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Long-term potentiation of synaptic strength (LTP) in

nociceptive pathways shares principle features with

hyperalgesia including induction protocols, pharmacological

profile, neuronal and glial cell types involved and means for

prevention. LTP at synapses of nociceptive nerve fibres

constitutes a contemporary cellular model for pain

amplification following trauma, inflammation, nerve injury or

withdrawal from opioids. It provides a novel target for pain

therapy. This review summarizes recent progress which has

been made in unravelling the properties and functions of LTP in

the nociceptive system and in identifying means for its

prevention and reversal.
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Introduction
The vulnerability of tissues rises significantly in case of an

injury or an inflammation. The nociceptive systems adapts

to this by lowering response thresholds and by increasing

response magnitude in order to maintain its protective

function [1]. Behaviourally these adaptations manifest as

hyperalgesia in experimental animals [2,3], in volunteers

[4] and in patients [5]. Pro-nociceptive adaptations may

occur at all levels of the neuraxis from nociceptive nerve

endings, to spinal dorsal horn and all the way up to cortical

neuronal networks. In contrast to sensitization of nocicep-

tive nerve endings, some of the central mechanisms may

persist long after the initial cause for pain and the need for

special tissue protection has disappeared. Hyperalgesia

then becomes maladaptive. The underlying central mech-

anisms can be grouped into two major categories: Impaired

inhibition and enhanced excitation in nociceptive path-

ways. Multiple mechanisms have been identified so far

which relate to the synthesis and/or the release of neuro-

transmitters, the density, the distribution and the acti-

vation of neurotransmitter receptors, the single channel
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conductance or the open time probability of ion channels

and the number and morphology of synapses and dendritic

spines. All of which can ultimately modulate the neurons’

intrinsic properties or synaptic strength.

From early on important insights into central components

of hyperalgesia have been obtained in humans [6], from

reflex measurements in experimental animals, for

example [7], as well as from single neuron recordings

in ventral- [8] and more importantly in the dorsal horn [9]

of the spinal cord. It was only in later studies that synaptic

plasticity has been assessed in the nociceptive system

[10,11].

Nociceptive neurons are defined by their input (i.e. the

excitatory mono- or polysynaptic input from nociceptive

nerve fibres), but not by their function. Consequently

nociceptive neurons comprise a very heterogeneous

group of neurons including excitatory and inhibitory

interneurons, projection neurons and motoneurons.

Changes in the responsiveness of nociceptive neurons

may thus have different and even opposing effects on

pain depending upon the neurons’ function. For better

understanding, here, the term ‘Principle Pain Neurons’ is

used for neurons which, when discharging action poten-

tials, trigger the perception of pain (see discussion in

[12]). Here we review recent progress in understanding

synaptic plasticity in spinal nociceptive pathways which,

when expressed in principle pain neurons, amplify pain.

The focus is on most recently published data. Compre-

hensive reviews on the synaptic mechanisms of hyper-

algesia have been published [3,13].

Activity-dependent LTP at the first synapse in
nociceptive pathways
Hyperalgesia and LTP are induced in an activity-de-

pendent manner by strong or lasting discharges in C-

fibres generating a central amplification of nociceptive

responses. Typically LTP is induced by conditioning

high frequency electrical stimulation (�100 Hz; HFS,

Figure 1A) at most synapses in the central nervous system

and also at C-fibre synapses in the superficial spinal dorsal

horn [14]. At C-fibre synapses LTP can further be

induced by conditioning low frequency stimulation

(�2–10 Hz, LFS, Figure 1B) [15], but also by natural

noxious stimulation (subcutaneous capsaicin, Figure 1C,

formalin, noxious heat or pinching) and by acute nerve

injury (sciatic nerve transection or crush) [15–17]. LTP

has been demonstrated in vivo and in vitro, mainly in rats

(e.g. [18��,19,–21,22�,23,24�,25,26��,27,28�] for recent stu-

dies) but also in mice [29]. As a general rule, conditioning

stimuli which induce LTP at C-fibre synapses also cause
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Figure 1
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Induction of LTP at C-fibre synapses.

