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Abstract

It has been suggested that schizophrenia is associated with a magnocellular deficit. This would predict a loss of contrast sensitivity at
low spatial and/or at high temporal frequencies. We here review research that tested contrast sensitivity in individuals with schizophre-
nia. We find that the results of this research tend to show uniform reductions in contrast sensitivity that are generally not consistent with
a magnocellular deficit. While much of this data may be consistent with an attentional deficiency on the part of the schizophrenic indi-
viduals, it is difficult to link such an attentional deficiency specifically to the magnocellular system. The conclusion of the present review is

that contrast sensitivity data do not indicate the existence of an association between magnocellular deficits and schizophrenia.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been suggested that schizophrenia is associated
with a deficiency in the magnocellular part of the subcorti-
cal visual system (Butler et al., 2007; Keri, Antal, Szekeres,
Benedek, & Janka, 2002; Laycock, Crewther, & Crewther,
2007; Schechter et al., 2006). The early part of the visual
system in primates contains three parallel streams: the
magnocellular, the parvocellular and the koniocellular sys-
tems (for reviews, see Hendry & Reid, 2000; Merigan &
Maunsell, 1993; Shapley & Perry, 1986). The three streams
can be differentiated from the retina, through the lateral
geniculate nucleus (LGN) to the input layers of the primary
visual cortex (V1). Inside the primary visual cortex there is
considerable mixing of the inputs which makes it difficult
to distinguish magno-, parvo- and koniocellular responses
at cortical levels (Lachica, Beck, & Casagrande, 1992;
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Levitt, Yoshioka, & Lund, 1994; Martin, 1992; Merigan
& Maunsell, 1993; Nassi, Lyon, & Callaway, 2006; Nealey
& Maunsell, 1994; Sawatari & Callaway, 1996; Sincich &
Horton, 2002; Sincich, Park, Wohlengemuth, & Horton,
2004; Vidyasagar, Kulikowski, Lipnicki, & Dreher 2002;
see also DeYoe & Van Essen, 1988; Dobkins & Albright,
2003; Kiper, Levitt, & Gegenfurtner, 1999; Skottun &
Skoyles, 2006¢).

The most effective and reliable way to isolate magnocel-
lular activity in psychophysical experiments is to measure
contrast sensitivity (Skottun, 2000a). Studies in which
lesions have been placed in various layers of monkey
LGN have found that reductions in contrast sensitivity fol-
lowing lesions in the magnocellular layers are confined to
cases in which the stimuli are of low spatial frequency
and/or high temporal frequency (Merigan, Byrne, &
Maunsell, 1991a; Merigan, Katz, & Maunsell, 1991b; Mer-
igan & Maunsell, 1990, 1993; Schiller, Logothetis, &
Charles, 1990a, 1990b). Psychophysical studies in humans
are consistent with these findings (Legge, 1978; Tolhurst,
1975). Because the link between contrast sensitivity and
magnocellular activity has been established by both lesion
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studies in monkeys and human psychophysics, it represents
the most reliable and direct psychophysical test of magno-
cellular sensitivity.

It appears that the magnocellular system mediates sensi-
tivity at spatial frequencies below about 1.5 ¢/deg and that
the parvocellular system (or a combination of the parvocel-
lular and koniocellular systems) carries out detection above
this frequency (Skottun, 2000a). One would therefore
expect a magnocellular deficit to manifest itself at spatial
frequencies below 1.5 c/deg or, alternatively, to be most
pronounced at low spatial frequencies. In the case of tem-
poral contrast sensitivity, magnocellular deficits, would be
expected to show themselves at predominantly high tempo-
ral frequencies.! Here, we review the studies that have
determined contrast sensitivity in schizophrenic subjects
in a sufficiently systematic manner to make it possible to
determine how sensitivity varies with spatial and temporal
frequencies.

2. Spatial contrast sensitivity

In the case of spatial contrast sensitivity, a magnocellu-
lar deficit would manifest itself as a reduction in sensitivity
at low spatial frequencies, or, alternatively, as a deficit that
is most pronounced at the lowest spatial frequencies. In
Figs. 1 and 2, the data from the various spatial contrast
sensitivity studies have been re-plotted into a standard
Log-Log format to facilitate comparison between the dif-
ferent data sets.

