(qx), (88)
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Fig. 1. Table of the forms of the function A0 and the parameter 	k .

where B0 and �0 are given by (53) and (54)–(55), respectively. By applying the iteration method to (88)
we find the solution

�k(x) = x	k

∞∏
n=0

q	k+�k

(1 − q)qnx

√
�0(q

n−kx)

�0(qn−kx)
, (89)

where admissible choices of the real parameter 	k and function A0 are presented in Fig. 1. A(x) is to be
an arbitrary analytic function. Now, let us answer the question of when the solution �k of (89) belongs to
the Hilbert space Hk . In order to do this we observe that

(|�k|2�k)(x) = q2�k

(1 − q)2x2

B0(qx)

�0(q−kx)
(|�k|2�k)(qx). (90)

Eq. (90) can be written for � = 0 in the form

(|�k|2�k)(x) = q2(b2 + b1 + b0)

(1 − q)2�
(|�k|2�k)(qx), (91)

and for � �= 0 in the form

(|�k|2�k)(x)

= q1−�(b2(qx)2� + b1(qx)� + b0)

q2�
(
b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1

)
(q−kx)2� + (1 − q)2q�−1h(q−kx)� + b0

× (|�k|2�k)(qx). (92)

We also observe that the function |�k|2�k does not depend on A0(x). Using iteration method we obtain
the classes of solutions of (90) described in the following proposition.
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Proposition 1. For the solutions to Eq. (90), the following cases hold:

1. For � = 0 we have

(|�k|2�k)(x) = xr , (93)

where q−r = q2(b2 + b1 + b0)/(1 − q)2�.
2. For � �= 0 we have following possibilities:

(i) If b0 �= 0, b2 �= 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
�= 0, then

(|�k|2�k)(x) = x�−1

(
(qx)�

x1
; q�

)
∞

(
(qx)�

x2
; q�

)
∞(

(q−kx)�

y1
; q�

)
∞

(
(q−kx)�

y2
; q�

)
∞

. (94)

(ii) If b0 �= 0, b2 �= 0, h �= 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
= 0, then

(|�k|2�k)(x) = x�−1

(
(qx)�

x1
; q�

)
∞

(
(qx)�

x2
; q�

)
∞(

(q−kx)�

y1
; q�

)
∞

. (95)

(iii) If b0 �= 0, b2 �= 0, h = 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
= 0, then

(|�k|2�k)(x) = x�−1
(

(qx)�

x1
; q�

)
∞

(
(qx)�

x2
; q�

)
∞

. (96)

(iv) If b0 = 0, b1 �= 0, b2 �= 0, h �= 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
�= 0, then

(|�k|2�k)(x) = xr

(
(qx)�

x1
; q�

)
∞(

(q−kx)�

y1
; q�

)
∞

, (97)

where q−r =
∣∣∣q2+�(k−1)b1

(1−q)2h

∣∣∣.
(v) If b0 = 0, b1 �= 0, b2 �= 0, h �= 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
= 0, then

(|�k|2�k)(x) = xr

(
(qx)�

x1
; q�

)
∞

, (98)

where q−r =
∣∣∣q2+�(k−1)b1

(1−q)2h

∣∣∣.
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(vi) If b0 = h = 0, b1 �= 0, b2 �= 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
�= 0, then

(a)

(|�k|2�k)(x) = xr

(
(qx)�

x1
; q�

)
∞

(−(q−kx)�; q�)∞(−q�(q−kx)−�; q�)∞
, (99)

where q−r = qk�+1b1

q2�
(
b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1

) > 0;

(b)

(|�k|2�k)(x) = xr

(
(qx)�

x1
; q�

)
∞

((q−kx)�; q�)∞(q�(q−kx)−�; q�)∞
, (100)

where −q−r = qk�+1b1

q2�
(
b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1

) < 0.

