A remark on branched cyclic covers

Jonathan A. Hillman
School of Mathematics, University of Sydney, Sydney. NSW 2006, Australia
Communicated by J.D. Stasheff
Received 1 March 1987

Abstract

Hillman, J. A., A remark on branched cyclic covers, Journal of Pure and Applied Aigebra 87 (1993) 237-240.

We give a simple proof of a lemma of Dellomo, which he used to calculate the inverse limit of the first homology of the branched cyclic covers of the 3 -sphere, branched over a knot, and we show that the inverse limit of the higher homology is trivial.

In [3] Dellomo gives a formula for

$$
\check{H}_{1}(\hat{\Sigma})=\lim _{\leftrightarrows} H_{1}\left(\Sigma_{n} ; \mathbb{Z}\right),
$$

the inverse limit of the first homology of the branched cyclic covers of S^{3}, branched over a knot. (The index set is \mathbb{N}, ordered by divisibility.) A key step in his argument is the lemma in [3, Section 4], which establishes a stability result for the homology with coefficients $\mathbb{Z} / p^{k} \mathbb{Z}$ of such branched cyclic covers. We shall give an alternative, simpler proof of this proposition, and show that the higher homology of the inverse limit is trivial.

Let $k: S^{1} \rightarrow S^{3}$ be a tame knot, with exterior X and group $G=\pi_{1}(X)$. Let X^{\prime} be the infinite cyclic covering space of X. A transverse orientation for the knot determines an isomorphism of the covering group G / G^{\prime} onto \mathbb{Z}, and hence we may view $M=H_{1}\left(X^{\prime} ; \mathbb{Z}\right)$ as a module over the ring $A=\mathbb{Z}[\mathbb{Z}]=\mathbb{Z}\left[t, t^{-1}\right]$. This module is \mathbb{Z}-torsion free and (hence) has a short free resolution over A, and multiplication by $t-1$ is an automorphism [4, Chapter IV].

Let Σ_{n} be the n-fold branched cyclic covering of S^{3}, branched over k. Then $H_{1}\left(\Sigma_{n} ; \mathbb{Z}\right) \approx M /\left(t^{n}-1\right) M$, and multiplication by t gives the action of a generator of the covering group. (If R is any other coefficient ring, we also have

Correspondence to: J.A. Hillman, School of Mathematics, University of Sydney, Sydney, NSW 2006, Australia.
$H_{1}\left(\Sigma_{n} ; R\right) \approx M \otimes R /\left(t^{n}-1\right) M \otimes R$.) Moreover, the map induced by the covering projection $\Sigma_{m n} \rightarrow \Sigma_{n}$ in the canonical quotient map (cf. [1, Chapter 8] or [4, Chapter VIII]).
Let p be a prime and let d_{p} be the dimension of $M / p M$ as a vector space over the prime field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Then we shall prove the following:

Lemma (Dellomo [3]). For each exponent $k \geqq 1$ there is an $n_{k} \geq 1$ such that for all $m \geq 1$,

$$
H_{1}\left(\Sigma_{m n_{n}} ; \mathbb{Z} / p^{k} \mathbb{Z}\right) \approx H_{1}\left(\Sigma_{n_{k}} ; \mathbb{Z} / p^{k} \mathbb{Z}\right) \approx\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{d_{p}} .
$$