The earliest spatial contrast sensitivity study involving
schizophrenic subjects of which we know is the one by Sla-
ghuis from 1998. In this study schizophrenic subjects were
divided into two groups: those with positive-symptoms and
those with negative- symptoms. (“Positive-symptoms” are
“hallucinations, delusions, and disturbances in thought dis-
order” and ‘“negative-symptoms... are characterized by
absences of normal function such as cognitive impairment,
anhedonia, paucity of content of speech, reduced motiva-
tion, flattening of affect, and deficits in social function™;
Slaghuis, 1998, p. 49). The results of this study are shown
in Fig. la. As can be seen, both schizophrenic groups have
reduced contrast sensitivity relative to the controls. How-
ever, the reductions were far larger in the case of the nega-
tive-symptom group. The sensitivity reductions of both
groups are found across all spatial frequencies suggesting
a general loss of sensitivity. This general pattern is not

! Dacey and Petersen (1992) have reported that dendritic fields in
parasol ganglion cells in humans are larger than those in monkeys. By
contrast, the dendritic fields for midget ganglion cells were found to be
similar. (The parasol and midget cells are the retinal ganglion cells which
provide the input to, respectively, the magno- and parvocellular LGN
cells.) This, it has been suggested, might make the spatial frequency tuning
of magnocellular neurons different in monkeys and humans. It should
therefore be pointed out that the transition point of 1.5 ¢/deg is based
mainly on human psychophysics (e.g., Legge, 1978; Tolhurst, 1975), and is
thus unaffected by the observation of Dacey and Petersen (1992).

the one that would be expected from a sensitivity loss
caused by a deficiency in the magnocellular system.

The second study is that of Keri et al. (2002) which
obtained data under two conditions: static (0 Hz) and
dynamic (8 Hz). The two data sets are re-plotted in Figs.
1b and c. Under both conditions, the schizophrenic sub-
jects showed reduced sensitivity. In the static condition
(Fig. 1b), the deficit is rather more pronounced at frequen-
cies above about 2 ¢/deg. This is at odds with a magnocel-
lular deficit. In the case of dynamic stimuli (Fig. lc), the
sensitivity loss seems to be somewhat larger at the lowest
two frequencies (i.e., 0.5 & 1.2 ¢/deg). This might be taken
to indicate a magnocellular deficit. However, there was also
a large deficit present at the highest spatial frequency (i.e.,
14.4 ¢/deg). Since the main trend is roughly that of a gen-
eral sensitivity reduction, it is difficult to interpret these
data as evidence for a magnocellular deficit. [The re-plots
of the data from Keri et al. (2002) appear somewhat differ-
ent from the original plots since we used the frequency val-
ues specified by Keri et al. (2002) rather than their plots
because it is not clear what kind of X-axes were used in
them.]

The next data set is that of Slaghuis and Thompson
(2003). The data from this study are re-plotted in Fig. 1d.
As was the case in the study of Slaghuis (1998), the schizo-
phrenic subjects were divided into positive- and negative-
symptom groups. And again, as was the case in the earlier
study (Slaghuis, 1998), the sensitivity reductions were
roughly distributed in a uniform manner across all the spa-
tial frequencies. Also, the sensitivity reductions were uni-
formly larger for the negative-symptom group. As was
pointed out above, a general reduction in sensitivity is
not what would be predicted from a magnocellular deficit.
[The original figures of Slaghuis and Thompson (2003),
and Slaghuis (2004), see below, were plotted using sensitiv-
ity values given in natural logarithms. For the sake of con-
sistency we have re-plotted these data using logarithms
with base 10.]

Slaghuis (2004) studied spatial contrast sensitivity at
four different temporal modulation frequencies (0.0, 4, 8
and 12 Hz) with subjects divided into positive- and nega-
tive-symptom groups. The results are shown in Figs. le—
h. At all four temporal frequencies, there were only small
deficiencies in the case of the positive-symptom subjects.
In the case of negative-symptom subjects there were
substantial and uniform deficits afflicting all spatial fre-
quencies. Again, these findings do not point to a magnocel-
lular deficit. Nor is there any evidence when comparing the
four panels of any tendency for the deficits to increase with
temporal frequency as would be expected for a magnocel-
lular deficiency.

In the data of Butler et al. (2005), which are re-plotted in
Fig. 2, there is evidence for deficits at low and medium spa-
tial frequencies, and for them being largest at the lowest
frequencies. These findings are roughly consistent with
what one might expect for a magnocellular deficit. How-
ever, Butler et al. (2005) found significant differences
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Fig. 1. Contrast sensitivity as a function of spatial frequency. (a) Data from Fig. 2 of Slaghuis (1998) obtained with stimuli subtending 4.03 deg x 3.36 deg
at 17.0 cd/m?. (b,c) Data re-plotted from, respectively, Figs. 3 and 4 of Keri et al. (2002). The stimuli subtended 13 deg x 13 deg and the luminance level
was 20 cd/m>. (d) Data re-plotted from Fig. 1a of Slaghuis and Thompson (2003). The data were obtained with a 5.0 Hz counterphase modulating grating
(3.5 deg x 6.7 deg) with a blank surround. (e-h) Data re-plotted from Fig. 2 of Slaghuis (2004). (e-h) show data obtained with stimuli modulating at,
respectively, 0, 4, 8, and 12 Hz. Stimulus dimensions were 7.12 deg x 5.71 deg and the luminance was 18.0 cd/m?>.

between the controls and schizophrenic subjects at spatial
frequencies all the way up to 7.0 ¢/deg. The magnocellular
system is not generally held to mediate sensitivity at this
high a frequency. However, it is possible that the short
stimulus presentations used in this study (32 ms), may have
caused the magnocellular system to mediate threshold at
frequencies as high as 7.0 ¢/deg. [Tolhurst (1975) showed
that the parvocellular system, at the time called the
“sustained system”, mediates contrast detection by
responding to sustained stimulation. It is therefore possible
that a very brief stimulus, which has little sustained stimu-

lation, may have favored the magnocellular system relative
to the parvocellular system.]

