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Glossary

Class switch recombination: recombination event in mature B lymphocytes

that generates immunoglobulin isotypes with different effector functions,

switching from IgM or IgD to IgG, IgE, or IgA following an immune response.

Complex genomic rearrangements: rearrangements with two or more break-

point junctions.

Flanking microhomology: microhomology adjacent to the junction of a

genomic rearrangement but not overlapping it.

Genomic disorder: pathological phenotype resulting from structural rearran-

gements in genomic loci where architectural features render the genome

unstable.

Junctional microhomology: microhomology occurring directly at a breakpoint

junction of a genomic rearrangement. Given that the sequence is identical in

each of the genomic segments that contribute to the rearrangement, it is not

possible to identify the exact breakpoint, because the microhomology cannot

be assigned to either of the respective segments.

Low processivity polymerase: a polymerase that incorporates a relatively low

number of nucleotides before it dissociates.

Microhomology: two short DNA sequences that are identical.

Nonrecurrent genomic rearrangements: rearrangements with variable break-

points at sites lacking extensive sequence homology.

Recurrent genomic rearrangements: rearrangements of the same genomic

interval occurring repeatedly in multiple unrelated individuals, found at sites of

extensive sequence homology.
Genomic structural variation, which can be defined as
differences in the copy number, orientation, or location
of relatively large DNA segments, is not only crucial in
evolution, but also gives rise to genomic disorders.
Whereas the major mechanisms that generate structural
variation have been well characterised, insights into
additional mechanisms are emerging from the identifi-
cation of short regions of DNA sequence homology, also
known as microhomology, at chromosomal break-
points. In addition, functional studies are elucidating
the characteristics of microhomology-mediated path-
ways, which are mutagenic. Here, we describe the
features and mechanistic models of microhomology-
mediated events, discuss their physiological and patho-
logical significance, and highlight recent advances in this
rapidly evolving field of research.

Microhomology as a mutational signature
Large-scale population studies, such as the ‘1000 genomes
project’, indicate that genomic structural variation is a
major source of genetic diversity among individuals and
populations [1,2]. Structural variation typically involves
genomic segments over 100 bp in length and includes
tandem duplications, insertions, and inversions, which
can generate DNA copy number variants (CNVs), as well
as translocations and complex rearrangements [3]. These
ambitious research efforts have revealed that structural
variants are abundant, and should be considered as impor-
tant as single nucleotide polymorphisms (SNPs) and single
nucleotide variation [1,4].

Germline structural variation can be phenotypically
neutral, having no effect on the organism. However, if it
affects gene expression, structural variation can have a
significant impact on the fitness of an individual [5] by
conferring disease susceptibility, giving rise to human
disorders [6] or leading to traits that can be selected for
if beneficial [5,7]. For example, the copy number of the
human salivary amylase gene, AMY1, is higher in popula-
tions with high starch diets, where the increased amylase
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protein levels are likely to improve the digestion of starchy
foods [8]. In somatic cells, genomic structural variation is
also significant because it is a key mediator of neoplastic
transformation and progression of cancer [9]. Further-
more, somatic structural variation has a normal physiolo-
gical role at immunoglobulin gene loci, where it is essential
for generating antibody diversity [10].

Recent high-resolution sequencing studies of germline
and somatic rearrangement breakpoints have revealed
molecular signatures that enable reconstruction of muta-
tional mechanisms [11–13]. For example, blunt joins, or
small insertions or deletions at the breakpoint junction,
are characteristic of DNA double-strand break (DSB)
repair through direct ligation by nonhomologous end join-
ing (NHEJ), whereas long stretches of sequence homology
at or near the breakpoint can be attributed to homologous
recombination (HR). HR repairs DSBs using template
sequences, and relies on the presence of DNA segments
sharing extremely high similarity or identity.
Replication fork collapse: breakage of the replication fork and detachment of

one arm.

Replication fork stalling: an abnormality arising during DNA replication, where

DNA synthesis at the replication fork pauses. This can arise from low levels of

DNA polymerase or nucleotides, or from the fork encountering a barrier, such

as complex DNA architecture.

Single-ended DSB: a DSB with only one end, which can arise from telomere

erosion, separation of partner strands of a DSB, or when progression of a

replication fork is interrupted.