Proof. Let $0 \rightarrow \Lambda^{q} \xrightarrow{P} \Lambda^{q} \rightarrow M \rightarrow 0$ be a short free resolution of M over Λ. Then the annihilator ideal of M is principal, generated by $\alpha-\Delta_{0}(M) / \Delta_{1}(M)$, where $\Delta_{0}(M)=\operatorname{det} P$ and $\Delta_{1}(M)$ is the highest common factor of the $(a-1) \times(a-1)$ subdeterminants of $P[4, \mathrm{p} .31]$. Let $\pi: \Lambda \rightarrow \Lambda / p \Lambda-\mathbb{F}_{p}\left[t, t^{-1}\right]$ be the homomorphism which reduces coefficients modulo (p). Then $\pi\left(\Delta_{0}(M)\right) \neq 0$, since $\Delta_{0}(M)(1)= \pm 1[4, \mathrm{p} .42]$. After multiplying $\pi\left(\Delta_{0}(M)\right)$ by a power of t if necessary, we may assume that it is a polynomial with nonzero constant term; the dimension of $M / p M$ over \mathbb{F}_{p} is then the degree of $\pi\left(\Delta_{0}(M)\right)$. Since $\pi(\operatorname{det} P) \neq 0$ we obtain a short free resolution for $M / p M$ over $\Lambda / p \Lambda$ by reducing the entries of P modulo (p), and so the annihilator of $M / p M$ over $\Lambda / p \Lambda$ is generated by $\pi(\alpha)$. It follows that the annihilator of $M / p M$ as a Λ-module is the ideal (α, p). We may now show by induction on k that the annihilator of $M / p^{k} M$ as a Λ-module is the ideal $\left(\alpha, p^{k}\right.$). (For suppose θ annihilates $M / p^{k+1} M$. Then $\theta M \subseteq p^{k+1} M \subseteq p^{k} M$, so by the hypothesis of induction $\theta=\alpha \beta+p^{k} \gamma$ for some β, γ in Λ. Hence $\gamma p^{k} M \subseteq p^{k+1} M$. Since M is \mathbb{Z}-torsion free, $\gamma M \subseteq p M$ and so $\gamma=\alpha \rho+p \sigma$ for some ρ, σ in Λ. Thus $\theta=\alpha\left(\beta+\rho p^{k}\right)+p^{k+1} \sigma$ is in $\left(\alpha, p^{k+1}\right)$.)

All the roots of $\pi(\alpha)$ (in some algebraic closure of F_{p}) are roots of unity; let h be the lowest common multiple of their orders. We may assume that $\pi(\alpha)$ is a polynomial of degree $d \leq d_{p}$ and so the roots of $\pi(\alpha)$ have multiplicity at most d, which is less than p^{d}. Therefore

$$
\pi(\alpha) \text { divides }\left(t^{h}-1\right)^{p^{d}}=\left(t^{h p^{d}}-1\right)
$$

Let $n=h p^{d}$. Then for any $m \geq 1$ we have that $\pi(\alpha)$ divides $t^{m m}-1$, and so $t^{n m}-1$ annihilates $M / p M$. Therefore,

$$
\begin{aligned}
H_{1}\left(\Sigma_{n m} ; \mathbb{Z} / p \mathbb{Z}\right) & \approx(M / p M) /\left(t^{n n-1}\right)(M / p M)=M / p M \\
& \approx(\mathbb{Z} / p \mathbb{Z})^{d_{p}} \quad \text { for all } m \geq 1 .
\end{aligned}
$$

Now since $\pi(\alpha)$ divides $t^{n}-1$, there is some λ in Λ such that α divides $t^{\prime \prime}-1+p \lambda$. Therefore, α also divides $\left(t^{n}-1+p \lambda\right)^{p^{k}}$, which equals $t^{n p^{k}}-1+p^{k} \mu$ for some μ in Λ, at least if p is odd. When $p=2$ we observe instead that α divides

$$
\begin{aligned}
& \left(t^{\prime \prime 2^{k+1}}-1\right)\left(t^{n}-1+2 \lambda\right)^{2^{k+1}} \\
& \quad=\left(t^{\prime 2^{k+1}}-1\right)\left(t^{\prime 7^{k+1}}+1+2^{k} \mu\right) \\
& \quad=t^{\prime \prime 2^{k+2}}-1+2^{k} \nu
\end{aligned}
$$

for some μ, ν in Λ. For $k \geq 1$ let $n_{k}=n p^{k}$ if p is odd, and let $n_{k}=n 2^{k+2}$ if $p=2$. Then for any $m \geq 1$ we have that $t^{m n_{k}}-1$ is in the ideal $\left(\alpha, p^{k}\right)$, and so annihilates $M / p^{k} M$. It follows as before that

$$
H_{1}\left(\Sigma_{m n_{k}} ; \mathbb{Z} / p^{k} \mathbb{Z}\right) \approx M / p^{k} M \quad \text { for all } m \geq 1
$$

Since M is a \mathbb{Z}-torsion free abelian group, $M / p^{k} M \approx\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{e}$ for some exponent e, and on reduction modulo (p) we find that $e=d_{p}$.

