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Abstract Connective tissue growth factor (CTGF) is induced by
transforming growth factor-b (TGF-b) via Smad activation in
mesangial cells. We recently reported that sphingosine 1-phos-
phate (S1P) induces CTGF expression in rat cultured mesangial
cells. However, the mechanism by which S1P induces CTGF
expression is unknown. The present study revealed that S1P-in-
duced CTGF expression is mediated via pertussis toxin-insensi-
tive pathways, which are involved in the activation of small
GTPases of the Rho family and protein kinase C. We also
showed by luciferase reporter assays and chromatin immunopre-
cipitation that S1P induces CTGF expression via Smad activa-
tion as TGF-b does.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Transforming growth factor-b (TGF-b) not only directly in-

duces extracellular matrix (ECM) production, but also induces

expression of other biologically active profibrotic mediators,

such as connective tissue growth factor (CTGF)[1,2]. CTGF

promotes fibronectin synthesis in mesangial cells [3,4] andmedi-

ates at least part of TGF-b-induced collagen and fibronectin

synthesis in renal fibroblasts [5]. CTGF is overexpressed in a

variety of fibrotic disorders such as renal fibrosis and expression

levels of CTGF is well correlated with the severity and progres-

sion of renal fibrosis [6–10]. Therefore CTGF is a useful molec-

ular marker of the fibrotic response [11] and might play an

important role in the progression of renal fibrotic disorders [6,8].

Sphingosine 1-phosphate (S1P) is a polar sphingolipid

metabolite which has been considered to act as an extracellular

mediator and as an intracellular second messenger [12–15].

Extracellular effects of S1P are mediated through G protein-
Abbreviations: ChIP, chromatin immunoprecipitation; CTGF, con-
nective tissue growth factor; GPCR, G protein-coupled receptor; PT,
pertussis toxin; S1P, sphingosine 1-phosphate; TGF-b, transforming
growth factor-b
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coupled receptors (GPCRs). To date, five closely related

GPCRs, S1P1-5, have been identified as high-affinity S1P recep-

tors [16]. Each S1P receptor subtype couples to different G-

proteins, thereby differentially regulating intracellular signal

transduction that results in diverse biological functions. Previ-

ously, we reported that S1P-induced mesangial cell prolifera-

tion is mediated by pertussis toxin (PT)-sensitive G-proteins

and extracellular signal-regulated kinase (ERK) [17].

By cDNA microarray analysis, we have recently shown that

S1P induces CTGF expression in rat cultured mesangial cells

[18]. However, the mechanism by which S1P promotes CTGF

expression in mesangial cells is unknown. In this study, we

examined the signaling pathway involving S1P-induced CTGF

expression in rat cultured mesangial cells, and found that S1P

induces CTGF expression by Smad binding to the CTGF pro-

moter as TGF-b does.
2. Materials and methods

2.1. Materials
Fatty acid-free bovine serum albumin (FAF-BSA) was obtained

from Sigma. U0126, PD98059, SB203580, staurosporin, genistein, bis-
indolylmaleimide I (BIS), Ro-31-8220, wortmannin, cytochalasin D
and latrunculin B were purchased form Calbiochem. S1P and
SP600125 were from Biomol. PT was obtained from Seikagaku Corpo-
ration. Recombinant TGF-b1 was from PeproTech. Antibodies
against phospho-protein kinase C (PKC) (pan) and PKCd were ob-
tained from Cell Signaling Technology and Santa Cruz Biotechnology,
respectively. Phospho-PKC (pan) antibody detects endogenous levels
of PKCa, b, d, e, and g isoforms only when phosphorylated at a car-
boxyl-terminal residue homologous to serine 660 of PKCbII.

2.2. Cell culture, transfection, and plasmids
Rat cultured mesangial cell line immortalized with pSV3-Neo (Amer-

ican Type Culture Collection: ATCC) was maintained in Dulbecco�s
modified Eagle�s medium (DMEM) containing 10% (v/v) fetal bovine
serum and 0.4 mg/ml G418. Mesangial cells were serum-starved for
24 h and treated with or without S1P or TGF-b1 in serum-free DMEM
containing 0.4% FAF-BSA. Plasmids were transfected into mesangial
cells using Lipofectamine PLUS (Invitrogen) as described previously
[17]. pCMV-Gai2, pCMV-Gai2Q205L, pCMV-Gaq, pCMV-G
aqQ209L, pCMV-Ga12Q229L, pCMV-Ga12, pCMV-Ga13Q226L,
pCMV-Ga13, pCMV-bARK1nt and pCMV-bARK1ct were kindly
provided by J. Yamauchi (Nara Institute of Science and Technology).