(vii) If b0 = b1 = 0, b2 �= 0, h �= 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
�= 0, then

(a)

(|�k|2�k)(x) = xr (−x�; q�)∞(−q�x−�; q�)∞(
(q−kx)�

y1
; q�

)
∞

, (101)

where q−r = q2+k�b2/(1 − q)2h > 0;
(b)

(|�k|2�k)(x) = xr (x�; q�)∞(q�x−�; q�)∞(
(q−kx)�

y1
; q�

)
∞

, (102)

where −q−r = q2+k�b2

(1−q)2h
< 0.

(viii) If b0 = b1 = h = 0, b2 �= 0 and b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1
�= 0, then

(|�k|2�k)(x) = xr , (103)

where

q−r =
∣∣∣∣∣∣ q1−�+2k�b2

b2 + (1−q)2

(1−q�)
(d1a0−a1)

qd1

∣∣∣∣∣∣ .

In all the above cases x1, x2 are roots of the polynomial

b2x
2 + b1x + b0 = 0 (104)



332 A. Dobrogowska, A. Odzijewicz / Journal of Computational and Applied Mathematics 193 (2006) 319–346

and y1, y2 are roots of the polynomial(
q2�b2 + (1 − q)2 q2�−1(d1a0 − a1)

(1 − q�)d1

)
x2 + (1 − q)2q�−1hx + b0 = 0. (105)

Proof. We easily obtain the subcases (i)–(iii) by iteration. The other cases are proved by calculation of
the Laurent expression coefficient and application of Jacobi identity

∞∑
k=−∞

qk2
xk = (q2; q2)∞(−qx; q2)∞(−q/x; q2)∞ (106)

(see [12]). �

The proposition given below classifies those function (89) which are elements of Hilbert space Hk .

Proposition 2. The solution (89) of Eq. (87) belongs to the Hilbert space Hk if and only if the parameters
b0, b1, b2, �, h, d1, a0, a1 and � satisfy the following conditions:

(1) � = 0 and �/(b2 + b1 + b0) < q/(1 − q)2.
(2) � > 0 and one of the following conditions is fulfilled:

(i) b0 �= 0, b2 �= 0 and b2 + ((1 − q)2/(1 − q�))((d1a0 − a1)/qd1) �= 0;
(ii) b0 �= 0, b2 �= 0, h �= 0 and b2 + ((1 − q)2/(1 − q�))((d1a0 − a1)/qd1) = 0;

(iii) b0 �= 0, b2 �= 0, h = 0 and b2 + ((1 − q)2/(1 − q�))((d1a0 − a1)/qd1) = 0;
(iv) b0 = 0, b1 �= 0, b2 �= 0, h �= 0, b2 + ((1 − q)2/(1 − q�))((d1a0 − a1)/qd1) �= 0 and

h/b1 < q1+�(k−1)/(1 − q)2;
(v) b0 = 0, b1 �= 0, b2 �= 0, h �= 0, b2 + ((1 − q)2/(1 − q�))((d1a0 − a1)/qd1) = 0 and

h/b1 < q1+�(k−1)/(1 − q)2;
(vi) b0 = h = 0, b1 �= 0, b2 �= 0 and b2 + ((1 − q)2/(1 − q�))((d1a0 − a1)/qd1) �= 0;

(vii) in this case the solutions never belong to the Hilbert space;
(viii) b0 =b1 =h=0, b2 �= 0, b2 + ((1−q)2/(1−q�))((d1a0 −a1)/qd1) �= 0 and d1a0 −a1/qd1b2 <

((1 − q�)/(1 − q)2)(q�(2k−1) − 1)).

The notation and classification given above are compatible with Proposition 1.