The most recent spatial contrast sensitivity study is that
of Revheim et al. (2006). In this study, schizophrenic
patients were divided into reading impaired (N =9) and
non-reading impaired subjects (N = 9). Contrast sensitivity
was tested at 0.5 ¢/deg, 7.0 ¢/deg and 21 ¢/deg. Revheim
et al. (2006) found deficits on the part of the reading
impaired group but not on the part of the non-impaired
group at 0.5c/deg. There were no deficits at 7.0 and
21.0 ¢/deg for either group. It is not clear that the relevant
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Fig. 2. Spatial contrast sensitivity data re-plotted from Fig. 4 of Butler
et al. (2005). The stimuli in this study subtended 5.7 deg x 5.7 deg and the
luminance was 100 cd/m>.

factor is not reading impairment rather than schizophrenia.
The findings of Revheim et al. (2006) do not indicate a
magnocellular deficit as a general characteristic of
schizophrenia.

3. Temporal contrast sensitivity

When testing temporal contrast sensitivity the existence
of a magnocellular deficit would be expected to manifest
itself at high temporal frequencies, or result in a deficit
which is largest at the highest temporal frequencies. Data
re-plotted from the various studies are shown in Fig. 3.

The first study is that of Schwartz, McGinn, and Win-
stead (1987). The results from Fig. 1 of that study are
re-plotted in Fig. 3a. As can be seen, the sensitivities for
the schizophrenic subjects are lower than those of the con-
trols. The authors reported that the difference between
schizophrenic subjects and controls are statistically signifi-
cant at 3.25 and 6.5 Hz. Furthermore, and most impor-
tantly, there is little difference between the two groups at
26 Hz, a temporal frequency at which a magnocellular def-
icit would be expected to show itself. These results, there-
fore, do not provide support for a magnocellular deficit.
[Schwartz et al. (1987) also studied spatial contrast sensitiv-
ity but they did not describe the data in sufficient detail to
allow comparisons with predictions based on magnocellu-
lar deficits. ]

Slaghuis (1998) studied contrast sensitivity as a function
of temporal frequency using gratings of two spatial fre-
quencies 1.0 ¢/deg and 8.0 ¢c/deg. The results are re-plotted
in Figs. 3b and c. As in the case of the spatial studies (see
above), Slaghuis divided the subjects into positive- and
negative-symptom groups. For the 1.0c¢/deg stimuli
(Fig. 3b), the data for the positive-symptom group were
practically identical to those of the control group. The neg-
ative-symptom group showed approximately equal reduc-
tions in sensitivity at all temporal frequencies. If
anything, the deficits seem to have been largest at the low-
est frequency. In the case of 8.0 ¢/deg stimuli (Fig. 3¢), both
schizophrenic groups demonstrated reductions of a uni-
form nature at all temporal frequencies. The reductions
in sensitivity shown by the negative-symptom group were

about twice as large (in the Log-Log plot) as those of the
positive-symptom group. In neither of these two sets of
data (i.e., Figs. 3b and c) is there any evidence of a magno-
cellular deficit. On the contrary, if anything, it would seem
that the largest deficits in both plots (Figs. 3b and c) are at
the lowest temporal frequencies, which is the opposite of
what would be expected for a magnocellular deficit.

It should also be pointed out that in the temporal sensi-
tivity data of Slaghuis (1998), the deficits in the data
obtained with 8 ¢/deg stimuli (i.e., Fig. 3c) are larger than
in the data obtained with 1.0 ¢/deg stimuli (i.e., Fig. 3b).
This is the opposite of what would be predicted from a
magnocellular deficit.

Slaghuis and Bishop (2001) determined temporal con-
trast sensitivity at three different luminance levels: 3.0,
33.0, and 66 cd/m>. The data obtained under these three
conditions are re-plotted in Figs. 3d-f. The original data
of Slaghuis and Bishop were plotted using a linear sensitiv-
ity axis. We have re-plotted the data with Log-Log axes.
This makes the plots look slightly different. As in the other
studies of Slaghuis and Slaghuis and Thompson, the
schizophrenic subjects were divided into negative- and
positive-symptom groups. In Figs. 3d-f, we see that data
for the positive-symptom group is only moderately
depressed relative to those of the control group. Slaghuis
and Bishop (2001) did not find any statistically significant
difference between the control group and the positive-
symptom group. The negative-symptom group showed lar-
ger reductions in sensitivity. These reductions take the
form of a roughly uniformly lowered sensitivity that tends
to increase with luminance. Slaghuis and Bishop (2001)
found statistically significant differences between the con-
trols and the negative-symptom group at 4.0 and 8.0 Hz
but not at 1.0, 16.0 and 32.0 Hz. These findings are not
indicative of magnocellular deficits.