2.3. Real-time PCR analysis
Total RNA was isolated from mesangial cells using Isogen (Nippon

Gene), and subjected to polymerase chain reaction with reverse tran-
scription (RT-PCR). Total RNA was reverse transcribed and used
blished by Elsevier B.V. All rights reserved.
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for real-time PCR analysis by using DNA Engine Opticon2 System
(MJ Research) according to the manufacture�s instructions [19]. The
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used
as a control. PCR primers were as follows:
for rat CTGF:
rCTGF-F2, 5 0-ccgactggaagacacatttg-3 0

rCTGF-R1, 5 0-ccagcctgcagaaggtattg-30

for rat S1P1:
rS1P1-F1, 5 0- agctaacctgctgttgtctg-3 0

rS1P1-R2, 5 0- actgatcagcagaaaggagc-3 0

for rat S1P2:
rS1P2-F2, 5 0- actcagccatgtacctgttc-30

rS1P2-R1, 5 0- actgcaagggagttaaggac-3 0

for rat S1P3:
rS1P3-F2, 5 0- tgtctccaacagtgtggttc-30

rS1P3-R2, 5 0- cagcacatcccaatcagaag-3 0

for rat GAPDH:
rGAPDH-F1, 5 0-tccgttgtggatctgacatg-30

rGAPDH-R2, 5 0-ggagttgctgttgaagtcac-3 0

2.4. Transfection of mesangial cells with short hairpin RNA (shRNA)

expression vector
DNA oligonucleotides targeting S1P1, S1P2, and S1P3 were synthe-

sized and inserted into the siRNA expression vector pSilencer4.0 (Am-
bion). The sequences for two complementary oligonucleotides with
single-stranded overhangs encoding restriction enzyme sites were as
follows:
S1P1 sense:
5 0-GATCCCCAGAGACCATTATGTCTTTTCAAGAGAAAGAC-
ATAATGGTCTCTGGATA-3 0

S1P1 antisense:
5 0-AGCTTATCCAGAGACCATTATGTCTTTCTCTTGAAAAGA-
CATAATGGTCTCTGGG-3 0

S1P2 sense:
5 0-GATCCGCTCTACGGCAGTGACAAATTCAAGAGATTTGT-
CACTGCCGTAGAGCTTA-3 0

S1P2 antisense:
5 0-AGCTTAAGCTCTACGGCAGTGACAAATCTCTTGAATTTG-
TCACTGCCGTAGAGCG-3 0

S1P3 sense:
5 0-GATCCGGCACCTGACCATGATCAATTCAAGAGATTGAT-
CATGGTCAGGTGCCGCA-3 0

S1P3 antisense:
5 0-AGCTTGCGGCACCTGACCATGATCAATCTCTTGAATTGA-
TCATGGTCAGGTGCCG-3 0

Plasmids were transfected into mesangial cells with Lipofectamine
2000 (Invitrogen). Transfected cells were examined for S1P1, S1P2,
and S1P3 mRNA levels by real-time RT-PCR.
2.5. Western blotting
Mesangial cells were serum-starved for 24 h, and treated with S1P.

After stimulation, total cell extracts were prepared and subjected to
Western blotting as described previously [17].
2.6. Rho activity assay
Mesangial cells were serum-starved for 18 h and stimulated with S1P

for the indicated time points. Rho activity was examined by Rho Acti-
vation Assay Kit (Upstate). Total and activated Rho in the original cell
lysate was detected by Western blotting as described above.
2.7. Luciferase reporter assays
All constructs used in this study were shown in Fig. 6A. DNA

fragments of rat CTGF promoter lying between �807 and +16 (des-
ignated as P1), �240 to +16 (P2), and �143 to +16 (P3) were
amplified by PCR using rat genomic DNA, and were subcloned into
pGL3-basic vector (Promega). A construct in which the Smad bind-
ing element was mutated to EcoRI site in the context of the �807 to
+16 construct (M1) was also generated. Rat Smad3 cDNA was
cloned from rat mesangial cells, and ligated into pIRES-neo expres-
sion vector (Clontech). Reporter plasmids were cotransfected with a
Smad3 expression plasmid and pRL-TK (Renilla luciferase expres-
sion plasmid, Promega) into mesangial cells using Lipofectamine
PLUS (Invitrogen) as described above. Twenty four hours after
transfection, cells were serum-starved, treated with or without S1P,
and luciferase activity was measured using Dual-Glo Luciferase As-
say System (Promega).
2.8. Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) assay was carried out by