Proof. The function �k belongs to the Hilbert space if∫ b

a

(|�k|2�k)(x) dqx < + ∞. (107)

This is equivalent to

∞∑
n=0

(1 − q)qny(|�k|2�k)(q
ny) < + ∞ (108)
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for y =a, b. So, for the case (i) (i.e., b0 �= 0, b2 �= 0 and b2 + ((1−q)2/(1−q�))((d1a0 −a1)/qd1) �= 0)
we have from Proposition 1 that |�k|2�k is given by (94), and we show that

(1 − q)y�
∞∑

n=0

q�n

(
(qn+1y)�

x1
; q�

)
∞

(
(qn+1y)�

x2
; q�

)
∞(

(qn−ky)�

y1
; q�

)
∞

(
(qn−ky)�

y2
; q�

)
∞

< + ∞. (109)

From the identity

(qna; q)∞ = (a; q)∞
(a; q)n

, (110)

where

(a; q)∞ = (1 − a)(1 − qa) . . . , (111)

(a; q)n = (1 − a)(1 − qa) . . . (1 − q(n−1)a), (112)

we obtain the conditions equivalent to (109)

(1 − q)y�

(
(qy)�

x1
; q�

)
∞

(
(qy)�

x2
; q�

)
∞(

(q−ky)�

y1
; q�

)
∞

(
(q−ky)�

y2
; q�

)
∞

×
∞∑

n=0

q�n

(
(q−ky)�

y1
; q�

)
n

(
(q−ky)�

y2
; q�

)
n(

(qy)�

x1
; q�

)
n

(
(qy)�

x2
; q�

)
n

< + ∞. (113)

Those conditions are fulfilled for � > 0. The proofs of the other cases are similar to the one above. �

Finally, let us come back to the general situation and observe that (85), (86) and (87) imply that the
function

�n
k(x) := A∗

k . . . A∗
k−n+1�k−n(x), n = 1, . . . , k, (114)

is an eigenvector of the operator Hk with the eigenvalue

�n
k = dkdk−1 . . . dk−n+1ak−n (115)

if �k−n is the eigenvector of Hk−n with eigenvalue ak−n. Moreover, one comes back to the eigensubspace
C�k−n acting on C�n

k by the annihilation operators Ak−n+1, . . . and Ak . The above described procedures
can be illustrated by a lattice of points in the (k, n) plane (Fig. 2).

The eigenfunctions of the operator Hk given by (89) and (114) in the limit q → 1 tend to

�k(x) = x−k(�−1)e− ∫ x
0 f0(t) dt , (116)

�n
k(x) = A∗

k . . . A∗
k−n+1x

−(k−n)(�−1)e− ∫ x
0 f0(t) dt for n = 1, 2, . . . , k, (117)
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Fig. 2. Presentation of action of the operators A∗
k
.

with the eigenvalues

�n
k = dk . . . d1

(
−a0(k − n − 1) + a1

d1
(k − n) − b2�2(k − n)(k − n − 1)

)
. (118)

The Hamiltonian (71) can be considered as a q-deformation of Schrödinger operator with known po-
tentials. It can be shown that in the limit case q → 1 by standard change of variables we can express
Hamiltonian (74) as d2/dx2 + V (x), where V becomes harmonic (1D or 3D), Morse, Rosen–Morse,
Eckart or Poschl–Teller potential.

In the next sections we want to present some important examples, including the example of orthogonal
polynomials of q-Hahn class which, in the limit q → 1, gives classical orthogonal polynomials. These
examples will illustrate how the factorization method works in our approach by writing down special
cases of Hamiltonian (71) for some choices of the free parameters when we can find some solutions.

4. The class of q-Hahn orthogonal polynomials

We shall consider the class of q-Hahn polynomials orthogonal with respect to the measures equivalent
to the Jackson measure dqx.

