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a b s t r a c t

The antibandwidth problem is to label vertices of a n-vertex graph injectively by
1, 2, 3, . . . n, so that the minimum difference between labels of adjacent vertices is
maximised. The problem is motivated by the obnoxious facility location problem,
radiocolouring, work and game scheduling and is dual to the well known bandwidth
problem. We prove exact results for the antibandwidth of complete k-ary trees, k even,
and estimate the parameter for odd k up to the second order term. This extends previous
results for complete binary trees.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The antibandwidth problem consists of labelling vertices of an n-vertex graph G = (V , E) injectively by 1, 2, 3, . . . , n, so
that theminimumdifference between labels of adjacent vertices is maximised. The correspondingmaxmin value is denoted
by ab(G). This problem is the dual one of the classical bandwidth problem [3]. It is naturally motivated by obnoxious facility
location problems [1], radiocolouring [5] and work and game scheduling tasks [7]. It also belongs to the broad family of
graph labelling problems [4]. In the literature it is known under different names: separation number [7], dual bandwidth [8]
and antibandwidth [11].
The antibandwidth problem is NP-hard [7]. So far it is known to be polynomially solvable for 3 classes of graphs: the

complements of interval, arborescent comparability and threshold graphs [2,6]. Known results include simple relations of
the antibandwidth invariant to the minimum, maximum degree, chromatic index and powers of hamiltonian paths in the
complement graph [7–9]. Exact results and tight bounds are known for paths, cycles, special trees, meshes, hypercubes [8,
9,11,12]. The class of n-vertex forests with ab(F) = bn/2c is characterized in [9], which for complete binary trees gives a
value of (n− 1)/2. The same result for complete binary trees was also independently proved in [12].
In our paper, we prove that the antibandwidth of the n-vertex complete k-ary tree, for k ≥ 4 even, is (n− k+ 1)/2. For

odd k, we show tight bounds up to the second order term. In particular, the antibandwidth of the n-vertex complete ternary
tree of height h is n/2−Θ(h). For h = 2 and odd k the antibandwidth equals (k2 + 1)/2.

2. Basic notions

Let T (k, n) be the n-vertex, complete k-ary tree. Note that n = 1 + k + k2 + · · · + kh = (kh+1 − 1)/(k − 1), where h
is the height of the tree. Divide vertices of the tree into h + 1 levels according to their distances from the root, which is on
level 1. Let d(v) be the degree of a vertex v. Of course d(v) can be either 1 (if v is a leaf), or k (if v is the root) or k+ 1 (if v is
an internal vertex).
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For a nonempty graph G = (V , E), let f be a one-to-one labelling f : V → {1, 2, 3, . . . |V |}. Define the antibandwidth of
G according to f as

ab(G, f ) = min
uv∈E
|f (u)− f (v)|.

The antibandwidth of G is defined as

ab(G) = max
f
ab(G, f ).

It is useful to imagine the antibandwidth problem as a linear layout problem. The vertices are mapped into integer points
{1, . . . , |V |} on a line such that the minimal distance of adjacent vertices is maximised.
We say that a set of vertices U in a graph G = (V , E) is a vertex r-bisector if removing U the remaining vertices can be

partitioned into disjoint sets V1, V2, s.t. |V1|, |V2| ≤ r and every path between V1 and V2 contains a vertex from U .
Similarly, we say that a set of edges F in a graph G = (V , E) is an edge dn/2e-bisector if removing F the vertices are

partitioned into disjoint sets V1, V2, s.t. |V1|, |V2| ≤ dn/2e and every edge between V1 and V2 belongs to F .

3. Even k case

In this section we will provide the exact value of the antibandwidth of a complete k-ary tree, where k is even.

Theorem 1. For even k ≥ 4,

ab(T (k, n)) =
n+ 1− k
2

.