Chen et al. (2003) studied temporal contrast sensitivity
in two groups of medicated schizophrenic patients: Those
who received typical antipsychotic medication and those
who received atypical antipsychotic medication. The data
are re-plotted in Fig. 3g. As can be seen from the plot, both
groups of schizophrenic subjects show reduced sensitivity
at low and/or medium temporal frequencies (including
the static condition). There are virtually no deficits at the
highest frequencies (in fact, the atypical medication group
show slightly elevated sensitivity at the highest temporal
frequencies). These findings are roughly the opposite of
what would be found if there were a magnocellular deficit.

The final study of temporal contrast sensitivity is that of
O’Donnell et al. (2006). These authors tested medicated
and unmedicated schizophrenic subjects. In this study tem-
poral modulation was generated by drifting the stimuli at
various speeds (with the drift speed given in terms of mod-
ulation frequency). The study also included a static condi-
tion. The results are re-plotted in Fig. 3h. As we can see,
there is a general reduction in sensitivity on the part of
both schizophrenic subject groups. Again, this does not
indicate the existence of a magnocellular deficit. In the case
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Fig. 3. Contrast sensitivity as a function of temporal frequency. (a) Data re-plotted from Fig. 1 of Schwartz et al. (1987). The stimulus conditions in this
study were not specified. (b,c) are re-plotted from respectively panels a and b in Fig. 3 of Slaghuis (1998). (b,c) show data obtained with, respectively, 1.0 ¢/
deg and 8.0 c/deg gratings drifted at 0.75, 1.5, 3.0, 6.0 and 12.0 Hz. Gratings subtended 4.03 deg x 3.36 deg and had a luminance of 17.0 cd/m?. (d—f) Data
re-plotted from Fig. 2 of Slaghuis and Bishop (2001). The three panels give data obtained at 3, 33 and 66 cd/m?, respectively. The stimuli were Gaussian
patches of 4 deg diameter. (g) Data re-plotted from Fig. 3 of Chen et al. (2003). The stimuli were masked down to a 10 deg diameter circular window.

These data were obtained with gratings with a spatial frequency of 0.5 c/deg. (

h) Data plotted from Table 2 of O’Donnell et al. (2006). Results are shown

for unmedicated and medicated schizophrenic subjects as well as controls. The three data points on the left hand side are for static presentations. The
spatial frequencies used were 9.9 c/deg for the static test and 1.3 ¢/deg for the tests using temporally modulated (i.e., moving) stimuli.

of moving stimuli, the sensitivity loss is somewhat larger
for the unmedicated schizophrenic subjects than for the
medicated subjects.

It should be noted that O’Donnell et al. (2006) used dif-
ferent spatial frequencies in the static conditions (9.9 c/deg)
and the drifting conditions (1.3 ¢/deg). This was done in
order to bias the stimuli, respectively, for the parvocellular
and magnocellular systems. However, as can seen by com-

paring the static data to the rest of the data in Fig. 3h, this
manipulation did not affect the relative contrast sensitivity
of the schizophrenic subjects to a noticeable degree.

4. Other studies

A few studies only determined contrast sensitivity under
a single condition. In these cases, the lack of an opportu-
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nity to compare performances at different spatial and/or
temporal frequencies makes it impossible to know whether
or not there is a magnocellular deficiency. For instance,
without an opportunity to compare data obtained under
different stimulus conditions, a reduction in sensitivity
could reflect generally reduced sensitivity, or be the sign
of a sensitivity loss which is more or less specific to the par-
ticular condition tested. This applies to the work of Chen,
Levy, Sheremata, and Holzman (2004) and Cimmer et al.
(2006). Chen et al. (2004) used what seems to have been
a 0.5c/deg stimulus modulated at 5Hz. Cimmer et al.
(2006) studied contrast sensitivity to 0.5 ¢/deg counter-
phase modulated at a temporal frequency of 4 Hz [Cimmer
et al. (2006) give the temporal frequency as 8 Hz but that
refers to the reversal rate which is twice that of the tempo-
ral modulation frequency since there are two reversals per
modulation cycle]. Both of these studies found to various
degrees reduced sensitivity on the part of the schizophrenic
subjects but since only one condition was tested it is not
possible to form any opinion as to the nature of the
deficiency.