We obtain the class of q-Hahn orthogonal polynomials when we require that the functions fk(x) ≡ 0
and dk = q−1 for k ∈ N. This is equivalent to

� = 1, (119)

Bk(x) = B0(x) = b2x
2 + b1x + b0, (120)
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A0(x) = ([2]b2 − qa0 + q2a1)x + b1

1 − q
− (1 − q)h. (121)

We see that the functions Bk and A0 are a second and a first order polynomials, respectively. From (62)
we obtain that the function Ak is also first order polynomial

Ak(x) = q−kA0(q
−kx) + 1 − Q−k

(1 − q)x
B0(x) = ãkx + b̃k , (122)

where

ãk = −q−2(k−1)([2(k − 1)]b2 + q−1a0 − a1), (123)

b̃k = b1

1 − q
− (1 − q)q−kh. (124)

Hence, the annihilation and creation operators are given by

Ak = �q , (125)

A∗
k = −(b2x

2 + b1x + b0)�qQ
−1 − ãkx − b̃k (126)

and the Hamiltonian by

Hk = − (b2x
2 + b1x + b0)�qQ

−1�q − (ãkx + b̃k)�q

+ q−2(k−1)(−q−1a0[k − 1] + a1[k] − b2[k − 1][k]). (127)

The eigenvalue problem for the Hamiltonian (127) is known as the q-Hahn equation [15,22]

(B0(x)�qQ
−1�q + Ak(x)�q)�

n
k = �n

k�n
k . (128)

The eigenvectors related to the eigenvalues

�0
k = 0 (129)

�n
k = ãk[n] + b2[n][n − 1]q−(n−1) (130)

are given by

�0
k = 1, (131)

�n
k = A∗

k . . . A∗
k−n+11 =

k∏
i=k−n+1

(−(b2x
2 + b1x + b0)�qQ

−1 − ãix − b̃i)1, (132)

for k ∈ N∪{0} and n=1, 2, . . . , k. The functions �n
k (132) are polynomials. Each of the families {�n

k}kn=0
is a system of polynomials orthogonal with respect to the scalar product given by Jackson’s integral∫ b

a

�n
k(x)�m

k (x)�k(x) dqx ∼ �nm, (133)
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where the weight functions are obtained from (68)

�k(x) = �0(q
−kx)

B0(q−k+1x) . . . B0(x)
. (134)

The classes of the weight functions �0 and the set of integration [a, b]q in (133) are presented in [22].

Example 1. Let us denote the roots of polynomials B0(x) and B0(x) − (1 − q)xA0(x) by x1, x2 and y1,
y2, respectively. For fixed k ∈ N ∪ {0} we shall assume the condition

qky1 < x1 < 0 < x2 < qky2 (135)

valid in the generic case. After substitution

ak := q−k−1x2

y2
, (136)

bk := q−k−1x1

y1
, (137)

ck := q−k−1x1

y2
, (138)

P (k)
n

(
1

qky2
x; ak, bk, ck; q

)
:= �n

k(x) (139)

and the change of variables y = (1/qky2)x, we obtain from (128) the second order linear q-difference
equation

akq(y − 1)(bky − ck)P
(k)
n (qy; ak, bk, ck; q) + (y − akq)(y − ckq)P (k)

n (q−1y; ak, bk, ck; q)

− (akq(y − 1)(bky − ck) + (y − akq)(y − ckq))P (k)
n (y; ak, bk, ck; q)

= q−n(1 − qn)(1 − akbkq
n+1)y2P (k)

n (y; ak, bk, ck; q) (140)

for the big q-Jacobi polynomials, see [12]. The weight function (134) after the above substitution assumes
the form

�k(y) =
qky2

(
y
ak

; q
)

∞

(
y
ck

; q
)

∞
bk

0(y; q)∞
(

bkx
ck

; q
)

∞
. (141)

The big q-Jacobi polynomials are orthogonal with respect to the scalar product with the weight function
(141) on the q-interval [ckq, akq]∞.