ChIP Assay Kit (Upstate). In brief, mesangial cells were serum-starved
for 24 h and treated with or without S1P for 0.5 h. After crosslinking
by adding formaldehyde, cells were washed with phosphate-buffered
saline, resuspended in SDS lysis buffer, and sonicated to shear genomic
DNA. Immunoprecipitation was done by adding an antibody against
Smad3 or normal rabbit IgG (Santa Cruz). After adding protein A
agarose, immune complex was washed and co-precipitated DNA frag-
ment was eluted. Before adding antibodies, we kept a portion of the
diluted cell supernatant as �input� to estimate the amount of DNA pres-
ent in different samples. Recovered DNA was purified by QIAquick
PCR purification kit (Qiagen) and used as a PCR template. PCR prim-
ers for ChIP assays were as follows:
rCTGFChIP1, 5 0- ctcacaccggattgatcctg-30

rCTGFChIP2, 5 0- ggtgcgaagaggatacagag-3 0

2.9. Statistical analysis
One-way analysis of variance (ANOVA) was used to evaluate treat-

ment effects. If the ANOVA value was significant, comparisons be-
tween the control and treatment group were performed using
ANOVA followed by Dunnett�s test to localize the significant differ-
ence. A P value of less than 0.05 was considered significant. All statis-
tics were run with InStat 2.00 (GraphPad Software).
3. Results and discussion

3.1. S1P induces CTGF expression in rat cultured mesangial

cells

TGF-b has been characterized as a potent inducer of CTGF

in mesangial cells [1,2]. This induction of CTGF was confirmed

when rat cultured mesangial cells were treated with TGF-b
(5 ng/ml) (Fig. 1A). S1P showed a similar but more transient

response. Maximal induction of CTGF expression by S1P

was observed after 2 h stimulation (Fig. 1A). S1P-induced

CTGF expression in a dose-dependent manner up to a concen-

tration of 5 lM (Fig. 1B).
3.2. S1P-induced CTGF expression is mediated through S1P2

and S1P3 and PT-insensitive G proteins

In rat cultured mesangial cells, several S1P receptors

(S1PRs) are expressed on the mRNA level, including S1P1,

S1P2, and S1P3 [17]. We previously showed that S1P-promoted

mesangial cell proliferation via PT-sensitive G protein (Gi/o)