The figure illustrates different activity-dependent and -independent forms of LTP at C-fibre synapses. The graphs display mean time courses of

amplitudes of C-fibre-evoked field potentials measured in the superficial spinal dorsal horn of adult, deeply anaesthetized rats. Field potentials were

evoked by stimulation of sciatic nerve fibres at C-fibre intensity. Conditioning stimulation consisted of electrical stimulation of sciatic nerve fibre

afferents at a high frequency (A, HFS, 100 Hz given four times for 1 s at 10 s intervals), at a low frequency (B, LFS, 2 Hz for 2 min), or subcutaneous

injection of transient receptor potential vanilloid 1 channel agonist capscaicin (C, 1%, 100 ml). In D LTP was induced upon withdrawal from a brief (1 h)

intravenous application of a high dose of remifentanil (450 mg kg�1 h�1 for 1 h, black horizontal bar). Modified from [15,18��].
hyperalgesia in behaving animals or human subjects (see

below and [3,13] for reviews).

While LTP can be induced at most, if not all synapses in

the central nervous system, the susceptibility for LTP

induction and suitable parameters for LTP induction vary,

however, considerably. A good example are synapses of

nociceptive skin afferents which are apparently less prone

to express LTP as compared to synapses from muscle

afferents [26��]. Conditioning stimulation of C-fibre affer-

ents which innervate the skin may fail to induce LTP while

identical conditioning stimulation of afferents in a mixed

nerve or in a muscle nerve induces robust LTP [26��]. This
www.sciencedirect.com 
difference disappears when brain-derived neurotrophic

factor (BDNF) is applied directly onto the spinal cord at

a low concentration suggesting that lack of this neuro-

trophic factor in cutaneous afferents renders them less

prone to express LTP. The differential susceptibility of

skin versus muscle afferents to express LTP correlates well

with their respective ability to trigger prolonged facilitation

of nociceptive reflexes [30].

Activity-independent forms of LTP
Opioid withdrawal LTP Hyperalgesia and spinal LTP can

also be induced in the absence of any activity in nociceptive

nerve fibres. A clinically relevant example is hyperalgesia
Current Opinion in Pharmacology 2012, 12:18–27
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Figure 2
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which develops after abrupt withdrawal from opioids. This

form of hyperalgesia may also involve expression of LTP at

C-fibresynapses [18��].Abriefapplication of theultra-short

acting m-opioid receptor (MOR) agonist remifentanil in
vivo or D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO)

in vitro leads to an acute depression of synaptic strength in

C-fibres (Figure 1D). Upon withdrawal synaptic strength

not only quickly returns to normal but becomes potentiated

for prolonged periods of time (Figure 1D). The induction

of withdrawal LTP at C-fibre synapses in vitro [18��]
requiresactivation ofpostsynapticG-proteins,postsynaptic

NMDA-receptors and a rise in postsynaptic Ca2+ levels

[18��]. Some MOR agonists activate additional pro-

nociceptive mechanisms. For example, withdrawal from

fentanyl or morphine not only causes opioid withdrawal

LTP but in addition activates descending, facilitatory,

serotonergic pathways acting on spinal 5-HT3 receptors

[31�]. Hyperalgesia results when descending facilitation

and/or opioid withdrawal LTP are expressed at synapses

between nociceptive C-fibres and principle pain neurons.

Other activity-independent forms of LTP are induced at C-

fibre synapses by spinal application of BDNF [20], ade-

nosine triphosphate (ATP) [27] or reactive oxygen species

donors [24] and in nerve injured rats also by tumour

necrosis factor-a (TNFa) [32].

Distinct signalling pathways for LTP induction
versus LTP maintenance
The signalling pathways which are involved in the induc-

tion of LTP are different from those which are required

for its maintenance. They further differ between differ-

ent induction protocols for spinal LTP which are

expressed at C-fibre synapses, see Figures 2 and 3.