Using his lemma and a proposition on limits of surjective inverse systems of finitely generated abelian groups, Dellomo proves that

$$
\check{H}_{\mathrm{I}}(\hat{\Sigma})=\mathbb{Z}^{2 s} \oplus \prod_{p}\left(\hat{\mathbb{Z}}_{p}\right)^{d_{p}-2 s}
$$

where $2 s=\max \left\{\beta_{1}\left(\Sigma_{m}\right) \mid m\right.$ in $\left.\mathbb{N}\right\}$ is the number of roots of the Alexander polynomial of k which are roots of unity, and where $\hat{\mathbb{Z}}_{p}$ is the additive group of p-adic integers. (For almost all primes p, d_{p} is the degree of the Alexander polynomial.)

We may also ask what are the higher homology groups

$$
\check{H}_{i}(\hat{\Sigma})=\lim _{\longleftarrow} H_{i}\left(\Sigma_{n} ; \mathbb{Z}\right),
$$

for $i=2,3$. Since $H_{3}\left(\Sigma_{n} ; \mathbb{Z}\right) \approx \mathbb{Z}$ and the map from $\Sigma_{m m}$ to Σ_{n} has degree m,

$$
\check{H}_{3}(\hat{\Sigma})=\lim _{\longleftrightarrow}(\mathbb{Z} \xrightarrow{m} \mathbb{Z})=0
$$

In fact, $\check{H}_{2}(\hat{\Sigma})$ is also 0 . For let X_{n} be the n-fold (unbranched) cyclic cover of X. Then the inclusion of X_{n} into $\Sigma_{n}=X_{n} \cup D^{2} \times S^{1}$ induces an isomorphism from $H_{2}\left(X_{n} ; \mathbb{Z}\right)$ to $H_{2}\left(\Sigma_{n} ; \mathbb{Z}\right)$, by excision. From the Wang sequence for the projection of X^{\prime} onto X_{n} we see that $H_{2}\left(X_{n} ; \mathbb{Z}\right)$ may be identified with $K_{n}=\operatorname{ker}\left(t^{n}-\right.$ $1: M \rightarrow M)$, and the map induced by the projection of $X_{m m}$ onto X_{n} is multiplication by $\left(t^{m n}-1\right) /\left(t^{n}-1\right)$. Since M is a noetherian A-module the increasing sequence of submodules $K_{n!}$ stabilizes. Hence there is an N such that $K_{m N}=K_{N}$ for all $m \geq 1$. Moreover, K_{N} is a finitely generated \mathbb{Z}-torsion free Λ-module which
is annihilated by $t^{N}-1$, and so is a finitely generated free abelian group. The map from $K_{m N}$ to K_{N} is given by multiplication by

$$
\left(t^{m N}-1\right) /\left(t^{N}-1\right)=\sum_{0 \leq i<m} t^{i N}=m
$$

since t^{N} acts as 1 on $K_{m N}$. Since the subset $\{m N \mid m \geq 1\}$ is cofinal in \mathbb{N} it follows that

$$
\check{H}_{2}(\hat{\Sigma})=\underset{m}{\lim _{\leftrightarrows}}\left\{K_{N} \xrightarrow{m} K_{N}\right\}=0 .
$$

Remark. Similar calculations apply to the homology of branched cyclic covers of simple higher-dimensional knots.

Acknowledgment

This note was written at the University of Durham, with the support of the SERC.

References

[1] G. Burde and H. Zieschang, Knots (Walter de Gruyter, Berlin, 1985).
[2] R.C. Cowsik and G.A. Swarup, A remark on infinite cyclic covers, J. Pure Appl. Algebra 11 (1977) 131-138.
[3] M.R. Dellomo, On the inverse limit of the branched cyclic covers associated with a knot, J. Pure Appl. Algebra 40 (1986) 15-26.
[4] J.A. Hillman, Alexamder Ideals of Links, Lecture Notes in Mathematics, Vol. 895 (Springer, Berlin, 1981).