Another study which involved only one stimulus condi-
tion is that of Keri, Antal, Szekeres, Benedek, and Janka
(2000). These authors determined contrast sensitivity using
0.5 ¢/deg gratings modulated at 8.0 Hz and found no statis-
tically significant difference between schizophrenic subjects
and controls. Also, Keri, Kelemen, Benedek, and Janka
(2004) did not find significantly elevated contrast thresh-
olds to 24 min arc diameter dots. The findings of Keri
et al. (2000) are inconsistent with a magnocellular deficit
(as well as a general sensitivity reduction) because had
there been a magnocellular deficit it would have had to
manifest itself at least at 0.5 ¢/deg and 8.0 Hz. Also the
results of Keri et al. (2004) appear to be inconsistent with
a magnocellular deficit.

Gutherie, McDowell, and Hammond (2006) measured
detection thresholds for three spots presented under scoto-
pic conditions at 10 degrees eccentricity in the visual field.
They did not find a deficiency on the part of the schizo-
phrenic subjects. The authors concluded ‘“‘that magnocellu-
lar deficits in schizophrenia may not be due to problems at
the level of the rods but are more likely to occur later in the
visual pathway” (Gutherie et al., 2006, p. 378). An alterna-
tive, and more parsimonious interpretation, would be that
there simply is no magnocellular deficit. Irrespective of
interpretation, the results of Gutherie et al. (2006) do not
provide positive support for a magnocellular deficit.

In a recent study DeLord et al. (2006) used a somewhat
different approach. Although this research does not strictly
concern contrast sensitivity, it is closely related to it. In this
study subjects were presented with four squares one out of
which differed in luminance from the others. The task of
the subject was to identify the differing square. This was
done under two conditions, one supposedly biased for
magnocellular detection (“steady paradigm”), and one
biased for parvocellular detection (“pulsed paradigm”)
(the study also included a third condition unrelated to

the magno-/parvocellular distinction). The schizophrenic
subjects showed elevated thresholds under both conditions.
The authors interpreted this finding as arguing against an
early magnocellular dysfunction in schizophrenia.

An earlier study which is also related to contrast sensi-
tivity is that of Black, Franklin, de Silva, and Wijewickra-
ma (1975). In this study it was found that critical flicker
fusion (CFF) was moderately reduced in schizophrenic
individuals. These results have since been interpreted as
potential evidence for a magnocellular deficit (Gutherie
et al., 2006). In connection with that interpretation, it
was pointed out that reduced CFF may reflect a cortical
deficiency since CFF is held to reflect cortical processing
(Gutherie et al., 2006). We would like to further note that
reduced CFF would also be consistent with a general
reduction in sensitivity. It should also be kept in mind that
the reduction in CFF was quite small.

5. Discussion

The general conclusion of the present review is that the
studies of contrast sensitivity in individuals with schizo-
phrenia provide little evidence for a magnocellular deficit.
The exact number of different studies is difficult to judge
since in the case of the work of Slaghuis (1998, 2004), Sla-
ghuis and Bishop (2001), Slaghuis and Thompson (2003)
the degree to which different data sets are independent is
unclear (they may or may not represent different groups
of subjects). However, the fact that only one study has
yielded data consistent with a magnocellular deficit (i.e.,
Butler et al., 2005) means that even if the four studies of
Slaghuis (1998, 2004), Slaghuis and Bishop (2001) and Sla-
ghuis and Thompson (2003) were counted as one, the
majority of studies would not support the presence of a
magnocellular deficit.

The only study to find deficits consistent with a magno-
cellular deficit (Butler et al., 2005) was carried out at a rel-
atively high luminance level (100 cd/m?) compared to many
of the other studies (typically 15-20 cd/m?). This may sug-
gest that magnocellular deficits only manifest themselves at
high luminance levels. In regard to this we make two com-
ments: (1) The magnocellular system is more closely associ-
ated with low luminance levels rather than with high ones
(Purpura, Kaplan, & Shapley, 1988). And, (2) in the tem-
poral contrast sensitivity study of Slaghuis and Bishop
(2001), data were obtained at several different luminance
levels (3, 33 and 66 cd/m?). However, in these data (Figs.
3d-f), while there is evidence for the deficits (of the nega-
tive-symptom group) to become larger with increasing
luminance, there is no evidence that such increases in lumi-
nance produce effects resembling those of a magnocellular
deficit. Indeed, in the case of the highest luminance level
used in this study, 66 cd/m?, the deficit is that of a uniform
reduction in sensitivity. Since, the luminance level in this
study is only 0.18 Log units below that of Butler et al.
(2005), it seems unlikely that the difference between these
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two studies reflects the difference in their stimulus
luminance.