Finally, let us remark that the q-derivative �q plays the role of the lowering operator �qP
(k)
n = P

(k−1)
n−1

which decreases the discrete parameter k and the degree of the polynomial.
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Example 2. In this case we assume that one of the roots x1, x2 of B0(x) is x2 = 1 and b2 − (1 − q)ã0 =
b1 − (1 − q)b̃0 = 0. Then Eq. (128) reduces to the second order q-difference equation

qn−1x1�
n
k(qx) + qn(x − 1)(x − x1)�

n
k(q

−1x) − (qn−1x1 + qn(x − 1)(x − x1))�
n
k(x)

= (1 − qn)x2�n
k(x) (142)

for the Al–Salam–Carlitz I polynomials, see [12]. The solutions of (4) are orthogonal with respect to the
scalar product given by q-integral on the q-interval [x1, 1]q with the weight function of the form

�k(x) = b−k
0

(
qx

x1
; q

)
∞

(qx; q)∞. (143)

Let us now come back to the general case. In the limit q → 1 this case gives us the Hahn equation
describing the classical orthogonal polynomials(

B0(x)
d

dx
+ Ak(x)

)
d

dx
�n

k(x) = �n
k�n

k(x). (144)

The functions B0 and Ak are second and first order polynomials given by

Bk(x) = B0(x) = b2x
2 + b1x + b0, (145)

Ak(x) = ãkx + b̃k , (146)

where

ãk = −2(k − 1)b2 + a1 − a0, (147)

b̃k = b1(h̃ − k) (148)

(in order to obtain these formulas we demand additionally that h=b1q
h̃/(1−q)2 in (124)). By appropriate

choice of polynomials A0 and B0 we obtain known families of orthogonal polynomials, for details see
[17].

The eigenvectors �n
k (orthogonal polynomials), in the limiting case, have the forms

�0
k(x) = 1, (149)

�n
k(x) =

(
B0(x)

d

dx
+ Ak(x)

)(
B0(x)

d

dx
+ Ak−1(x)

)
· · ·
(

B0(x)
d

dx
+ Ak−n+1(x)

)
1 (150)

and correspond to the eigenvalues

�n
k = ãkn + b2n(n − 1). (151)

5. The case of constant weight functions

We assume that all weight functions are constant �k(x) ≡ const. We obtain two cases, which we
consider below. One of them can be considered as some discretization of the harmonic oscillator and the
other, 3D harmonic oscillator. We will write explicit formulas for Hamiltonians and eigenvalues.
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5.1. q-deformation of the harmonic oscillator

Additionally, we demand that dk = q−1 and b0 = �0 = 1 for the sake of transparency of the formulas.
In this case we have

� = 1, (152)

Bk(x) = 1, (153)

Ak(x) = 0, (154)

fk(x) = q−kf0(q
−kx), (155)

�k = 1, (156)

where

f0(x) =
√

q2(q−1a0 − a1)

1 − q
+ h

x
+ 1

(1 − q)2

1

x2 − 1

(1 − q)x
. (157)

Thus the annihilation and creation operators are given by

Ak = �q + q−kf0(q
−kx), (158)

A∗
k = −�qQ

−1 + q−kf0(q
−kx) (159)

and Hamiltonian has the form

Hk = − (1 + (1 − q)q−k−1xf 0(q
−k−1x))�qQ

−1�q

+ q−k(f0(q
−kx) − q−1f0(q

−k−1x))�q

− q−k�q(f0(q
−k−1x)) + q−2kf 2

0 (q−kx) + q−2k(a0 + (q2a1 − a0)[k]). (160)

We will show later that it is one of the possible discretization of harmonic oscillator. By solving Eq. (88)
we find the basic state �0

k of Hamiltonian (160) in two situations.
(1) If a0 �= qa1, then

�0
k(x) = C0

k√(
q−kx
x1

; q
)

∞

(
q−kx
x2

; q
)

∞

, (161)

where x1 and x2 are roots of the polynomial

(1 − q)q2(q−1a0 − a1)x
2 + (1 − q)2hx + 1 = 0 (162)

and C0
k ∈ R\{0}.
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(2) If a0 = qa1 and h �= 0, then

�0
k(x) = C0

k√
(−(1 − q)2hq−kx; q)∞

. (163)

It easy to see that the operator Q−1 acts as follows:

�0
0

C0
1

C0
0
Q−1

−→ �0
1

C0
2

C0
1
Q−1

−→ · · ·
C0

k

C0
k−1

Q−1

−→ �0
k

C0
k+1
C0

k

Q−1

−→ · · · .