[17]. Also, it was reported that S1P1 couples to G13, and both

S1P2 and S1P3 can signal through G12/13 and Gq [20,21]. We

first examined which S1PRs are involved in S1P-induced

CTGF expression. We transfected shRNA vectors targeting

S1PRs into mesangial cells, and examined mRNA levels of

S1PRs by RT-PCR. As shown in Fig. 2A, S1P1, S1P2, or

S1P3 mRNA expression was significantly reduced in cells

transfected with each shRNA vector compared with that of

cells transfected with the control vector. Then, we measured

S1P-induced CTGF expression in these cells. Quantitative

RT-PCR analysis indicated that reduced expression of S1P2

and S1P3, but not S1P1, decreased the level of S1P-induced

CTGF expression (Fig. 2B), suggesting that S1P induces

CTGF expression mainly via S1P2 and S1P3 in rat cultured

mesangial cells.
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Fig. 1. Induction of CTGF expression by S1P. (A) Mesangial cells
were stimulated with S1P (5 lM) and TGF-b (5 ng/ml) for the times
indicated. CTGF mRNA expression was measured by real-time
RT-PCR. Data show means ± S.E. of three independent experiments.
(B) Mesangial cells were treated with different concentrations of S1P
for 2 h. CTGF mRNA expression was measured by real-time RT-
PCR. Data show means ± S.E. of three independent experiments.
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Fig. 2. S1P-induced CTGF expression is mediated through S1P2 and
S1P3. (A) shRNA-mediated knockdown of S1PRs in mesangial cells.
Plasmids were transfected into mesangial cells, and transfected cells
were examined for the levels of S1PR mRNA by real-time RT-PCR.
mRNA levels were expressed as a relative mRNA level compared with
those of control vector-transfected cells. Data show means ± S.E. of
three independent experiments. \P < 0.05. (B) Mesangial cells trans-
fected with shRNA vectors were treated with S1P (0.5 lM) for 2 h.
CTGF mRNA expression was measured by real-time RT-PCR. Data
show means ± S.E. of three independent experiments. \P < 0.05.
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We next investigated which G proteins are involved in

S1P-induced CTGF expression. Treatment of rat cultured

mesangial cells with PT (200 ng/ml, 24 h) did not inhibit

S1P-promoted CTGF expression (Fig. 3A), although this

treatment completely inhibited S1P-promoted cell prolifera-

tion (data not shown). This suggests that S1P-induced

CTGF expression through PT-insensitive G proteins. At

the concentrations of 1, 2.5, and 5 lM, PT treatment slightly

enhanced S1P-induced CTGF expression, suggesting that

PT-sensitive pathway may be negatively involved in the

S1P-induced CTGF expression. We also examined whether

S1P-induced CTGF expression is mediated through the

Gq/11 pathway. We measured CTGF expression levels in

rat cultured mesangial cells transfected with a plasmid

encoding the regulator of G-protein signaling (RGS) domain

of b-adrenergic receptor kinase 1 (bARK1nt), which is

known to bind to Gq/11 and inhibit those cellular functions

[22,23]. As shown in Fig. 3B, transfection of bARK1nt did

not inhibit S1P-promoted CTGF expression in rat cultured

mesangial cells. However, transfection of the C-terminus of
bARK1 (bARK1ct), which is known to bind to Gbc and in-

hibit those cellular functions [24,25], partially inhibited S1P-

promoted CTGF expression in rat cultured mesangial cells

(Fig. 3B). Furthermore, we measured CTGF expression lev-

els in mesangial cells transfected with plasmids expressing

wild-type or constitutive active forms of Ga cDNAs. As

shown in Fig. 3C, transfection of Ga12Q229L, a constitutive

active form of Ga12, significantly induced CTGF expression.

Taken together, these results suggest that S1P induces

CTGF expression partially through Ga12 and Gbc, but

not Gai/o, Gaq/11, or Ga13.

3.3. Small GTPases of the Rho family and the actin cytoskeleton

were critical factors for S1P-induced CTGF expression in

mesangial cells

Previously it was reported that S1P mediates activation of

small GTPases of the Rho family via G12/13 [21]. In addition,

the Rho family proteins were shown to be critical determinants

of CTGF expression induced by lysophosphatidic acid, seroto-

nin, and TGF-b in mesangial cells [26]. As shown in Fig. 4A,

pretreatment of mesangial cells with toxin B, an inhibitor of

small GTPases of the Rho family, led to significant inhibition

of S1P-induced CTGF expression. In addition, we measured
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Fig. 3. S1P-induced CTGF expression is mediated through the PT-
insensitive G protein pathway. (A) Effect of PT on S1P-induced CTGF
expression. Cells were treated with PT (200 ng/ml) for 24 h, and treated
with S1P. After 2 h of stimulation, total RNA were prepared and
subjected to real-time RT-PCR analysis. Data show means ± S.E. of
three independent experiments. \P < 0.05. (B) Involvement of Gbc on
S1P-induced CTGF expression in mesangial cells. Mesangial cells were
transfected with pCMV-bARK1nt, pCMV-bARK1ct or empty vector
pCMV. After 24 h, cells were serum-starved for 24 h and treated with
or without S1P (5 lM). After 2 h of stimulation, total RNA were
prepared and subjected to real-time RT-PCR analysis. Data show
means ± S.E. of three independent experiments. \P < 0.05. (C) Effects
of overexpression of Ga subunits on CTGF expression in mesangial
cells. Mesangial cells were transfected with wild type (WT) or
constitutive active forms (QL) of GacDNAs or empty vector pCMV.
After 24 h, total RNA were prepared and subjected to real-time RT-
PCR analysis. Data show means ± S.E. of three independent exper-
iments. \P < 0.05.