Postsynaptic signalling for LTP induction

Virtually all known forms of LTP induction at spinal C-

fibre synapses require a rise in postsynaptic Ca2+ concen-

tration [14,15,18��]. Postsynaptic Ca2+ rises by opening of

postsynaptic NMDA receptors [14], T-type voltage-gated

calcium channels [15], Ca2+-permeable AMPA receptors
( Figure 2 Legend ) Signalling pathways of LTP induction at C-fibre synapse

The schemes summarize elements of the signalling pathways which are requi

The elements involved in LTP induction are typically identified by the respec

were applied topically to the spinal cord. Many of the involved signalling elem

The cellular site(s) of action is/are thus in most cases not known, except when

for Ca2+, NMDAR, and GPCR (which are in boxes here) in A. Suggested signa

by dotted lines. * indicates that activation of this element induces LTP in sp

Abbreviations and literature:

AMPAR: a-amino-3-3hydroxy-5-5methyl-4-4isoxazoleproprionic acid recepto

neurotrophic factor [20,34]; CaMKII: calcium/calmodulin-dependent protein kin

receptor [29,75�]; ERK: Extracellular signal-regulated kinase [76]; GLT-1: Gluta

Inositol triphosphate receptor [14,15]; mGluR1: Metabotropic glutamate recep

Neurokinin 2 receptor [80,81]; NMDAR: N-methyl D-aspartate receptor [11,14–1

PKA: Protein kinase A [73]; PKC: Protein kinase C [15,18��,19,73]; PLC: Phosp

p38MAPK: p38 mitogen-activated protein kinases [20,27]; ROS: Reactive oxy

kinases [25]; TNFa: Tumour necrosis factor a [25,32]; TNFaR: Tumour necros

type 2 [20]; T-type VGCC: T-type voltage gated calcium channel [14,15,19]; 5
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[33] and by Ca2+ release from intracellular Ca2+ stores

triggered by activation of metabotropic glutamate recep-

tors or neurokinin 1 receptors [19]. Metabotropic recep-

tors mobilise intracellular Ca2+ by activation of ryanodine

and inositol-1,4,5 trisphosphate (IP3) receptors via phos-

pholipase C [19], see Figure 2A. The rise in postsynaptic

Ca2+ then activates Ca2+-dependent signalling pathways

involving protein kinase C (PKC), calcium-calmodulin-

dependent protein kinase II (CaMKII) and nitric oxide

synthase (NOS) [15]. Other enzymes involved are extra-

cellular signal-regulated kinase (ERK) which induces a

lasting phosphorylation and activation of the transcription

factor cAMP responsive element-binding protein

(CREB), see Figure 2A [34].

Not all forms of spinal LTP require the activation of all of

these signalling elements for induction. For example,

LTP induced by spinal application of ATP or BDNF

[27,34], but not high frequency stimulation-induced LTP

[32] depends upon p38 mitogen-activated protein kinase

(p38 MAPK). Likewise, high- and low frequency stimu-

lation-induced LTP [15,19] but not opioid-withdrawal

LTP [18] requires activation of CaMKII.

Pre- and postsynaptic signalling for LTP maintenance

While the induction of all known forms of LTP at spinal C-

fibre synapses requires postsynaptic signalling, recent stu-

diessuggest that themaintenanceofLTPmay involveboth,

post- as well as presynaptic signalling, see Figure 3A. The

early phase of LTP consists of the first few hours of LTP

expression. Early phase LTP involves posttranslational

modifications of synaptic proteins, such as phosphorylation

of synaptic AMPA receptors [35]. Conditioning LFS of

primary afferent C-fibres induces phosphorylation of the

GluR1 subunit of spinal AMPA receptor channels at Ser831

[36��] which increases their unitary single channel conduc-

tance. AMPA receptor-mediated currents in spinal nocicep-

tive neurons are further elevated by enhanced AMPA

receptor expression and by modified trafficking [35]. AMPA

receptors are largely located postsynaptically where they

mediate neuronal excitation. AMPA receptors may also be
s.

red (A) or sufficient (B) for the induction of LTP at spinal C-fibre synapses.