The functions �0
k are eigenvectors of the Hamiltonians Hk with the eigenvalues

�0
k = ak = q−2k(a0 + (q2a1 − a0)[k]). (164)

Similarly it is easy to show that the functions

�n
k(x) = Q−k�n

0(x) (165)

are eigenvectors of Hk with

�n
k = q−2k(�n

0 + (q2a1 − a0)[k]), (166)

due to the following commutation relations:

qA∗
kQ

−1 = Q−1A∗
k−1, (167)

A∗
kQ = qQA∗

k+1, (168)

qAkQ
−1 = Q−1Ak−1, (169)

AkQ = qQAk+1. (170)

Finally, we present in Fig. 3 the action of the operators Ak, A
∗
k and state the following:

Proposition 3. The functions

�n
k(x) = 1√

(a0 − qa1)
nnq !qn(n−1)+k

Qn−kA∗
n . . . A∗

1�0
0(x), (171)

for k ∈ N ∪ {0} and n ∈ N ∪ {0}, where the function �0
0 is given by (161) or (163), are the eigenvectors

of Hamiltonians (160) corresponding to the eigenvalues

�n
k = q−2k+n(a0 + (q2a1 − a0)[k − n]). (172)

The q-deformation of the harmonic oscillator presented here is connected with the discrete q-Hermite
II polynomials. In order to see this let us rewrite eigenfunctions of the Hamiltonian (160) in the form

�n
k(x) = P (k)

n (q−kx)�0
k(x), (173)
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Fig. 3. Presentation of action of the operators.

where �0
k is the basic state given by formula (161), assume that x1 = −x2 = i, a0 − qa1 = 1/q(1 − q)

and apply the change of variables y = q−kx. Then the eigenproblem of this Hamiltonian reduces to the
equation

−(1 − qn)y2P (k)
n (y) = (1 + y2)P (k)

n (qy) − (1 + q + y2)P (k)
n (y) + qP (k)

n (q−1y). (174)

It is an equation for the discrete q-Hermite II polynomials which are orthogonal with respect to the scalar
product given by the q-integral on the q-interval [−∞, ∞]q with the weight function

�k(y) = qk(�0
k)

2(y) = qk(C0
k )2

(iy; q)∞(−iy; q)∞
. (175)

The factorization method for other q-deformations of the harmonic oscillator was developed in [4–6].
Models presented in these works are related to the continuous q-Hermite and to Stieltjes–Wigert polyno-
mials.

It is easy to show that in the limit q → 1 Hamiltonian (160) gives us the Hamiltonian of the harmonic
oscillator

Hk = − d2

dx2 + (a0 − a1)
2

4
x2 + a1 + a0

2
+ (a1 − a0)k (176)

with eigenvectors

�n
k(x) =

(
− d

dx
+ a0 − a1

2
x

)n

e−(a0−a1/4)x2
for n ∈ N ∪ {0} (177)

corresponding to the eigenvalues

�n
k = a0 + (a0 − a1)(n − k). (178)
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5.2. q-deformation of the three-dimensional isotropic harmonic oscillator

Additionally, we demand that dk = q−2 and b1 = �0 = 1. In this case we have

� = 2, (179)

Bk(x) = 1, (180)

Ak(x) = 0, (181)

fk(x) = q−2kf0(q
−kx) − 1 − q−k

(1 − q)x
, (182)

�k = 1, (183)

where

f0(x) =
√

q4(q−2a0 − a1)

1 − q2 + h

x2 − 1

(1 − q)x
. (184)

The annihilation and creation operators have the form

Ak = �q + q−2kf0(q
−kx) − 1 − q−k

(1 − q)x
, (185)