The overall trend in the data sets is that schizophrenic
subjects show general reduction in sensitivity. As pointed
out elsewhere (Skottun & Skoyles, 2007c), such a reduction
would be consistent with an attentional deficiency. More-
over, an attentional deficit may be unrelated to vision as
similar problems can arise from impaired prefrontal cortex
functioning. Alternatively, it has been suggested that visual
attentional deficiencies in schizophrenia might be the result
of a magnocellular deficit (Laycock et al., 2007). But as we
have noted previously, it is difficult to link attention specif-
ically to the magnocellular system (Skottun & Skoyles,
2006a, 2006b, 2007a, 2007¢c, 2007f). For instance, it has
been found that covert visual attention may be directed
by stimuli that do not activate the magnocellular system
(Cole, Kentridge, & Heywood, 2005; Snowden, 2002; Sum-
ner, Adamjee, & Mollon, 2002). Also, within the context of
research upon dyslexia, it has been found that attention
deficits can occur without the existence of magnocellular
deficits (Roach & Hogben, 2004). Moreover, it would also
conflict with the findings of larger sensitivity losses
observed at higher spatial frequencies (compare results
obtained at 1c/deg, Fig. 3b, and data obtained at 8¢/
deg, Fig. 3¢), and the finding of Keri et al. (2000) of no con-
trast sensitivity loss for 0.5 ¢/deg gratings modulated at 8
Hz, as well as the findings of Schwartz et al. (1987), and
those of Chen et al. (2003), of reduced sensitivity at low
and medium temporal frequencies. For these and other rea-
sons (see Skottun & Skoyles, 2006a, 2006b, 2007a, 2007c,
2007f) to interpret an attentional deficiency as evidence
for a magnocellular deficit on present evidence is
speculative.

The possible presence of attentional deficits makes it
extremely important to include control conditions in stud-
ies that aim to assess magnocellular sensitivity. Moreover,
this does not only apply to studies of contrast sensitivity
but to all tests of all visual functions in schizophrenia.
For instance, Schechter et al. (2006) found reduced stereo
acuity in schizophrenic subjects. It is not clear to what
extent those reductions are the results of reduced atten-
tion. (In the case of attributing stereo acuity to magnocel-
lular activity, there is also the additional problem that
larger deficits in stereo vision have been found to occur
following parvocellular lesions than after magnocellular
lesions. This suggests that stereo vision is more closely
linked to the parvocellular system than to the magnocel-
lular system, Schiller et al., 1990a). Another concern is
that some studies have made use of staircase methods.
There is evidence to indicate that such methods may be
particularly vulnerable to lapses of visual attention (Stu-
art, McAnally, & Castles 2001). If schizophrenia is asso-
ciated with reduced attention, as has been suggested by
e.g., Laycock et al. (2007), this would substantially com-
plicate the study of visual function in schizophrenia with
regard to possible magnocellular and other visual
deficiencies.

An alternative possibility is that since all studies con-
tained schizophrenic subjects who were medicated to some
degree the general reductions in contrast sensitivity could
be the results of medication. For instance, Chen et al.
(2003) have suggested that reduced contrast sensitivity in
schizophrenic individuals may reflect antipsychotic medica-
tion. However, [Butler et al. (2005, p. 500) found “[n]o sig-
nificant correlation... between contrast sensitivity at 0.5
cycles per degree... and chlorpromazine equivalents”. [But-
ler et al. (2003, 2005) reached a similar conclusion with
regard to backward masking.] O’Donnell et al. (2006)
moreover found larger contrast sensitivity loss (for moving
stimuli) for unmedicated schizophrenic subjects than for
those who received medication (see Fig. 3h). This does
not support the notion that reduced sensitivity is the result
of medication. These observations, however, are to some
extent inconsistent with the observation of Chen et al.
(2003) who reported higher contrast detection thresholds
to be associated with typical antipsychotic drugs but not
with atypical antipsychotic drugs. However, these observa-
tions are themselves inconsistent with the work of Butler
et al. (2005, p. 502) who observed visual deficits also in
patients receiving atypical antipsychotic medication.

The antipsychotic drugs used in treating schizophrenia
affect the dopaminergic system predominantly by acting
on the D2 receptors (Seeman, 2002). Bodis-Wollner and
Tzelepi (1998) found evidence that blocking D2 receptors
in the retina mainly reduces responses to medium and high
spatial frequency stimuli (above about 2 ¢/deg). With the
exception of the study of Keri et al. (2002, static stimuli),
our review uncovered little evidence for such deficits.