Proof. Lower bound. We prove the lower bound by providing a labelling.
Split the set {1, 2, . . . , n}, where n = 1+ k+ k2 + · · · + kh into segments of consecutive integers. Listing the segments

consecutively as their elements increase, we take

L1, Lh−1, Lh−3, . . . , L4, L2, L3, L5, . . . , Lh−2, Lh,M,
Rh, Rh−2, . . . , R5, R3, R2, R4, . . . , Rh−3, Rh−1R1

for h odd, and

L1, Lh−1, Lh−3, . . . , L5, L3, L2, L4, . . . , Lh−2, Lh,M,
Rh, Rh−2, . . . , R4, R2, R3, R5, . . . , Rh−3, Rh−1, R1

for even h, whereM contains one element and both Li and Ri contain ki/2 elements for i = 1, 2, . . . , h.
For example, with k = 4 and h = 4, we get segments L1, L3, L2, L4,M, R4, R2, R3, R1 that are of cardinalities

2, 32, 8, 128, 1, 8, 32, 2 respectively. Explicitly, the segments are

{1, 2}, {3, . . . , 34}, {35, . . . , 42}, {43, . . . , 170}, {171}
{172, . . . , 299}, {300, . . . , 307}, {308, . . . , 339}, {340, 341}.

Label the root with the elementM . Label the nodes of the second level with the elements of L1 followed by the elements
of R1 consecutively. Label the nodes of the third level with the elements of R2 followed by the elements of L2, and so on. In
general, if i is odd to label the nodes at level i+ 1 use the elements of Li followed by the elemnts of Ri, and if i is even use the
elements of Ri followed by the elements of Li.
In our example, the root is labeled with 171, the nodes at the second level are labeled consecutively with

1, 2, 340, 341, at the third with 300, . . . , 307, 35, . . . , 42, at the fourth with 3, . . . , 34, 308, . . . , 339 and at the fifth with
172, . . . , 299, 43, . . . , 170.
To show that this labelling works in general we have to examine the differences between labels of vertices in

neighbouring levels. The most straightforward is to determine the minimal difference between the label of the rootM and
labels from the sets L1, R1. This is, clearly, equal to n−k+12 . Moreover, we need to prove the following four cases for h odd:

1. for even i, min{Ri} −min{Li−1} ≥ n−k+1
2

2. for even i, max{Ri−1} −max{Li} ≥ n−k+1
2

3. for odd i, min{Ri} −min{Li−1} ≥ n−k+1
2

4. for odd i, max{Ri−1} −max{Li−1} ≥ n−k+1
2 ,

where min(max){Ri},min(max){Li} stand for the minimal (maximal) label from the set Ri, Li respectively. Note that the
same four cases have to be examined for h even. These proofs are rather technical, so we show only one case in detail, the
rest of them follow in the same way.
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Assume i even, h odd. We examine the case (i). According to labeling algorithm we have

min{Ri} = |L1| + |Lh−1| + |Lh−3| + · · · + |L4| + |L2| + |L3| + |L5| + · · ·
+ |Lh−2| + |Lh| + |M| + |Rh| + |Rh−2| + · · · + |R5| + |R3| + |R2|
+ |R4| + · · · + |Ri−2| + 1

min{Li} = |L1| + |Lh−1| + |Lh−3| + · · · + |L4| + |L2| + |L3| + |L5| + · · · + |Li−3| + 1.

Then the difference

min{Ri} −min{Li} = |Li−1| + |Li+1| + · · · + |Lh−2| + |Lh| + |M|
+ |Rh| + |Rh−2| + · · · + |R5| + |R3| + |R2| + |R4| + · · · + |Ri−2|.

After some algebraic manipulations and using the fact that |Li| = |Ri|we have

min{Ri} −min{Li} = |M| + |R2| + |R3| + |R4| + · · · + |Ri−2| + 2(|Ri−1| + |Ri+1| + · · · + |Rh|).

Now, using |Ri| = ki
2 we get

min{Ri} −min{Li} = 1+
k2 + k3 + · · · + ki−1

2
+ (ki−1 + ki+1 + · · · + kh).

This term has to be greater or equal to n−k+12 :

1+
k2 + k3 + · · · + ki−1

2
+ (ki−1 + ki+1 + · · · + kh) ≥

n− k+ 1
2

.