A∗
k = −�qQ

−1 + q−2kf0(q
−kx) − 1 − q−k

(1 − q)x
, (186)

and the Hamiltonians are given by the formulas

Hk = − (q−k + (1 − q)q−2k−1xf 0(q
−k−1x))�qQ

−1�q

+ q−2k(f0(q
−kx) − q−1f0(q

−k−1x))�q − q−2k(�qf0(q
−k−1x)) + q−2k[k][k + 1]

x2

+ q−4kf 2
0 (q−kx) + 2q−3k [k]

x
f0(q

−kx) + q−4k

(
a0 + (q4a1 − a0)

[2k]
[2]

)
. (187)

We will show that it can be considered as q-deformation of radial part of 3D isotropic harmonic oscillator.
The basic states of Hamiltonians (187) can be found as solution (88).
(1) If a0 �= q2a1, then

�0
k(x) = C0

k√(
−q4(q−2a0−a1)

(1−q2)h
q−2kx2; q

)
∞

x	k , (188)

where C0
k ∈ R\{0} and

	k := −k + logq(1 − q)
√

h. (189)
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(2) If a0 = q2a1, then

�n
k(x) = C0

k x	k . (190)

These are the eigenfunctions of the Hamiltonian corresponding to the eigenvalues

�0
k = ak = q−4k

(
a0 + (q4a1 − a0)

[2k]
[2]

)
. (191)

Finally, we have the following proposition:

Proposition 4. The functions

�n
k(x)

= A∗
k . . . A∗

k−n+1�
0
k−n

=
k∏

i=k−n+1

⎛⎝ 1

(1 − q)x

⎛⎝−Q−1 + q−k(1 − q)
√

h

√
1 + q4(q−2a0 − a1)

(1 − q2)h
q−2kx2

⎞⎠⎞⎠�0
k−n,

(192)

for n = 1, 2, . . . , k, are the eigenvectors of Hamiltonian (187) with the eigenvalues

�n
k = q−2nak−n = q−2(2k−n)

(
a0 + (q4a1 − a0)

[2(k − n)]
[2]

)
. (193)

The q-deformation of the 3D isotropic harmonic oscillator presented here is connected with the q-
Laguerre polynomials. In order to see then let us rewrite the eigenfunctions of Hamiltonian (187) in the
form

�n
k(x) = P (k)

n ((q−kx)2)�0
k(x), (194)

where �0
k is the basic state given by formula (188). We additionally assume that q4(q−2a0 − a1)/(1 −

q2)h = 1 and also apply the change of variables y = (q−kx)2. For details how to perform change of
variables for chain of factorized operators see [14]. Then the eigenproblem for this Hamiltonian reduces
to the q-difference equation

q2	k−1(1 + y)P (k)
n (q2y) − (1 + q2	k−1(1 + y))P (k)

n (y) + P (k)
n (q−2y)

= −q2	k−1(1 − qn)yP (k)
n (y). (195)

It is the equation for the q-Laguerre polynomials which are orthogonal with respect to the scalar product
given by the q-integral with the weight function

�k(y) = qky−(1/2)

1 + q
(�0

k)
2(y) = qk(2	k+1)(C0

k )2

(1 + q)(−y; q)∞
y	k−(1/2). (196)
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In the limit q → 1 the case considered in this subsection gives us the radial part of three-dimensional
isotropic harmonic oscillator

Hk = − d2

dx2 + (k − h̃/2)(k − (h̃/2) + 1)

x2 + (a0 − a1)
2

16
x2

− a0 − a1

2

(
k + h̃

2

)
+ 3a0 + a1

4
(197)

with eigenvectors

�0
k(x) = C0

k x(h̃/2)−ke−((a0−a1)/8)x2
, (198)

�n
k(x) =

k∏
i=k−n+1

(
− d

dx
+ a0 − a1

4
x − h̃

2

1

x
+ i

x

)
x(h̃/2)−ke−((a0−a1)/8)x2

for n = 1, . . . , k, (199)

corresponding to the eigenvalues

�n
k = a0 + (a1 − a0)(k − n). (200)
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Appendix A. Derivation of formula (18)