Structural variation: genomic insertions, duplications, or deletions, which are

collectively termed ‘CNVs’, or translocation or inversion of segments of the

genome.
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Figure 1. Microhomology at breakpoint junctions and flanking regions of simple gene fusions. (A) Junctional microhomology (red) at a KIAA1549–BRAF gene fusion in a

paediatric low-grade astrocytoma. The exact breakpoint in each of the partner genes cannot be determined at a nucleotide level because the microhomology is present in

both segments. (B) Flanking microhomology (red) at a TMPRSS2–ERG gene fusion in prostate cancer. The breakpoint is indicated by the black vertical line. Abbreviations:

BRAF, v-raf murine sarcoma viral oncogene homolog B; ERG, serine 2- v-ets erythroblastosis virus E26 oncogene homolog; TMPRSS2, transmembrane protease. Adapted

from [16] (A) and [18] (B).
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These sequencing studies have also revealed short
regions of DNA sequence homology, called ‘microhomology’
(see Glossary), at certain germline and somatic breakpoint
junctions (e.g., [11,14,15]). Although definitions of break-
point microhomology vary with respect to the length of the
homologous region, it can be defined as a series of nucleo-
tides (<70) that are identical at the junctions of the two
genomic segments that contribute to the rearrangement
(Figure 1A, Figure S1 in the supplementary material
online). Microhomology has also been reported in DNA
sequences that are adjacent to, but do not overlap, break-
point junctions [16–18] (Figure 1B).

There is now evidence for additional repair mechan-
isms, besides the prevalent NHEJ and HR, that result in
structural variation through the use of sequence micro-
homology. Whereas junctional microhomology of 1–4 bp
can be a feature of NHEJ [19], as discussed below, one
of these alternative mechanisms, termed ‘microhomology-
mediated end joining’ (MMEJ), is independent of key
proteins involved in NHEJ (Figure 2) [20,21]. MMEJ is
error prone and frequently produces genomic rearrange-
ments [22]. Further alternative mechanisms, termed ‘fork
stalling and template switching’ (FoSTeS) and ‘microho-
mology-mediated break-induced replication’ (MMBIR),
involve erroneous DNA replication, and template switch-
ing facilitated through annealing of microhomologous
sequences [23,24]. These replicative mechanisms have
been proposed to account for complex rearrangements that
have multiple breakpoint junctions, insertions of DNA
segments mapped to different genomic regions, as well
as breakpoint microhomology, which together form a mole-
cular signature inconsistent with NHEJ and HR. In this
review, we examine the proposed molecular basis and
regulation of these microhomology-mediated DNA repair
mechanisms, and discuss their biological significance.

Microhomology-mediated end joining
DNA DSBs, which can be caused by a variety of agents,
including reactive oxygen species, ionising radiation and
UV light, are important mediators of structural variation
[25]. The major repair mechanisms for DNA DSBs are
NHEJ and HR [25]. NHEJ directly ligates broken DNA
strands and is active throughout the cell cycle, although it
86
predominates during the G0 and G1 phases. This repair
pathway can lead to blunt joins, or small insertions or
deletions at the breakpoint junction (reviewed in [19]). HR
can lead to faithful DNA repair of DSBs during the S and
G2 phases of the cell cycle, when a sister chromatid is
available to serve as a template, but is often mutagenic
during G1, when it relies on alternative homologous
sequences, such as repetitive elements.

More recently, a further DSB repair pathway has been
described that is thought to serve as a back-up repair
process. MMEJ, which is sometimes referred to as an
alternative NHEJ pathway, relies on the recombination
of short stretches of microhomology for repair of DSBs [22].
Although understanding of MMEJ is still incomplete, it is
emerging that this pathway can support DNA repair
throughout the cell cycle [22], and shares elements with
both HR and NHEJ.

MMEJ has been studied most extensively in yeast cells,
where the mechanism was originally characterised,
although mammalian functional orthologues have since
been identified for most proteins (Table 1) [22]. As in
HR, the essential initial step for MMEJ repair in mammals
is digestion of the 50 DNA strand by the Mre11–Rad50–
Nbs1 (MRN) complex in association with retinoblastoma
binding protein 8 (CtIP) to obtain a 30 single-stranded DNA
tail [26–28] (Figure 2). This occurs on each of the DNA
strands beside the break. The exposed microhomologous
sequences on the complementary 30 ends then anneal to
form a complex with gaps that need to be filled and ligated.
The overhanging noncomplementary 30 flaps are then
trimmed by the endonuclease excision repair cross-com-
plementing rodent repair deficiency, complementation
group 4–excision repair cross-complementing rodent
repair deficiency, complementation group 1 (Xpf–Ercc1)
complex, whereas the gaps created on both strands
through resection are filled in by a DNA polymerase, which
has been proposed to be polymerase lambda [29,30]. DNA
ligase I and ligase IIIa/X-ray complementing defective
repair in Chinese hamster cells 1 (Xrcc1) are responsible
for the subsequent joining of the DNA segments [31,32].
Given that MMEJ results in deletions of the DNA regions
flanking the original break, it is an error-prone repair
pathway. The mechanistic model of MMEJ, as it is
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Figure 2. Nonhomologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). (A) NHEJ: (i) formation of a double-