Note that n = 1+ k+ k2 + · · · + kh, and we finally get

ki−1 + ki+1 + · · · + kh ≥ ki + ki+2 + · · · + kh−1.

Since all terms are positive and there is one term more on the left side we conclude that this inequality is true for all
i = 1, 2, . . . , h.
Upper Bound. We proceed by contradiction, so let us assume that

ab(T (k, n)) ≥
n+ 1− k
2

+ 1.

Let f : VT → {1, 2, . . . , n} be a bijective labelling of the vertices of T (k, n). Then, two cases can arise:
1. There exists a vertex v with neighbours u and w, such that f (u) < f (v) < f (w). Hence d(v) ≥ k. Then, we can define
two integer values l and r = d(v) − l, both ≥ 1 such that u1, u2, . . . , ul and w1, w2, . . . , wr are neighbours of v and
f (u1) < f (u2) < · · · < f (ul) < f (v) < f (w1) < f (w2) < · · · < f (wr)
It follows that f (w1)− f (ul) ≤ n− 1− (l− 1)− (r − 1) ≤ n+ 1− k since l+ r ≥ k.
Hence min{f (v)− f (ul), f (w1)− f (v)} ≤ n+1−k

2 , a contradiction.
2. For every v with neighbours u1, u2, . . . , ud(v) either f (ui) < f (v), for all i = 1, 2, . . . , d(v) or f (ui) > f (v), for all
i = 1, 2, . . . , d(v). Let I be the interval [(n+1− k)/2, (n+1+ k)/2] and let us focus on the vertices with degree strictly
greater than 1.
(a) Assume there exists v, with d(v) > 1, s.t. f (v) ∈ I . W.l.o.g. assume that f (v) ≤ (n+ 1)/2.

If for all neighbours u1, u2, . . . , ud(v) of v it holds f (u1) < f (u2) < · · · < f (uj) < f (v), then

f (v)− f (uj) ≤
n+ 1
2
− 1− (j− 1) ≤

n+ 1− k
2

,

a contradiction.
If, on the contrary, for all neighbours u1, u2, . . . , ud(v) of v, it holds f (v) < f (u1) < f (u2) < · · · < f (uj) then

f (u1)− f (v) ≤ n−
n+ 1
2
+
k
2
− (j− 1) ≤

n+ 1− k
2

,

again a contradiction.
(b) Assume that for all v with d(v) > 1, it holds f (v) 6∈ I . Consider the root r . As f (r) 6∈ I , w.l.o.g. assume that
f (r) ≤ n+1−k

2 −1. Then for all verticesw on level 2 we have f (w) ≥
n+1−k
2 +1. Similarly, for verticesw on level 3 we

have f (w) ≤ n+1−k
2 − 1, etc., until we reach the vertices on level h. Depending on the parity of hwe have two cases.

First, assume that for all vertices p on level hwe have f (p) ≥ n+1+k
2 + 1.

As kh ≥ n−1+k
2 , at least one leafw satisfies (note that leafs are on level h+ 1):

f (w) ≥
n− 1+ k
2

.

Clearly, for the parent p ofw: f (w) < f (p). Hence

f (p)− f (w) ≤ n−
n− 1+ k
2

=
n+ 1− k
2

,

a contradiction.
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Second, assume that for all vertices p on level hwe have f (p) ≤ n+1−k
2 −1. Again, as in previous case, we have the

following reasoning. As kh ≥ n−1+k
2 , at least one leaf (in the level h+ 1)w satisfies:

f (w) ≥
n− 1+ k
2

.

Clearly, in this case for the parent p ofw: f (p) < f (w). Hence

f (w)− f (p) ≤
n− 1+ k
2

−
n+ 1− k
2

= k− 1
again, a contradiction. �

4. Odd k case

In this section we provide upper and lower bounds for the antibandwidth that differ in a lower order term, in the case k
odd. Unfortunately, in this case, the symmetric construction exploited in the even case cannot be applied, so we will use a
completely different technique.