tive blockers (required elements) or activators (sufficient elements) which

ents are expressed at more than one cellular site as shown in the figure.

 substances were applied directly into the postsynaptic neuron as shown

lling pathways are indicated by arrows. Diffusion of elements is illustrated

inalised animals only.

r [72]; ATP: Adenosine triphosphate [22�,27]; BDNF: Brain derived

ase II [15,18��,19,73]; D1,5R: Dopamine receptor D1,5 [74]; EphB: Ephrin B

mate transporter 1 [77]; GPCR: G-protein coupled receptor [18��]; IP3R:

tor group 1 [78,79]; NK1R: Neurokinin 1 receptor [14,15,19,80,81]; NK2R:

6,18��,19,81]; NO: Nitric oxide [15,65]; NOS: Nitric oxide synthase [15,65];

holipase C [14,15,19]; P2X7, P2X4: Ionotropic purinergic receptor [22�,27];

gen species [24�]; RyR: Ryanodine receptor [18��,19,21]; SFK: Src family

is factor a receptor [25,32]; TrkBR: Neurotrophic tyrosine kinase receptor

HT3R: Serotonin type 3 receptor [82].
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Figure 3
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expressed at or near the terminals of a subset of dorsal root

ganglion cells where they, by contrast, mediate presynaptic

inhibition but not facilitation [37]. Taken together these

findings suggest a postsynaptic component to LTP main-

tenance via enhanced AMPA receptor function.

By contrast, H.-L. Pan and his colleagues concluded from

their data [38] that both, the induction and the mainten-

ance of opioid withdrawal LTP at unidentified synapses

in spinal dorsal horn is presynaptic. We provided, how-

ever, evidence that the induction of withdrawal LTP is

postsynaptic at C-fibre synapses [18��], see paragraph

above and our eLetter to their report. After any postsyn-

aptic induction the expression of LTP may, nonetheless,

involve presynaptic mechanisms. And indeed upon with-

drawal from fentanyl or morphine but not from remifen-

tanil the paired-pulse ratio of C-fibre-evoked field

potentials decreases suggesting an increased neurotrans-

mitter release [31�]. At synapses in the brain protein

kinase M z (PKMz) is one of the key factors responsible

for the maintenance of LTP [39]. Recent studies suggest

that this kinase is also required for plasticity in nocicep-

tive pathways in the spinal cord [40] and in the anterior

cingulate cortex [41��]. It is presently unknown whether

PKMz is also involved in the maintenance of LTP at C-

fibre synapses.

Late phase LTP develops slowly over the first hours after

LTP induction and persists for days, weeks or even

longer. Expression of late phase LTP requires synapse-

to-nucleus signalling via signalling molecules such as

ERK1/2 and cAMP all of them may trigger the activation

of CREB. The transcription factor CREB controls the

expression of a myriad of proteins, many of which are

relevant for synaptic transmission. Late phase LTP can

consequently be blocked by protein synthesis inhibitors

[34] and may involve incorporation of new AMPA recep-

tors into the postsynaptic membrane [42], see Figure 2B

and [13,43,44] for recent reviews.

Role of glial cells for LTP induction

In the central nervous system neurons and glial cell

heavily interact and mutually influence their functions
( Figure 3 Legend ) Signalling pathways of LTP maintenance and LTP rever

The schemes summarize elements of signalling pathways which are required 

these elements is blocked established LTP diminishes or disappears (requir

elements which, when activated reverse established LTP. These sufficient e

underlined are required for the reversal of LTP. When blocked these elemen

Blockers and activators of the respective elements were usually applied top

expressed at more than one cellular site as shown in the figure. The cellular s

pathways are indicated by arrows. Diffusion of elements is illustrated by do

Abbreviations and literature:

AMPAR: a-amino-3-3hydroxy-5-5methyl-4-4isoxazoleproprionic acid recept

receptor [84]; a2d VGCC: Voltage gated calcium channel [85]; CaMKII: Calciu

monophosphate [84]; D1,5R: Dopamine receptor D1,5 [74]; ERK: Extracellular 

[57]; mAChR: Muscarinic acetylcholine receptor [84]; mGluR1: Metabotropic

NMDAR: N-methyl D-aspartate receptor (unpubl.); NO: Nitric oxide [84]; NOS:

[73]; PP1: Protein phosphatase 1 (unpubl.); RyR: Ryanodine receptor (unpub
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[45]. This also applies to the nociceptive system where

excitation of nociceptive nerve fibres not only activates

spinal neurons but also spinal microglia and astrocytes

which, in turn, release neuroactive substances [46]. The

release of these gliotransmitters  contributes to the induc-

tion and perhaps also to the maintenance of LTP at C-

fibres, see Figures 2A, B, 3A, and B. For example, HFS-

induced LTP can be prevented by blocking or silencing

spinal P2X7 receptors which are largely expressed on

microglia [22�]. Activated glial cells, Src-family kinases

and p38 MAPK all contribute to the induction of LTP at

C-fibre synapses via release of TNFa and activation of

TNF receptor-1 [25]. In the absence of any C-fibre

activation, spinal application of BDNF [20] induces

late-phase LTP which requires activation of spinal

microglia, Src-family kinases and p38 MAPK, see Figure

2A, B. This will consequently induce the release of

TNFa, interleukin-1 and interleukin-6, among others

[47,48].

Is spinal LTP homo- or heterosynaptic in
nature?
Activity-dependent LTP may not only affect synapses

which were activated by the conditioning stimulus. LTP

may also ‘spread’ to inactive synapses converging onto the

same postsynaptic neuron. It is still unknown if LTP in

nociceptive pathways is homosynaptic in nature. Homo-

synaptic LTP at nociceptive synapses with principle pain

neurons leads to primary hyperalgesia. Heterosynaptic

LTP at synapses between nociceptive afferents and

principle pain neurons would cause pain amplification

outside but close to the area of injury or inflammation,

that is, secondary hyperalgesia. A recent study by Carole

Torsney [49��] suggests that hindpaw inflammation by

complete Freund’s adjuvant leads to a heterosynaptic

facilitation of monosynaptic Ad-fibre input to spinal

lamina I neurons expressing the neurokinin-1 receptor.

This finding could well explain heterosynaptic mechan-

isms underlying mechanical hyperalgesia. Ongoing stu-

dies in our laboratory further suggest that in superficial

spinal dorsal horn homo- and heterosynaptic forms of

LTP are expressed at C-fibre- and GABAergic synapses,

respectively [50�].
sal at C-fibre synapses.

for the maintenance of LTP at spinal C-fibre synapses. Thus, when any of

ed elements for LTP maintenance, A). The diagram in B summarizes

lements for the reversal of LTP are underlined. Elements which are not

ts prevent the reversal of LTP by at least one of the sufficient elements.

ically to the spinal cord. Many of the known signalling elements are

ite(s) of action is/are thus not known in most cases. Suggested signalling

tted lines.

or (unpubl.); A1R: Adenosine 1 receptor [83]; a2-AR: a2-adrenergic

m/calmodulin-dependent protein kinase II [73]; cGMP: Cyclic guanosine

signal-regulated kinase [76,86]; GABAAR: g-aminobutyric acid A receptor
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Prevention of LTP induction in nociceptive
pathways
Previous studies have identified a growing number of

targets for preventing LTP induction [13]. Clinically

useful tools for preventing LTP induction include

NMDA receptor antagonists, for example, [11,15,51],

opioids [52,53] and the noble gas xenon [54]. NMDA

receptor antagonists proved effective also in volunteers

[55]. The inducibility of spinal LTP is further modulated

by descending systems originating from various brain

sites. When descending pathways are interrupted con-

ditioning stimuli which are normally ineffective may now

induce LTP [16] indicating a pre-emptive function of

endogenous antihyperalgesic systems. These include

descending oxytocinergic hypothalamic pathways from

the paraventricular nucleus [56]. The induction of LTP

thus not only depends upon the parameters of condition-

ing stimulation and the type of afferent fibres involved,

but also upon the modulation by endogenous pro- and

antinociceptive systems.