strand break (DSB); (ii) the Ku70/80 heterodimer binds to the break ends; (iii) the DNA-protein kinase (PK) catalytic subunit (DNA-PKcs) interacts with the Ku70/80

heterodimer to form the DNA–PK complex, which mediates end synapsis, as shown in (iv); (v) ligation of the break ends; and (vi) ligation can be preceded by insertion or

deletion of a few nucleotides, leaving a characteristic molecular scar (green). (B) HR: (i) a DSB occurs in the presence of a sister chromatid, shown here in pink. (ii) 50 to 30

resection generates 30 single-stranded overhangs exposing long stretches of nucleotides; (iii) the break ends invade the sister chromatid from both sides and anneal at

homologous sequences, forming two Holliday junctions. Templated synthesis is initiated. The two Holliday junctions can be resolved in two ways by an endonuclease (grey

and black arrows); (iv) Resolution. Alternatively, only one end of the break invades the sister chromatid. The invading strand disengages following templated synthesis and

anneals to the homologous region on the single-strand overhang of its partner molecule (not shown). (C) Proposed mechanistic model of MMEJ: (i) formation of a DSB; (ii)

50 to 30 resection by the Mre11–Rad50–Nbs1 (MRN) complex and retinoblastoma binding protein 8 (CtIP) results in two 30 single-stranded overhangs and exposure of short

stretches of microhomology, shown in red; (iii) Following annealing of the microhomologous sequences, the noncomplementary 30 flaps are trimmed by the endonuclease

complex endonuclease excision repair cross-complementing rodent repair deficiency, complementation group 4–excision repair cross-complementing rodent repair

deficiency, complementation group 1 (XPF–ERCC1) and gaps are filled in by DNA polymerase lambda; (iv) ligation of the phosphate backbones is carried out by Ligase I and

IIIa/X-ray complementing defective repair in Chinese hamster cells 1 (XRCC1).
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currently understood, has arisen from a series of functional
studies. However, it is likely that knowledge of the path-
way will be further refined and that alternative or addi-
tional proteins involved in MMEJ will be identified.

The selection of the MMEJ mechanism to rescue DSB
repair is determined by three interdependent variables: (i)
resection of the DNA ends flanking the breakpoint; (ii)
phase of the cell cycle in which the DSB occurs; and (iii) the
type and relative abundance of regulatory proteins in each
phase of the cell cycle (Figure 3). In G1 phase of the cell
cycle, HR and MMEJ are limited by the lower efficiency of
MRN/CtIP-mediated resection of the DNA broken ends.
This is due to lower levels of CtIP in G1 compared with
other stages of the cell cycle, and to phosphorylated histone
protein H2A histone family, member X (H2AX) recruiting
the mediator of DNA damage checkpoint 1 (MDC1) protein
to chromatin flanking DSBs to inhibit the activity of the
small amount of CtIP that is present [33–35]. The resulting
unresected DSB ends have high affinity for the Ku70/80
complex, which protects the broken DNA ends from nucleo-
lytic degradation and commits the cell to NHEJ repair.

In G2, S, and M phases, DNA end resection is more
efficient due to the higher abundance of CtIP and the
reduced inhibitory effect of H2AX and MDC1 [33–35]. Thus,
NHEJ repair of DSBs during these phases of the cell cycle is
reduced. Following resection of the 50 DNA strand, DSB
repair can then either occur through the error-prone MMEJ,
or through HR. The extent of DNA resection by MRN and
CtIP is sufficient for MMEJ to proceed. However, HR
requires further DNA resection by the helicase Bloom Syn-
drome protein (BLM) and exonuclease Exo1 [36].

Following the repair of a DSB, breakpoint microhomol-
ogy involving a few base pairs cannot be unambiguously
assigned to either NHEJ or MMEJ. However, whereas
MMEJ relies on microhomology, this is not an essential
requirement for NHEJ [19]. Furthermore, experimental
studies have shown that MMEJ is independent of the key
NHEJ factors, including Ku and DNA ligase IV/XRCC4
[20,21], and relies on factors that are not required by
NHEJ, such as the MRN/CtIP complex, which is essential
to obtain two single-stranded 30 overhangs. Further stu-
dies also indicate that MMEJ operates in parallel when
NHEJ is functional [27]. MMEJ is sometimes referred to as
‘alternative NHEJ’ or ‘back-up NHEJ’ and there is some
debate about whether MMEJ should be regarded as an
independent pathway, or should be classified as part of a
more flexible NHEJ, which can function in the absence of
key NHEJ factors, such as Ku or DNA ligase IV [19]. NHEJ
is reported to use no microhomology most commonly,
followed by 1-bp microhomology; in the absence of the
DNA ligase IV complex, the peak length of microhomology
used increases to 2–3 bp [19].
87