It cannot be ruled out that medication may have masked
magnocellular deficits, for instance, by reducing sensitivity
at medium and high frequencies (Bodis-Wollner, 1990;
Bodis-Wollner & Tzelepi, 1998). If there had been a mag-
nocellular deficit (which would have reduced sensitivity at
low frequencies), the combined effect of antipsychotics
(reducing sensitivity at medium and high frequencies),
and a magnocellular deficit could have been the appearance
of a general sensitivity reduction. However, this does not
seem to be likely since it would have required that the med-
ication induced sensitivity loss closely matched the loss of
magnocellular sensitivity. Further, it would not explain
the absence of contrast sensitivity deficits in many studies.
However, it is interesting in this connection to note that
O’Donnell et al. (2006) found unmedicated patients to have
larger sensitivity reductions than medicated patients to
1.3 ¢/deg stimuli (used in the moving condition) but that
the medicated patients had lower sensitivity to 9.9 c/deg
(used in the static condition). In this study it would seem
that the reduced sensitivity to 9.9 ¢/deg could have reflected
D2 mediated medication. (However, the finding that the
unmedicated group showed the largest reductions in sensi-
tivity to 1.3 ¢/deg, in the case of moving stimuli, indicates
that reduced sensitivity under those conditions does not
reflect medication.) Also the finding by Keri et al. (2002)
of reduced sensitivity above 2 ¢/deg may be consistent with
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a D2 receptor mediated medication effect. However, these
are speculations and do not detract from the general con-
clusion that the studies of contrast sensitivity in schizo-
phrenia provide little support for magnocellular deficits.

Keri et al. (2002) suggested that a magnocellular like
deficit might be an artifact resulting from medication.
However in this case the medication would have been
expected to create sensitivity reductions with the character-
istics of magnocellular deficits. The present review finds lit-
tle support for their existence.

It has been suggested that the issue of medication may
be addressed by studying visual function in unaffected sib-
lings or other relatives of schizophrenic patients (Keri
et al., 2004). Chen et al. (2003, p. 1797) found that “[t]he
visual contrast detection threshold for the group of first-
degree relatives of patients with schizophrenia... was not
significantly different from the healthy subjects.” This
might suggest that reduced contrast sensitivity reflects med-
ication. However, unaffiliated relatives are not appropriate
controls when it comes to the issue of isolating the effects of
medication because the relatives differ from the patients
not only with regard to medication but also with regard
to diagnosis (that is, of course, the reason the patients
receive medication and the relatives do not). (O’Donnell
et al., 2006, also studied sensitivity in individuals with
schizotypal personality disorder and found these to have
sensitivity very close to the controls.)

The overall impression of this overview of the issue of
medication is that at present, it is difficult to make a direct
link between medication and the reduced contrast sensitiv-
ity in schizophrenic subjects. This is obviously a topic that
requires further study.

Although contrast sensitivity is the most direct and reli-
able psychophysical test of magnocellular sensitivity, it is
not the only test of magnocellular activity that has been
used in connection with schizophrenia. The notion that
there may be a magnocellular deficit in schizophrenia, is
often brought up in connection with backward masking.
A number of studies have investigated backward masking
in schizophrenic subjects (e.g., Schechter, Butler, Silipo,
Zemon, & Javitt, 2003; Slaghuis, 2004). The results of these
studies have frequently been interpreted in terms of magno-
cellular functioning (e.g., Green, Nuechterlein, & Mintz,
1994; Schechter et al., 2003). In the present context one
aspect of these investigations seems particularly relevant:
Several studies have found that schizophrenic subjects
show enhanced masking (Green et al.,, 1994; Slaghuis,
2004). This has been interpreted as the result of an “overly
active transient system’ (Green et al., 1994, p. 950). In the
contrast sensitivity data reviewed in the present survey the
abnormalities shown by schizophrenic groups are practi-
cally all in the direction of reduced sensitivity (with the
exception of one data point in Fig. 3e and two in
Fig. 3g). It seems that reduced sensitivity would be more
consistent with a reduction in activity than with elevated
activity. Thus, there is a potential discrepancy between
the contrast sensitivity data and the masking studies.

[In the case of masking studies there is also the problem
that their psychophysical effects span much longer time
intervals than the latency difference between the magno-
and parvocellular systems, Skottun, 2001; Skottun &
Skoyles, 2007d.]

Another approach that has been used in attempts to
assess magnocellular sensitivity is Visual Evoked Potentials
(VEP). This approach was used by, e.g., Butler et al.
(2001). In that study two stimulus manipulations were used
to separate magno- and parvocellular activity: spatial fre-
quency and color. To use spatial frequency in suprathresh-
old stimuli to differentiate magno- and parvocellular
responses is problematic since when eccentricity is con-
trolled for, the spatial resolution of magno- and parvocel-
lular neurons is very similar (Blakemore & Vital-Durand,
1986; see their Figs. 6A & 7). Therefore, although spatial
frequency may be used to separate magno- and parvocellu-
lar activity at contrast threshold (i.e., in contrast sensitivity
data), it may be inappropriate to rely on spatial frequency
for separating the two systems using stimuli at contrasts
above threshold. With regard to color, the problem is that
the VEPs are recorded from the scalp above the visual cor-
tex. It is evident that color processing continues at cortical
levels (see, e.g., De Valois & De Valois, 1993). Thus, differ-
ences between color and luminance in VEP responses may
reflect cortical mechanisms rather than the subcortical par-
vocellular and magnocellular system. There is also the
problem that the parvocellular neurons respond to both
color and luminance stimuli (Skottun & Skoyles, 2007¢).
Thus, color and luminance should not be treated as synon-
ymous, respectively, with the parvo- and magnocellular
systems.