Theorem 2. For odd k ≥ 3 and h ≥ 3

ab(T (k, n)) ≤
n
2
−max

{
k
2
,
h
8
− o(h)

}
.

Proof. The upper bound of the form (n− k)/2 can be obtained in a similar way as for the k even case. For the second upper
bound assume that h is odd. The even h case can be proven similarly. Let S be a smallest set of vertices after whose removal
the vertices of the resulting forest can be divided into independent sets X and Y , s.t. |X |, |Y | ≤ n/2. We claim that

ab(T (k, n)) ≤
n− |S|
2

.

To prove this, consider an optimal layout. Removing the last n−2ab(T (k, n)) verticeswe get 2 independent sets: the first one
is the set onpositions 1, 2, 3, . . . , ab(T (k, n)) and the secondone is the set on thepositions ab(T (k, n))+1, . . . , 2ab(T (k, n)).
Note that there are possible edges between the two sets only, otherwise we get an edge of length smaller than ab(T (k, n)).
As ab(T (k, n)) ≤ n/2 we have

|S| ≤ n− 2ab(T (k, n)),

which proves the claim.
In what follows we prove that |S| ≥ h/4 − o(h).We need some new notations. Let Li, for i = 1, 2, 3, . . . , h + 1 denote

the set of vertices of the i-th level of the tree, while L1 contains the root. Set xi = |Li ∩X |, yi = |Li ∩ Y |, si = |Li ∩ S|. Observe
that, for i ≥ 2, as X , Y and S are defined, and in view of the structure of a complete k-ary tree, we have that

k(xi−1 + yi−1 + si−1) = xi + yi + si. (1)

Furthermore, the properties of X , Y and S imply that the children of vertices in Li−1 ∩ X must be in Li ∩ (S ∪ Y ), hence
yi+ si ≥ kxi−1. By (1), this is equivalent to kyi−1+ ksi−1 ≥ xi. Repeating this argument for Li−1 ∩ Y we derive the following:

xi − ksi−1 ≤ kyi−1 ≤ xi + si (2)
yi − ksi−1 ≤ kxi−1 ≤ yi + si. (3)

Now we show that S is a vertex (n/2+ 7|S|/2)-bisector. It is easy to see that the sets

V1 = (∪even i(Li ∩ X)) ∪ (∪odd i(Li ∩ Y )), V2 = (∪odd i(Li ∩ X)) ∪ (∪even i(Li ∩ Y ))

are distinct and any path between them contains a vertex from S. Hence S is a vertex r-bisector. Let us estimate r .

|V1| =
∑
even i

xi +
∑
odd i

yi ≤
∑
even i

xi +
1
k

∑
even i

(xi + si) ≤
k+ 1
k

∑
even i

xi +
1
k
|S|. (4)

To estimate the last sum we need estimations for every xi, for even i. From the left hand side of inequality (3) we have
h+1∑
i=2

(yi − ksi−1) ≤ k
h+1∑
i=2

xi−1

|Y | − y1 − k|S| ≤ k(|X | − xh+1)
n− |X | − |S| − y1 − k|S| ≤ k(|X | − xh+1)

kxh+1 ≤ (k+ 1)|X | − n+ (k+ 1)|S| + 1 ≤
(k+ 1)n
2

− n+ (k+ 2)|S|

xh+1 ≤
k− 1
2k
n+

k+ 2
k
|S|. (5)
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Combining right hand sides of inequalities (2) and (3) we have:

xi−2 ≤
1
k
(yi−1 + si−1) ≤

1
k

(
1
k
(xi + si)+ si−1

)
=
1
k2
(xi + si + ksi−1).

Iterating this inequality backwards, starting with i = h+ 1 we get for even i ≥ 2

xi ≤
1

kh−i+1

(
xh+1 +

h+1∑
j=i+1

kh+1−jsj

)
.