Table 1. Orthologous proteins reported to be involved in or inhibit MMEJ

Saccharomyces cerevisiae Homo sapiens Function in MMEJ Involvement in other DNA repair mechanisms

or replication

Refs

Involved in MMEJ

Mre11, Rad50, and Xrs2 Mre11, Rad50,

and Nbs1

50 to 30 resection to expose sequence

homology

HR: as MMEJ [26]

Sae2 CtIP Interacts with Mre11 and Rad50

subunits of the MRN complex to

promote resection

HR: as MMEJ [27,28]

Srs2 No known

orthologue

Promotes MMEJ HR: inhibition of HR by interfering with protein

complexes required for HR (Rad51 presynaptic

filament)

[79]

Rad1 and Rad10 Xpf and Ercc1 Removal of overhanging

noncomplementary 30 flaps through

endonuclease activity

HR: as MMEJ if recombination proceeds through

single-strand annealing

[29]

No known orthologue Parp-1 Facilitation of MMEJ; synapsis activity NHEJ: competition with Ku for DNA ends with

lower affinity binding than Ku; base excision repair

[80–82]

DNA polymerase IV DNA polymerase

lambda

Fill-in synthesis, able to promote the

annealing of microhomology on

single-stranded DNA 30-overhangs

NHEJ: DNA synthesis [30]

No known orthologue DNA polymerase

beta

Fill-in synthesis of DNA ends

containing the (CAG)n triplet repeat

sequence

NHEJ: DNA synthesis [30]

Cdc9 DNA ligase I Ligation DNA replication: ligation of Okazaki fragments [32]

No known orthologue DNA Ligase IIIa

and Xrcc1

Ligation Base excision repair [31,83]

Inhibits MMEJ

Tel1 Atm Inhibition of DNA end resection Recruitment to DSBs; cell cycle delay [24,84]

Ku70 and Ku80 Ku70 and Ku80 Protection of DNA ends from

resection

NHEJ: DSB recognition, binding of broken DNA

double-strand ends, recruitment of proteins

involved in NHEJ; end synapsis

[85]

H2AX H2AX Recruitment of Mdc-1; inhibition of

CtIP activity in G1

Cell cycle-dependent pathway choice [34]

No known orthologue Mdc-1 Inhibition of CtIP activity in G1 Cell cycle-dependent pathway choice [34]

No known orthologue 53BP1 Protection of DNA ends from

resection during CSR

NHEJ: promotion of NHEJ over MMEJ during

CSR through protection of ends from nucleases

[86]

No known orthologue Brca1 Cell cycle-dependent regulation of

CtIP action

Cell cycle-dependent pathway choice [87,88]
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Whereas there is some overlap in proteins required for
DSB repair by MMEJ and HR pathways (Table 1), few
studies have directly addressed the distinction between
these mechanisms. However, HR pathways are generally
thought to rely on longer stretches of homology and, there-
fore, require more extensive resection for exposure of
nucleotides [37]. Moreover, CtIP phosphorylation, which
is essential for association of the protein with the MRN
complex and breast cancer type 1 susceptibility protein 1
(BRCA1) is required for HR, but not MMEJ [38]. The roles
of proteins involved in MMEJ in comparison to HR and
NHEJ are described in Table 1.

Replicative microhomology-mediated mechanisms
Fork stalling and template switching

FoSTeS was the first of two replicative models proposed to
explain the complex rearrangements leading to duplication
of the dosage-sensitive proteolipid protein 1 gene, PLP1, in
Pelizaeus–Merzbacher disease (PMD) [24]. In this model,
the replication fork stalls at a DNA lesion, and replication
is temporarily paused (Figure 4). The lagging strand dis-
engages and invades an active adjacent replication fork
through the annealing of microhomologous sequences.
Synthesis of the lagging strand briefly continues at the
88
invaded fork, before the lagging strand again disengages.
The drifting strand sequentially invades other active repli-
cation forks, and synthesis is restarted at microhomology-
primed sites before eventually resuming at the original
template. Depending on whether the invaded replication
fork is located downstream or upstream in relation to the
original stalled replication fork, the resulting sequence can
include deletions or duplications.