Fig. 4. Small GTPases of the Rho family and an intact cytoskeleton
are required for S1P-induced CTGF expression. (A) Effect of toxin B
on S1P-induced CTGF expression. Cells were treated with toxin B (3
or 10 ng/ml) for 3 h, and treated with 0.5 or 5 lM of S1P. After 2 h of
stimulation, total RNA were prepared and subjected to real-time RT-
PCR analysis. Data show means ± S.E. of three independent exper-
iments. \P < 0.05. (B) Rho activity assay. Mesangial cells were serum-
starved for 18 h and stimulated with 0.5 or 5 lM of S1P for the
indicated time points. Rho activity was examined by Rho Activation
Assay Kit (Upstate). Total and activated Rho in the original cell lysate
was detected by Western blotting. (C) Effect of cytochalasin D on S1P-
induced CTGF expression. Cells were treated with cytochalasin D (1
or 3 lg/ml) for 3 h, and treated with 0.5 or 5 lM of S1P. After 2 h of
stimulation, total RNA were prepared and subjected to real-time RT-
PCR analysis. Data show means ± S.E. of three independent exper-
iments. \P < 0.05. (D) Effect of latrunculin B on S1P-induced CTGF
expression. Cells were treated with lactrunculin B (0.5 or 2 lM) for 3 h,
and treated with 0.5 or 5 lM of S1P. After 2 h of stimulation, total
RNA were prepared and subjected to real-time RT-PCR analysis.
Data show means ± S.E. of three independent experiments. \P < 0.05.
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S1P-induced activation of Rho in mesangial cells using a GST-

rhotekin pull-down assay. Following stimulation with S1P, a

rapid increase in the GTP-bound form of Rho was detected

in mesangial cells (Fig. 4B), suggesting that S1P-induced

CTGF expression is mediated via small GTPases of the Rho

family. Inhibition of Rho family proteins affects the actin cyto-

skeleton [26]. To assess the role of the actin cytoskeleton in

CTGF induction, we examined the effects of cytochalasin D
and latrunculin B, toxins that disrupt the actin cytoskeleton

[26,27]. As shown in Fig. 4B and C, pretreatment of the cells

with these toxins dramatically decreased S1P-induced CTGF

expression, suggesting that an intact actin cytoskeleton is a
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critical factor for S1P-induced CTGF expression in mesangial

cells. Taken together, small GTPases of the Rho family and

the actin cytoskeleton play important roles in S1P-induced

CTGF expression in mesangial cells.

3.4. Protein kinase C involved S1P-promoted CTGF induction

To delineate the signaling pathways involved in S1P-

induced CTGF expression in more detail, we examined the

effects of specific inhibitors for various protein kinases:

U0126 and PD98059, ERK kinase inhibitors; SB203580, a

p38 mitogen-activated protein kinase inhibitor; SP600125, a

c-Jun NH2-terminal kinase inhibitor; bisindolylmaleimide I,

staurosporine, and Ro-31-8220, PKC inhibitors; genistein,

a tyrosine kinase inhibitor; wortmannin, a phosphatidylino-

sitol 3-kinase inhibitor. We measured mRNA expression lev-

els of CTGF in S1P-stimulated mesangial cells with or

without pretreatment of these inhibitors. As shown in Fig.

5A, pretreatment with three PKC inhibitors, bisindolylmale-

imide I, staurosporine, and Ro-31-8220, significantly reduced

S1P-induced CTGF expression. In addition, Western blot

analysis using phospho-PKC (pan) antibody showed that

S1P rapidly induced PKC phosphorylation in mesangial cells

(Fig. 5B). These results suggest that PKC involves S1P-

induced CTGF induction in mesangial cells.