By the definition of the adjoint operator we have

〈Q∗�k|�k〉k = 〈�k|Q�k〉k =
∫ b

a

�k(x)�k(qx)�k(x) dqx

=
∞∑

n=0

(1 − q)qnb�k(q
nb)�k(q

n+1b)�k(q
nb)

−
∞∑

n=0

(1 − q)qna�k(q
na)�k(q

n+1a)�k(q
na)

m=n+1=
∞∑

m=1

(1 − q)qmbq−1�k(q
m−1b)�k(q

mb)�k(q
m−1b)

−
∞∑

m=1

(1 − q)qmaq−1�k(q
m−1a)�k(q

ma)�k(q
m−1a).
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In this sum the expression for m = 0, i.e.,

(1 − q)(b�k(q
−1b)�k(b)�k(b) − a�k(q

−1a)�k(a)�k(a)), (A.1)

does not appear. The functions �k(x) and �k(x) are defined on the set {qnb : n ∈ N ∪ {0}} ∪ {qna : n ∈
N ∪ {0}} and for the other points we shall put these functions equal to zero

(Q−1�)(b) := 0,

(Q−1�)(a) := 0.

From Eq. (11) we obtain for x �= a and x �= b that

〈Q∗�k|�k〉k =
∫ b

a

�k(q
−1x)�k(x)�k(x)

Bk(x)

�k(q
−1x)

q−1 dqx

=
〈
q−1 Bk

Q−1�k

(Q−1�k)|�k

〉
k

. (A.2)

Similarly we have

〈f �k|�k−1〉k−1 =
∫ b

a

f (x)�k(x)�k−1(x)�k−1(x) dqx

=
∫ b

a

�k(x)f (x)�k−1(x)�k(x)�k(x) dqx = 〈�k|f �k�k−1〉k , (A.3)

where we use Eq. (8).
Summarizing we obtain formula (18)

A∗
k = (�q + fk)

∗ = Bk(−�qQ
−1 + fk) − Ak(1 + (1 − q)xf k), (A.4)

where the operator Q−1 is given by

Q−1�(x) =
{

�(q−1x) for x �= a and x �= b,

0 for x = a or x = b.
(A.5)

Appendix B. Derivation of formulas (22)–(24)

The operators of annihilation and creation given by (17), (18) can be rewritten in the form

Ak = �q + fk = − 1

(1 − q)x
Q + �k , (B.1)

A∗
k = Bk(−�qQ

−1 + fk) − Ak(1 + (1 − q)xf k)

= − Bk

(1 − q)x
Q−1 + �k�k , (B.2)
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where the functions �k , �k are defined by (26) and (13). From the conditions (15) and (16) we have that

�k(qx)�k(qx) = dk�k−1(x)�k−1(x),

Bk(x)�k(x) = dkBk−1(x)�k−1(q
−1x),

�k(x)�2
k(x) − dk�k−1(x)�2

k−1(x) = dkak−1 − ak + q2dkBk−1(x) − Bk(qx)

(1 − q)2qx2
. (B.3)

The first and second equations of (B.3) are equivalent to

�k(qx)

�k−1(x)
= dk

�k−1(x)

�k(qx)
, (B.4)

�k(qx)

�k−1(x)
= dk

Bk−1(qx)

Bk(qx)
. (B.5)

A simple calculation gives us

�k(x) = Bk(x)

Bk−1(x)
�k−1(q

−1x) = gk−1(x)�k−1(q
−1x), (B.6)

�k(x) = dk

Bk−1(x)

Bk(x)
�k−1(q

−1x) = dk

gk−1(x)
�k−1(q

−1x), (B.7)

where the function gk(x) is given by (25). Substituting (B.6), (B.7) into the third relation in (B.3) we
obtain finally

�k−1(x)�2
k−1(x) − gk−1(qx)

dk

�k−1(qx)�2
k−1(qx)

=
(

dkak−1 − ak + q2dkBk−1(qx) − gk−1(q
2x)Bk−1(q

2x)

(1 − q)2q3x2

)
gk−1(qx)

d2
k

. (B.8)
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