Microhomology-mediated break-induced replication

MMBIR was proposed as a more detailed and testable model
for generating complex rearrangements compared with
FoSTeS [23] (Figure 5). The model is based on the experi-
mentally validated break-induced replication (BIR), which
underlies chromosomal alterations in yeast, where BIR has
been best characterised [39,40]. BIR is Rad51 recombinase
dependent, therefore requiring the annealing of longer
homologous sequences (70–100 bp), whereas MMBIR only
needs short microhomologous regions [23,41,42].

BIR and MMBIR both require a single double-strand
end during replication, which can arise following the col-
lapse of a replication fork (Figure 5) or through the erosion
of telomeres or the separation of two DSB ends [23].
Resection of the 50 strand at the DSB generates a 30
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Figure 3. Double-strand break (DSB) repair pathway choice. (A) Status of breakpoint ends. Blunt ends following a DSB can be repaired by nonhomologous end joining

(NHEJ), microhomology-mediated end joining (MMEJ), or homologous recombination (HR). Resected or modified ends are repaired by MMEJ or HR, because NHEJ is

inhibited. (B) Cell cycle phase. In S and G2 phases, end resection is mediated by the Mre11–Rad50–Nbs1 (MRN) complex in association with retinoblastoma binding protein

8 (CtIP), thus diverting DNA repair to HR. In S phase, DSBs formed following replication fork breakdown are primarily repaired by break-induced replication (BIR), whereas

microhomology-mediated BIR (MMBIR) is used as a back-up mechanism. In G2 phase, DSBs are repaired by HR or, if HR is not available, by NHEJ or MMEJ. In G1, NHEJ is

the preferred method of repair, with HR pathways and MMEJ as back-up mechanisms. (C) Molecular control of MMEJ. Resection by the MRN complex in association with

CtIP is inhibited by ataxia telangiectasia mutated (ATM), histone protein H2A histone family, member X (H2AX), and mediator of DNA damage checkpoint 1 (MDC1). ATM

inhibits the MRN complex, whereas H2AX and MDC1 inhibit CtIP. Ku and 53BP1 inhibit MMEJ by preventing the access of resecting nucleases to DNA break ends.

Review Trends in Genetics March 2014, Vol. 30, No. 3
single-stranded overhang, which can invade a microhomo-
logous region on a different DNA template to establish a
new replication fork and restart synthesis. As in the
FoSTeS model, multiple dissociations and invasions of
new templates can lead to sequence complexity. It has
been suggested that the proposed recurrent template
switching of MMBIR is due to the low processivity of
DNA polymerases at the beginning of the repair process,
a finding previously reported for BIR in yeast [41].

Collapsed replication forks resulting in an unpaired
DSB are usually repaired by BIR. However, use of error-
prone MMBIR can be critical under specific circumstances.
BIR is dependent on Rad51 to form the nucleoprotein
filament, which mediates the homologous DNA pairing
and strand exchange reaction [43]. Rad51 is generally in
short supply, especially in conditions of cellular stress,
such as hypoxia [44]. MMBIR is Rad51 independent,
and Rad52 is suggested to catalyse the annealing reaction
here [23]. In vitro evidence has demonstrated that Rad51
inhibits the activity of Rad52 and, therefore, a reduction in
the amount of Rad51 could induce the use of MMBIR as a
back-up repair mechanism [45].

Microhomology-mediated rearrangements in the
germline
Germline rearrangements, including CNVs, arise from
different mechanisms, including nonallelic homologous
recombination (NAHR), the end-joining mechanisms
NHEJ and MMEJ, the replicative FoSTeS/MMBIR, and
insertions of mobile elements (Table S1 in the supplemen-
tary material online). Where CNVs affect dosage-sensitive
genes, they can give rise to genomic disorders, including
Mendelian diseases, birth defects, and complex traits
[6,46].

CNVs can be divided into two classes: recurrent CNVs,
which occur in a few genomic positions with breakpoints
within low copy repeats (LCRs) that are clustered together
in unrelated individuals, and nonrecurrent CNVs, which are
distributed throughout the genome and have unique break-
points [42]. The origin of recurrent CNVs has been attrib-
uted mainly to NAHR or defective crossing over during
meiosis, when misalignment occurs due to the high degree
of sequence similarity between LCRs [47]. NAHR has been
shown to explain several recurrent rearrangements in both
germline structural variation and cancer [47]. A large popu-
lation study estimated the proportion of germline structural
variation mediated by NAHR to be approximately 22%. [48].
The origin of nonrecurrent CNVs is less clear. Previous
studies suggested NHEJ as the major mechanism creating
nonrecurrent deletions [49–51]. More recently, sequence
analysis has implicated microhomology-mediated mechan-
isms in the formation of numerous nonrecurrent CNVs
[1,11,24,42,48,52–54] (Table S2 in the supplementary mate-
rial online). Following the description of the novel replica-
tion-based microhomology-mediated mechanisms, a re-
evaluation of the previous studies mentioned above [49–
51] concluded that microhomology is present in more than
half of the breakpoint junctions, a signature that is consis-
tent with NHEJ, MMEJ, FoSTeS, or MMBIR [55].