3.5. A Smad binding element in the CTGF promoter region is

required for S1P-promoted CTGF induction

To determine if the ability of S1P to induce CTGF expres-

sion in mesangial cells was due to elevated CTGF promoter

activity, mesangial cells were transfected with luciferase re-
Fig. 5. Effects of protein kinase inhibitors on S1P-induced CTGF
expression. (A) Effects of protein kinase inhibitors on S1P-induced
CTGF expression. Serum-starved mesangial cells were preincubated
for 0.5 h with the following inhibitors: U0126 (U: 10 lM), PD98059
(PD: 30 lM), SB203580 (SB: 10 lM), SP600125 (SP: 10 lM), wort-
mannin (W: 500 nM), genistatin (Ge: 10 lM), bisindolylmaleimide I
(BIS: 10 lM), staurosporine (St: 1 lM), and Ro-31-8220 (Ro: 10 lM).
Cells were then stimulated with or without S1P (0.5 or 5 lM) for 2 h,
and CTGF expression was measured by quantitative RT-PCR.
Data show means ± S.E. of three independent experiments.
\P < 0.05. (B) PKC activation. Mesangial cells were starved for 18 h
and stimulated with 0.5 lM of S1P for the indicated time points. Total
(PKCd) and phosphorylated PKC (pan) in the cell lysate was detected
by Western blotting.
porter plasmids containing CTGF promoter elements (Fig.

6A). The fragment containing a Smad binding element had

previously been shown to be responsive to TGF-b in fibro-

blasts and mesangial cells [1,28]. As shown in Fig. 6B, S1P-

stimulation resulted in an induction of CTGF promoter

activity. To further elucidate the elements in the CTGF pro-

moter necessary for S1P-induced CTGF expression, various

deleted and mutated constructs of the CTGF promoter

(Fig. 6A) were trasnfected into mesangial cells and assayed

for reporter gene expression (Fig. 6B). Either the deletion

or mutation of the Smad binding element in the CTGF pro-

moter completely abolished the ability of S1P to induce

CTGF promoter activity in mesangial cells (Fig. 6B). This

suggests that the Smad recognition sequence in the CTGF

promoter is necessary for S1P-induced CTGF expression

(Fig. 6B).

Also, we examined by ChIP assay whether Smads bind to

the CTGF promoter region. An antibody against Smad3 was

used in ChIP experiments because CTGF induction by TGF-

b does not occur in Smad3 knockout fibroblasts [28] and

S1P stimulation promotes Smad3 activation (phosphorylation)

in mesangial cells [29]. As shown in Fig. 6C, Smad3 actually

bound to a putative Smad binding element in the CTGF pro-

moter when mesangial cells were stimulated with S1P. These

results strongly suggest that S1P-induced CTGF expression

in mesangial cells is mediated by Smad3 binding to the CTGF

promoter region.
Fig. 6. Involvement of Smads on S1P-induced CTGF expression
(A) Schematic diagram of promoter constructs used. (B) Reporter
assay. After 24 h of transfection with plasmids, cells were serum-
starved, and treated with or without S1P (5 lM). After 5 h, luciferase
activity was measured. \P < 0.05. (C) ChIP assay. Mesangial cells were
serum-starved for 24 h and treated with or without S1P for 0.5 h. ChIP
assay was carried out as described in Section 2. The lower panel
indicates PCR reactions with aliquots of samples before immunopre-
cipitation (inputs).
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4. Conclusion

We previously showed that S1P induces mesangial cell

proliferation through cell-surface S1P receptors coupled with

PT-sensitive G protein(s) [17]. Also, we showed by cDNA

microarray analysis that S1P promotes CTGF expression

in rat cultured mesangial cells [18]. The present study re-

vealed that S1P-induced CTGF expression is mediated via

PT-insensitive pathways, which are involved in the activation

of small GTPases of the Rho family, PKC, and Smad. We

previously reported that S1P receptors were markedly upreg-

ulated in the kidney of mice with immunoglobulin A

nephropathy (IgAN) [30]. Taken together with the observa-

tions that CTGF is often overexpressed in a variety of fibro-

tic disorders such as renal fibrosis and enhances ECM

production in mesangial cells [6–10], it is tempting to specu-

late that an enhanced activation of S1P–S1P receptor signal-

ing pathways may promote not only mesangial cell

proliferation but also CTGF-mediated ECM production,

which results in the enhanced progression of renal fibrotic

disorders. Very recently, Xin et al. [29] reported that S1P

trans-activates the TGF-b receptor and triggers activation

of Smads in mesangial cells. It is well known that TGF-b
is a potent inducer of CTGF in mesangial cells and this

induction is mediated through the Smad pathways [1,28].

These suggest that S1P and TGF-b may cooperate in the en-

hanced CTGF expression via Smad pathways, leading to the

progression of fibrotic renal disorders, such as IgAN [30].
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