With regard to VEP responses, in general, it is difficult
to link these specifically to the subcortical magno- and par-
vocellular systems (see, e.g., Skottun & Skoyles, 2004). This
is illustrated in the study of Butler et al. (2007) who found
abnormal CI1, P1 and N1 amplitudes when using low spa-
tial frequency stimuli (see their Fig. 6). According to these
authors, the C1 amplitude “is driven more strongly by par-
vocellular than magnocellular input” (Butler et al., 2007, p.
418); the P1 amplitude “appears to have dual underlying
generators, including a dorsal generator within dorsolateral
extrastriate cortex (e.g., V3a) and a ventral source within
ventrolateral extrastriate cortex (e.g., V4)... The dorsal gen-
erator is driven predominantly by magnocellular input and
the ventral generator by parvocellular input...” (Butler
et al., 2007, p. 418); and the N1 amplitude ‘“appears to
reflect primarily ventral stream sources” (Butler et al.,
2007, p. 419). Given that Butler et al. (2007) associate the
ventral cortical stream with parvocellular activity, it there-
fore appears that two of the three abnormal amplitudes,
according to their reasoning, are associated predominantly
with the parvocellular system, and that the third amplitude
is associated with a combination of magno- and the parvo-
cellular inputs. It seems difficult to draw conclusions
regarding magnocellular deficiencies on the basis of these
responses.
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Keri et al. (2004), Keri, Kelemen, Janka, and Benedek
(2005) used vernier acuity to assess magnocellular sensitiv-
ity. This was based on the observation of Lee, Wehrhahn,
Westheimer, and Kremers (1995) who found that “[a]t con-
trast of 20% and below, only the MC-pathway [i.e., magno-
cellular system] would appear capable of supporting
vernier performance with our stimuli” (Lee et al., 1995,
p.- 2743). The qualification “with our stimuli” is of impor-
tance in this context since vernier acuity varies consider-
ably with stimulus parameters (Bradley & Skottun, 1987).
There appears to be at least one significant difference
between the stimuli of Keri et al. (2004, 2005) and those
of Lee et al. (2005). In the study of Lee et al. (1995), the
stimuli were presented eccentrically (at 6.5 deg) whereas
Keri et al. (2004, 2005) (as far as we can make out) used
stimuli that were centrally fixated. Therefore, it is not clear
that the conclusion of Lee et al. (1995) applies to the stim-
ulus conditions of Keri et al. (2004, 2005). Furthermore,
estimates have indicated that also cortical simple cells have
spatial resolution consistent with vernier thresholds (Skot-
tun, 2000b). Thus, vernier acuity deficits could reflect cor-
tical dysfunction. In fact, it would seem that a vernier
acuity deficit could indeed be the result of a deficiency at
a number of levels in the visual pathway. This illustrates
the advantage of using contrast sensitivity to test for mag-
nocellular deficits. Not only does this task differentiate
magnocellular from parvocellular deficiencies but it can
also differentiate cortical abnormalities from subcortical
ones, at least from deficiencies in the dorsal stream:
Rudolph and Pasternak (1999, see their Fig. 4) placed
lesions in areas MT and MST of the dorsal cortical stream
and found that this resulted in substantial loss of motion
perception and signal-to-noise detection but only in minor,
and largely temporary, deficiencies in contrast sensitivity.

Based on the assumption that dyslexia is associated with
magnocellular deficits Revheim et al. (2006) studied read-
ing performance in schizophrenic subjects. In accordance
with this assumption, the schizophrenic group showed
poorer reading performance than the controls. This might
suggest support for a magnocellular deficit in the schizo-
phrenic subjects. The problem in this connection is that
the evidence for magnocellular deficits in dyslexia is weak
(Skottun, 2000a; Skottun & Skoyles, 2005, 2007b).

Recently Selemon and Begovic (2007) examined cell
number and volume in the LGN in post mortem brains
of schizophrenic individuals and found that both of these
measures were normal in both the magno- and parvocellu-
lar layers. These findings undermine the hypothesis of a
link between magnocellular deficits and schizophrenia. It
should also be pointed out that the functional significance
of a magnocellular deficit in schizophrenia has not been
made clear in terms of its relevance to the clinical symp-
tomatology of this condition.

In conclusion, the present review has revealed little evi-
dence for a specifically magnocellular deficit in individuals
with schizophrenia. The general trend is for schizophrenic
individuals to show uniform reductions in contrast sensitiv-

ity. This could be consistent with attentional problems or
the effects of medication. In the former case (at least), it
would mean that particular care needs to be exercised when
visual functions are investigated in those with
schizophrenia.
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