Strikingly, the characterisation of CNVs in unrelated
individuals showed that approximately 70% of deletions
and 89% of insertions exhibited junctional microhomology
[1]. However, the predominance of microhomology could not
be reproduced for other types of chromosomal rearrange-
ment. A recent study analysing the breakpoints of karyoty-
pically balanced translocations and inversions revealed that
microhomology was found in only 31% of the breakpoints
analysed, whereas most rearrangements appear to occur
through NHEJ [56]. These findings indicate that specific
types of genomic rearrangement can differ in aetiology.

In addition to microhomology in genome-wide benign
CNVs, microhomology-mediated replicative mechanisms
have been implicated in specific disease-associated struc-
tural rearrangements. As discussed above, the FoSTeS
89
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Figure 4. Mechanistic model of fork stalling and template switching. (A) The

replication fork stalls at a DNA lesion (grey). (B) The lagging strand disengages,

invades an adjacent active replication fork and anneals to a region with

microhomology (red), which primes DNA synthesis. (C) The lagging strand

disengages once more and invades a further adjacent active replication fork, where

it anneals to another microhomologous region (purple) to restart synthesis. (D)

Eventually, the lagging strand returns to the original replication fork to continue

replication to the end of the chromosome.
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replicative mechanism was first proposed to account for
complex nonrecurrent rearrangements involving PLP1 in
PMD [24]. A FoSTeS/MMBIR mechanism has been pro-
posed for numerous nonrecurrent CNVs associated with
genomic disorders, such as haemophilia A and Cornelia de
Lange Syndrome, as well as in rare pathogenic CNVs
[53,57,58]. Strong support for replicative mechanisms also
comes from experiments where de novo CNVs induced by
low doses of the DNA polymerase inhibitors aphidicolin or
hydroxyurea frequently exhibit microhomology at their
breakpoint junctions [52,54], which occurs in the absence
of Xrcc4-dependent NHEJ [20].

An interesting example of nonrecurrent CNVs where
detailed sequence information provides mechanistic
insights comes from characterisation of the large human
neurexin gene, NRXN1 [6]. Microdeletions within NRXN1
confer susceptibility to a range of neurodevelopmental and
neuropsychiatric disorders, such as autism spectrum dis-
orders, schizophrenia, mental retardation, epilepsy, and
Alzheimer’s disease. Frequent microhomology has been
found at the deletion junctions together with long terminal
90
repeat (LTR) elements and non-B-DNA structures. These
genomic features are likely to convey a complex chromatin
architecture, thereby increasing the risk of DSBs, fork
stalling, and microhomology-mediated template switching
[6,55,59]. Similar architectural features identified at other
rearrangement junctions provide further evidence for the
widespread use of replicative mechanisms (Table S2 in the
supplementary material online).

Increasing evidence suggests that extremely complex
CNVs can arise from a single catastrophic phenomenon.
This event, first described in cancer as chromothripsis, was
thought to involve extensive chromosome shattering
through multiple simultaneous DSBs and reorganisation
of the DNA fragments [60]. Recent studies of de novo rear-
rangements in patients with genomic disorders have indi-
cated that similarly complex patterns can also be observed
in some constitutional rearrangements [56,61,62]. Although
the molecular basis of chromothripsis is still uncertain, it is
being recognised that more than one mechanism might
create these complex rearrangements in the germline.
The mechanisms proposed are ligation of multiple DNA
DSBs by an end-joining mechanism, such as NHEJ
[56,61], or erroneous replication, consistent with the micro-
homology-mediated replicative models of FoSTeS/MMBIR.
The suggestion that chromothripsis has a replicative origin
is based on observations that, alongside the complexity of
rearrangements, some of the junctions have microhomology
and templated insertions, which are inconsistent with an
end-joining mechanism [62].

Gene duplications caused by retrotranspositions consti-
tute an important distinct class of gene copy-number poly-
morphism. The actively mobilising long interspersed
nuclear element 1 (LINE-1) retrotransposon has been
shown to contribute to 19% of the structural variation
identified in the germline [48]. Approximately 17% of
the human genome comprises LINE-1 sequences, which
replicate via RNA intermediates that are reverse tran-
scribed and integrated into new genomic locations [63].
Microhomology identified at insertion breakpoint junctions
suggests that MMEJ mediates LINE-1 insertions [64].

