Journal of Pure and Applied Algebra 87 (1993) 237-240 North-Holland 237

A remark on branched cyclic covers

Jonathan A. Hillman

School of Mathematics, University of Sydney, Sydney, NSW 2006, Australia

Communicated by J.D. Stasheff Received 1 March 1987

Abstract

Hillman, J.A., A remark on branched cyclic covers, Journal of Pure and Applied Algebra 87 (1993) 237-240.

We give a simple proof of a lemma of Dellomo, which he used to calculate the inverse limit of the first homology of the branched cyclic covers of the 3-sphere, branched over a knot, and we show that the inverse limit of the higher homology is trivial.

In [3] Dellomo gives a formula for

$$\check{H}_1(\hat{\Sigma}) = \lim H_1(\Sigma_n; \mathbb{Z}) ,$$

the inverse limit of the first homology of the branched cyclic covers of S^3 , branched over a knot. (The index set is \mathbb{N} , ordered by divisibility.) A key step in his argument is the lemma in [3, Section 4], which establishes a stability result for the homology with coefficients $\mathbb{Z}/p^k\mathbb{Z}$ of such branched cyclic covers. We shall give an alternative, simpler proof of this proposition, and show that the higher homology of the inverse limit is trivial.

Let $k: S^1 \to S^3$ be a tame knot, with exterior X and group $G = \pi_1(X)$. Let X' be the infinite cyclic covering space of X. A transverse orientation for the knot determines an isomorphism of the covering group G/G' onto \mathbb{Z} , and hence we may view $M = H_1(X'; \mathbb{Z})$ as a module over the ring $\Lambda = \mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[t, t^{-1}]$. This module is \mathbb{Z} -torsion free and (hence) has a short free resolution over Λ , and multiplication by t - 1 is an automorphism [4, Chapter IV].

Let Σ_n be the *n*-fold branched cyclic covering of S^3 , branched over *k*. Then $H_1(\Sigma_n; \mathbb{Z}) \approx M/(t^n - 1)M$, and multiplication by *t* gives the action of a generator of the covering group. (If *R* is any other coefficient ring, we also have

0022-4049/93/\$06.00 (C) 1993 - Elsevier Science Publishers B.V. All rights reserved

Correspondence to: J.A. Hillman, School of Mathematics, University of Sydney, Sydney, NSW 2006, Australia.

 $H_1(\Sigma_n; R) \approx M \otimes R/(t^n - 1)M \otimes R$.) Moreover, the map induced by the covering projection $\Sigma_{mn} \rightarrow \Sigma_n$ in the canonical quotient map (cf. [1, Chapter 8] or [4, Chapter VIII]).

Let p be a prime and let d_p be the dimension of M/pM as a vector space over the prime field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Then we shall prove the following:

Lemma (Dellomo [3]). For each exponent $k \ge 1$ there is an $n_k \ge 1$ such that for all $m \ge 1$,

$$H_1(\Sigma_{mn_k}; \mathbb{Z}/p^k\mathbb{Z}) \approx H_1(\Sigma_{n_k}; \mathbb{Z}/p^k\mathbb{Z}) \approx (\mathbb{Z}/p^k\mathbb{Z})^{d_p}.$$

Proof. Let $0 \to \Lambda^q \xrightarrow{P} \Lambda^q \to M \to 0$ be a short free resolution of *M* over *A*. Then the annihilator ideal of M is principal, generated by $\alpha = \Delta_0(M)/\Delta_1(M)$, where $\Delta_0(M) = \det P$ and $\Delta_1(M)$ is the highest common factor of the $(a-1) \times (a-1)$ subdeterminants of P [4, p. 31]. Let $\pi: \Lambda \to \Lambda/p\Lambda = \mathbb{F}_p[t, t^{-1}]$ be the homomorphism which reduces coefficients modulo (p). Then $\pi(\Delta_0(M)) \neq 0$, since $\Delta_0(M)(1) = \pm 1$ [4, p. 42]. After multiplying $\pi(\Delta_0(M))$ by a power of t if necessary, we may assume that it is a polynomial with nonzero constant term; the dimension of M/pM over \mathbb{F}_p is then the degree of $\pi(\Delta_0(M))$. Since $\pi(\det P) \neq 0$ we obtain a short free resolution for M/pM over Λ/pA by reducing the entries of P modulo (p), and so the annihilator of M/pM over A/pA is generated by $\pi(\alpha)$. It follows that the annihilator of M/pM as a Λ -module is the ideal (α, p) . We may now show by induction on k that the annihilator of $M/p^k M$ as a A-module is the ideal (α, p^k) . (For suppose θ annihilates $M/p^{k+1}M$. Then $\theta M \subseteq p^{k+1}M \subseteq p^k M$, so by the hypothesis of induction $\theta = \alpha\beta + p^k\gamma$ for some β,γ in Λ . Hence $\gamma p^k M \subseteq p^{k+1} M$. Since M is Z-torsion free, $\gamma M \subseteq pM$ and so $\gamma = \alpha \rho + p\sigma$ for some ρ, σ in Λ . Thus $\theta = \alpha(\beta + \rho p^k) + p^{k+1}\sigma$ is in (α, p^{k+1}) .)

All the roots of $\pi(\alpha)$ (in some algebraic closure of \mathbb{F}_p) are roots of unity; let *h* be the lowest common multiple of their orders. We may assume that $\pi(\alpha)$ is a polynomial of degree $d \leq d_p$ and so the roots of $\pi(\alpha)$ have multiplicity at most *d*, which is less than p^d . Therefore

$$\pi(\alpha)$$
 divides $(t^{h}-1)^{p^{d}} = (t^{hp^{d}}-1)$.