Using this estimation we compute

h+1∑
even i≥2

xi ≤
h+1∑

even i≥2

xh+1
kh−i+1

+

h+1∑
even i≥2

h+1∑
j=i+1

sj
ki−j

< xh+1
h−1∑

even t≥0

1
kt
+

h+1∑
j=3

(
1
k
+
1
k3
+ · · · +

1
kh−2

)
sj

< xh+1
∞∑

even t≥0

1
kt
+

h+1∑
j=3

k
k2 − 1

sj

<
k2

k2 − 1
xh+1 +

k
k2 − 1

|S|.

Thus

h+1∑
even i≥2

xi <
k2

k2 − 1
xh+1 +

k
k2 − 1

|S|. (6)

Substituting (6) into (4) and using (5) we obtain

|V1| ≤
k
k− 1

xh+1 +
2
k− 1

|S| ≤
k
k− 1

(
k− 1
2k
n+

k+ 2
k
|S|
)
+

2
k− 1

|S| ≤
n
2
+
k+ 4
k− 1

|S|

≤
n
2
+
7
2
|S|.

Repeating the same calculations for |V2|we get the same bound, hence concluding that S is a vertex (n/2+7|S|/2)-bisector.
Assume |V1| ≤ |V2|. Let |V2| = n/2 + p. By deleting a suitable set of at most logk p + 1 vertices we can separate p vertices
from V2 and add them to V1. To see this, observe that p can be expressed in the form

p =
z∑
i=1

αi
ki − 1
k− 1

,

where 0 ≤ αi ≤ k are integers, and z is the smallest number s.t. (kz+1 − 1)/(k− 1) > p, i.e., z ≤ logk p+ 1. And note that
by removing a suitable vertex from V2 we get k complete subtrees of size (kj − 1)/(k− 1), where j ≤ z.
Thus we get a vertex n/2-bisector. Its size is

|S| + logk p+ 1 ≤ |S| + logk
7
2
|S| + 1.

Further, removing all edges incident to the vertices of the vertex n/2-bisector and distributing the isolated vertices among
the current sets V1 and V2 in such a way that neither of them contains more than n/2 vertices we get an edge n/2-bisector
of the size at most

(k+ 1)
(
|S| + logk

7
2
|S| + 1

)
.

It is known [10] that the size of the smallest edge dn/2e-bisector of the complete k-ary n-vertex tree of height h is at least

k− 1
2

(h− logk h− 1).

Thus we have

(k+ 1)
(
|S| + logk

7
2
|S| + 1

)
≥
k− 1
2

(h− logk h− 1).
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Hence

|S| ≥
k− 1
2(k+ 1)

(h− logk h− 1)− logk
7
2
|S| − 1.

As |S| ≤ h, this yields

|S| ≥
k− 1
2(k+ 1)

h− o(h) ≥
h
4
− o(h). �

In the following paragraphs, for the sake of completeness, we shortly repeat the algorithm byMiller and Pritikin [9]. This
algorithm provides reasonably good layout for forests and we use its slight modification in the lower bound construction in
the next theorem.
For a bipartite graph B with a specified bipartition M,N with |M| ≤ |N|, we refer to the minority MIN(B) = |M| and

majority MAJ(B) = |N| of B and refer toM and N as being the minority and majority sides, respectively.
Given any bipartition X, Y of a forest with |X | ≤ |Y |, there always exists a vertex y ∈ Y of degree 0 or 1 since the average

degree of the majority side vertices is at most (|X | + |Y | − 1)/|Y |, which is less than two.
Let a forest F1 have minority side M1 and majority side N1. For each i ∈ [1,MAJ(F1)], recursively define yi, xi,Mi,Ni as

follows. Let yi ∈ Ni be a vertex of degree 0 or 1 in Fi. If yi has degree 1 in Fi choose xi as its sole neighbour. If Mi is empty,
choose xi = yi. In any other case, choose xi to be any element ofMi. Let Fi+1 = Fi − xi − yi,Mi+1 = Mi − xi, Ni+1 = Ni − yi.
The resulting layout is obtained by the following labeling. Assign f (xi) = i for each i ∈ [1,MIN(F1)] and f (yi) = MIN(F1)+ i
for each i ∈ [1,MAJ(F1)]. This leads to a construction with

ab(F) ≥ MIN(F).