Somatic microhomology-mediated rearrangements
Microhomology-mediated ligation in immune cells

Microhomology-mediated ligation has been identified as a
robust back-up mechanism for class switch recombination
events in the immune system [65]. To generate a variety of
antibodies, two highly specialised recombination events
occur in lymphocytes. For the extensive repertoire of anti-
gen receptors, developing B and T lymphocytes undergo
V(D)J recombination, assembling different combinations of
Variable (V), Diversity (D), and Joining (J) gene segments
[66]. Once an antigen has been recognised, triggering an
immune response, class switch recombination (CSR)
enables mature B lymphocytes to generate immunoglobu-
lin isotypes, switching from IgM or IgD to IgG, IgE, or IgA
through recombination of the constant region of the anti-
body heavy chain [10]. This is a key immunological reaction
because it generates immunoglobulin isotypes with differ-
ent effector functions.

Each immunoglobulin heavy chain gene is preceded
by repetitive DNA sequences termed ‘switch regions’
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end of the chromosome. (B) Complex genomic rearrangement: (i–iv) As in simple MMBIR; (v) the invading strand disengages due to low processivity DNA polymerases; (vi)
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with template switching, the replicated chromatid exhibits a region of complex rearrangements with junctional microhomology.
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(S regions) [10]. Activation-induced deaminase (AID) dea-
minates cytidines to uridines within these S regions to
generate staggered DSBs, which are predominantly
repaired by NHEJ [67,68]. However, experiments in which
NHEJ components, such as Ku70, XRCC4, and Lig4, are
mutated have demonstrated that CSR still remains active
[65,69], albeit at a substantially reduced level, with a reduc-
tion of approximately 80–90% in Lig4-deficient cells com-
pared with wild type cells [70]. In cells with a functional
NHEJ pathway, most junctions are either blunt or have 1–
4 bp microhomology [65]. However, when NHEJ is abol-
ished, no blunt joins are detected and the remaining junc-
tions have longer microhomology [65,70]. Furthermore,
NHEJ-deficient cells have increased CtIP binding to S
regions and microhomologous breakpoint junctions, sug-
gesting that microhomology-mediated repair acts as a
back-up mechanism for CSR when NHEJ is not functional
[27].

Whereas CSR can be rescued in the absence of key
NHEJ components, V(D)J relies almost entirely on NHEJ,
and junctions formed by other mechanisms are rare [71].
Notably, in the absence of NHEJ during both V(D)J recom-
bination and CSR, the use of alternative pathways can lead
to chromosomal translocations and the subsequent devel-
opment of immune malignancies where a significant
proportion of rearrangements exhibit breakpoint microho-
mology [65,72].

Importantly, V(D)J recombination offers a useful model
to examine junctions formed by NHEJ in isolation. It has
been reported that approximately 60% of the junctions
generated by NHEJ have 1 or 2 bp junctional microhomol-
ogy [73]. This finding strongly implicates junctional micro-
homology in canonical NHEJ and accentuates the difficulty
in assigning junctions with short microhomology to either
NHEJ or MMEJ based on molecular signature alone.

Microhomology-mediated structural variation in cancer

cells

Genomic alterations in cancer cells arise from cumulative
DNA damage and erroneous DNA repair processes. These
alterations consist of ‘driver’ mutations, which are respon-
sible for tumourigenesis and progression, and ‘passenger’
mutations, which have no phenotypic effect [9]. Impor-
tantly, microhomology has been identified at several rear-
rangement breakpoints in a variety of malignancies,
including breast, colorectal, and prostate adenocarcino-
mas, as well as a high proportion of paediatric low-grade
astrocytomas and adult glioblastomas [14–16,18,74].

The relative contribution of microhomology-mediated
mechanisms to the formation of different genomic
91
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rearrangements in cancer remains to be quantified. A large
survey of breakpoint sequences across seven tumour types
indicated that most complex genomic rearrangements are
likely to be formed by NHEJ, and that up to 27% might be
formed by microhomology-mediated mechanisms [74]. By
contrast, a different study of somatic structural variation
across ten tumour types indicated that microhomology-
based and nonhomology-based mechanisms are equally
important for generating deletions and translocations [13].