Let $n = hp^d$. Then for any $m \ge 1$ we have that $\pi(\alpha)$ divides $t^{nm} - 1$, and so $t^{nm} - 1$ annihilates M/pM. Therefore,

$$H_1(\Sigma_{nm}; \mathbb{Z}/p\mathbb{Z}) \approx (M/pM)/(t^{nm-1})(M/pM) = M/pM$$
$$\approx (\mathbb{Z}/p\mathbb{Z})^{d_p} \quad \text{for all } m \ge 1 .$$

238

Now since $\pi(\alpha)$ divides $t^n - 1$, there is some λ in Λ such that α divides $t^n - 1 + p\lambda$. Therefore, α also divides $(t^n - 1 + p\lambda)^{p^k}$, which equals $t^{np^k} - 1 + p^k\mu$ for some μ in Λ , at least if p is odd. When p = 2 we observe instead that α divides

$$(t^{n2^{k+1}} - 1)(t^n - 1 + 2\lambda)^{2^{k+1}}$$

= $(t^{n2^{k+1}} - 1)(t^{n2^{k+1}} + 1 + 2^k\mu)$
= $t^{n2^{k+2}} - 1 + 2^k\nu$

for some μ, ν in A. For $k \ge 1$ let $n_k = np^k$ if p is odd, and let $n_k = n2^{k+2}$ if p = 2. Then for any $m \ge 1$ we have that $t^{mn_k} - 1$ is in the ideal (α, p^k) , and so annihilates $M/p^k M$. It follows as before that

$$H_1(\Sigma_{mn_k}; \mathbb{Z}/p^k\mathbb{Z}) \approx M/p^kM$$
 for all $m \ge 1$.

Since *M* is a \mathbb{Z} -torsion free abelian group, $M/p^k M \approx (\mathbb{Z}/p^k \mathbb{Z})^e$ for some exponent *e*, and on reduction modulo (*p*) we find that $e = d_p$. \Box

Using his lemma and a proposition on limits of surjective inverse systems of finitely generated abelian groups, Dellomo proves that

$$\check{H}_{1}(\hat{\Sigma}) = \mathbb{Z}^{2s} \oplus \prod_{p} (\hat{\mathbb{Z}}_{p})^{d_{p}-2s} ,$$

where $2s = \max\{\beta_1(\Sigma_m) \mid m \text{ in } \mathbb{N}\}\$ is the number of roots of the Alexander polynomial of k which are roots of unity, and where $\hat{\mathbb{Z}}_p$ is the additive group of p-adic integers. (For almost all primes p, d_p is the degree of the Alexander polynomial.)

We may also ask what are the higher homology groups

$$\check{H}_i(\hat{\Sigma}) = \lim H_i(\Sigma_n; \mathbb{Z})$$

for i = 2,3. Since $H_3(\Sigma_n; \mathbb{Z}) \approx \mathbb{Z}$ and the map from Σ_{mm} to Σ_n has degree m,

$$\check{H}_3(\hat{\Sigma}) = \lim \left(\mathbb{Z} \xrightarrow{m} \mathbb{Z} \right) = 0$$

In fact, $\check{H}_2(\hat{\Sigma})$ is also 0. For let X_n be the *n*-fold (unbranched) cyclic cover of X. Then the inclusion of X_n into $\Sigma_n = X_n \cup D^2 \times S^1$ induces an isomorphism from $H_2(X_n; \mathbb{Z})$ to $H_2(\Sigma_n; \mathbb{Z})$, by excision. From the Wang sequence for the projection of X' onto X_n we see that $H_2(X_n; \mathbb{Z})$ may be identified with $K_n = \ker(t^n - 1: M \to M)$, and the map induced by the projection of X_{mm} onto X_n is multiplication by $(t^{mn} - 1)/(t^n - 1)$. Since M is a noetherian Λ -module the increasing sequence of submodules $K_{n!}$ stabilizes. Hence there is an N such that $K_{mN} = K_N$ for all $m \ge 1$. Moreover, K_N is a finitely generated \mathbb{Z} -torsion free Λ -module which is annihilated by $t^N - 1$, and so is a finitely generated free abelian group. The map from K_{mN} to K_N is given by multiplication by

$$(t^{mN} - 1)/(t^N - 1) = \sum_{0 \le i < m} t^{iN} = m$$

since t^N acts as 1 on K_{mN} . Since the subset $\{mN \mid m \ge 1\}$ is cofinal in \mathbb{N} it follows that

$$\check{H}_2(\hat{\Sigma}) = \varprojlim_m \{K_N \xrightarrow{m} K_N\} = 0.$$

Remark. Similar calculations apply to the homology of branched cyclic covers of simple higher-dimensional knots.

Acknowledgment

This note was written at the University of Durham, with the support of the SERC.

References

- [1] G. Burde and H. Zieschang, Knots (Walter de Gruyter, Berlin, 1985).
- [2] R.C. Cowsik and G.A. Swarup, A remark on infinite cyclic covers, J. Pure Appl. Algebra 11 (1977) 131-138.
- [3] M.R. Dellomo, On the inverse limit of the branched cyclic covers associated with a knot, J. Pure Appl. Algebra 40 (1986) 15-26.
- [4] J.A. Hillman, Alexander Ideals of Links, Lecture Notes in Mathematics, Vol. 895 (Springer, Berlin, 1981).