Theorem 3. For odd k ≥ 3 and h ≥ 3

ab(T (k, n)) ≥
n
2
− O(k2h).

Proof. Sketch. We proceed with the following construction.
1. Number the levels of the tree by 1, 2, . . . , h+1. First, delete the root vertex and its adjacent edges. For every level i : i ≥ 2
number the vertices from left to right by integers 1, 2, . . . , ki−1. Then delete the vertex with label b k

i−1

2 c together with
its adjacent edges. Define the set D to consist of deleted vertices. The remaining parts of the tree define the forest F .

2. Divide the vertices of F into two parts X and Y s.t. |Y | − 1 ≤ |X | ≤ |Y |.
3. For every v : v ∈ Y such that v was adjacent to some d ∈ D define the priority to be equal 2. For all neighbours of
every such v define the priority value to be equal 1. The rest of vertices of F obtain priority value 3. The higher priority is
denoted by the lower number, i.e. 1 is higher priority than 2 for example.

4. Use the modified Miller/Pritikin algorithm to get the layout of F with ab(F) ≥ b n−h2 c. The modification of used algorithm
simply follows the priorities of vertices defined in the previous step. If it is not possible to label a vertexw with priority
1 directly, i.e. the vertex w does not have any neighbour from Y of degree 1 or there is no vertex from Y with degree 0,
label one of the leaves from Y of degree 1 and its parent from X and remove them from the forest. This operation creates
k− 1 isolated vertices from Y which can be used for labeling the vertices with priority 1.

5. Place the vertices from set D in the middle of the layout, between the sets X and Y .

The algorithm places the vertices from the sets X, Y ,D in the order X,D, Y . For the final lower bound the distance from
the neighbours of D to D is important. Let Pi be the set of vertices of priority i. Since every deleted vertex except the last one
has (k+ 1) neighbours, approximately half of them belongs to the set Y , i.e. |P2| = (k+ 1)h/2. Every vertex from P2 has k
neighbours from X , i.e. |P1| = (k+ 1)kh/2. To label the vertices of P1 we need |P1| vertices from Y of degree 0. These can be
easily produced from leaves (see step 4 of the algorithm). With a simple analysis we get that the labeling of P1 needs

hk(k+ 1)
2

·
(k+ 1)
k
=
h(k+ 1)2

2
leaves. Labeling of P1 vertices will make all of P2 vertices from Y isolated and therefore they can be used to label the second
half of P2 vertices from X . In resulting layout there will be h(k + 1)2/2P1 vertices, then h(k + 1)/2P2 vertices. Since P2 are
the neighbours of D, then

ab(T (k, n)) ≥ n/2− h(k+ 1)2/2− h(k+ 1)/2 = n/2− O(hk2). �

Combining our methods we are able to prove that:

Theorem 4. For odd k ≥ 3 and h = 2

ab(T (k, n)) =
k2 + 1
2

.



6414 T. Calamoneri et al. / Discrete Mathematics 309 (2009) 6408–6414

Proof. For the upper bound we use the proof of the upper bound from Theorem 1. The only difference is in parity of k. The
value from the claim of this theorem is

k2 + 1
2
=
k2 + k+ 1− k

2
=
n− k
2

.

The proof of the upper bound in Theorem 1 is, in fact, not based on the parity of k. Therefore for h = 2

ab(T (k, n)) ≤
n− k+ 1
2

which, for odd k, and h = 2, is the same as

ab(T (k, n)) ≤
n− k
2
=
k2 + 1
2

.

In the lower bound construction the root obtains the label n+12 . The second level is labelled from left to right with labels

1, 2, . . . ,
k+ 1
2

, n−
k− 1
2
+ 1, . . . , n

and the third level obtains labels (from left to right):

k+ 1
2
+ k
k− 1
2
+ 1, . . . ,

n− 1
2

,
n+ 1
2
+ 1, . . . , n−

k− 1
2

,
k+ 1
2
+ 1, . . . ,

k+ 1
2
+
k− 1
2
k.

Checking the minimal differencees between neighbouring vertices we get the claim. �
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