In breast and colorectal carcinomas, microhomology is
particularly prevalent in tandem duplications [14,15]. In
certain tumours, microhomology is present directly at
breakpoint junctions, as well as in the adjacent flanking
regions. For example, junctional and flanking microhomol-
ogies are present at the key KIAA1549–BRAF fusions,
which are derived from tandem duplications in paediatric
low-grade astrocytomas (Figure 1) [16]. The sequence pro-
files in these fusions suggest that they arise from MMBIR.
The transmembrane protease–serine 2- v-ets erythroblas-
tosis virus E26 oncogene homolog (TMPRSS2–ERG)
fusions in prostate cancer also show junctional and flank-
ing microhomology (Figure 1) [18]. In other malignancies,
breakpoint microhomology has been linked to genomic
stability and tumour behaviour. For example, invasive
bladder tumours, which are characterised by genetic
instability and loss of tumour protein p53 (TP53), show
microhomology together with multiple errors at rearran-
gement breakpoints, indicating an active MMEJ pathway
[75]. The invasive tumours simultaneously have reduced
Ku-DNA binding activity. By contrast, non-invasive
genetically stable bladder tumours do not show microho-
mology and display a faithful DNA repair profile.

Further insights into DSB repair processes that are
active in cancer cells come from analysis of breakpoints in
breast tumours associated with BRCA1/2 germline muta-
tions [76]. A high incidence of microhomology was found at
insertions and deletions, indicating that the cells are
defective in HR-based DNA repair processes and that
MMEJ or other microhomology-mediated mechanisms
act in their place. A complementary study found an
increase in microhomology-mediated repair processes in
blood lymphocytes from women with hereditary breast
and/or ovarian cancer risk and in younger women with
sporadic breast cancer, compared with the levels in
healthy controls [77]. Thus, identification of microhomol-
ogy signatures at rearrangement breakpoints is indicative
of defective DNA repair processes, and might in time be
used to distinguish individuals at high risk of developing
cancer.

Concluding remarks
The prevalence of microhomology at rearrangement junc-
tions highlights the importance of microhomology in geno-
mic plasticity, and the need for a better understanding
of microhomology-mediated mechanisms. Knowledge of
MMEJ and FoSTeS/MMBIR is still evolving and more
functional studies are required to elucidate the molecular
basis of these mechanisms. The rudimentary understand-
ing of the causative mechanisms and the reliance on the
molecular signature resulting from a mutational event as
an end product, give rise to various controversies. First,
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NHEJ has been reported to use 1–4 bp microhomology in a
proportion of junctions [19], which makes it impossible to
assign junctions with short microhomology to either NHEJ
or MMEJ. Furthermore, there is uncertainty about the
length of microhomology that can be regarded as signifi-
cant. Microhomology of one or two nucleotides, for exam-
ple, can arise by chance, but might still be able to promote
microhomology-mediated mechanisms. Moreover, it is
likely that the length of homology required varies between
different mechanisms. Whereas microhomology serves as
an annealing point during MMEJ, it might act as a primer
for DNA synthesis during FoSTeS/MMBIR [23,24].

The number of rearrangements with microhomology is
likely to be higher than currently thought. Only recently
have studies extended sequence analysis for microhomol-
ogy to genomic regions flanking breakpoint junctions, and
it might be necessary to reconsider previously identified
genomic rearrangements that were restricted to microho-
mology overlying breakpoint junctions. In addition, high-
resolution sequencing studies have identified an unex-
pected complexity of some genomic rearrangements that
were previously thought to be non-complex, leading to the
proposal that they result from FoSTeS/MMBIR [24]. As
sequencing methodology progresses to enable rearrange-
ments to be examined efficiently at base-pair resolution,
more intrinsically complex rearrangements in seemingly
simple mutational events may be uncovered.

Given that microhomologous sequences are widespread
across genomes, DNA sequence alone is unlikely to account
for the selective occurrence of microhomology-mediated
events. To explain their frequency and distribution, it is
critical to analyse them in the context of 3D genomic
architecture. The way in which DNA is packaged could
prevent or facilitate the formation of DSBs as well as alter
the accessibility of microhomologous sequences to the
enzymes required for microhomology-mediated events.

The prevalence of microhomology-mediated repair
mechanisms during gametogenesis, development and
throughout the lifespan of an organism remains to be estab-
lished. Analysis of DSB repair in embryonic mouse cells has
revealed a switch from predominantly NHEJ to MMEJ
repair at a certain stage of development, which was asso-
ciated with increased levels of CtIP, Mre11, Nbs1, and Ligase
III [78].

Microhomology-mediated mechanisms have two out-
comes with respect to genomic integrity. On the one hand,
they can limit DNA damage, particularly when the pre-
dominant repair mechanisms NHEJ or HR are unavail-
able. On the other, these mechanisms can lead to genomic
rearrangements due to their error-prone nature and, thus,
generate structural heterogeneity that provides the frame-
work for evolutionary processes and is critical in health
and disease. Therefore, microhomology signatures open
new avenues for deciphering fundamental pathogenic
and evolutionary changes in the genome.
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