Reversal of established LTP in nociceptive
pathways
LTP at synapses between nociceptive nerve fibres and

principle pain neurons causes hyperalgesia. Reversal of

LTP, that is, ‘depotentiation’ thus constitutes a potential

means to erase a memory trace of pain. When benzo-

diazepines are applied directly onto the spinal cord during

early phase LTP its consolidation is impaired [57], see

Figure 3B. A brief (1 h), systemic application of a high

dose of the ultra-short acting MOR agonist remifentanil

reverses LTP induced by low- or high-frequency

conditioning stimulation of C-fibre afferents or by sub-

cutaneous capsaicin [36��]. The opioid-induced depoten-

tiation involves activation of NMDA receptors,

metabotropic glutamate receptors, Ca2+ release from rya-

nodine-sensitive intracellular stores and activation of

protein phosphatase 1, see Figure 3B. AMPA receptor

channels are phosphorylated at Ser831 by LTP-inducing

stimuli. This leads to enhanced single channel conduc-

tance and thus synaptic strength. AMPA receptors are

dephosphorylated at Ser831 by protein phosphatase 1

after high dose opioid administration. This probably

constitutes a key mechanism for opioid-induced depo-

tentiation [36]. Thus, in contrast to current believes

opioids may not only temporarily dampen pain, they

may also eliminate an important cause for hyperalgesia.

Hyperalgesia resulting from a biological
cascade amplifier in a nociceptive daisy chain
LTP is a form of synaptic plasticity which can be induced

at many different, it not all types of excitatory and

inhibitory synapses in the central nervous system. It is

thus not surprising that LTP is not only expressed at the

first synaptic relays in nociceptive pathways [14,15,18��].
LTP has also been observed at synapses of glutamatergic

[28] and GABAergic [50] interneurons in superficial spinal
Current Opinion in Pharmacology 2012, 12:18–27 
dorsal horn and at excitatory synapses between neurons in

the spinal trigeminal subnucleus caudalis and -oralis [58].

Furthermore, LTP can be elicited at synapses in puta-

tively nociceptive relays in the anterior cingulate cortex

[59–61]. When LTP is simultaneously expressed at

multiple sites connected serially along excitatory nocicep-

tive pathways it will boost nociception exponentially. In

the first instance trauma or inflammation trigger sensit-

ization of nociceptors [1]. The resulting enhanced,

ongoing discharges in nociceptive nerve fibres induce

LTP at the first synaptic relays [3,13]. An obvious out-

come of LTP at excitatory synapses is the increased firing

of action potentials of the postsynaptic neuron in response

to presynaptic activity. LTP-inducing stimuli indeed lead

to elevated C-fibre-evoked discharges in dorsal horn

neurons, see [56,62,63] for recent studies. This in turn

will probably facilitate LTP induction at synapses further

downstream in nociceptive pathways [61]. And indeed,

conditioning, LTP-inducing stimulation of sciatic nerve

fibres causes enhanced positron-emission tomography

signals in the primary somatosensory cortex and delayed

responses in the amygdala, the periaqueductal grey, the

rostral ventromedial medulla, and the dorsolateral ponto-

mesencephalic tegmentum [64]. Such a sequence of

events constitutes a biological cascade amplifier in a

nociceptive daisy chain.

Behavioural correlates of LTP in nociceptive
pathways
Conditioning stimuli which induce LTP at spinal C-fibre

synapses lead to hyperalgesia in behaving animals. Under

local muscular paralysis with lidocaine, brief conditioning

HFS of sciatic nerve fibre afferents at C-fibre strength

leads to thermal [65] and to mechanical [66] hyperalgesia

for 6–9 days at the ipsilateral but not at the contralateral

hindpaw.

The final proof for any pain mechanism is a perceptual

correlate in the human subject. In volunteers, transcu-

taneous conditioning HFS of cutaneous nerve fibres

induces a long-lasting increase in pain sensitivity at the

stimulation site (homotopic facilitation) as well as in the

immediately surrounding skin area (heterotopic facili-

tation) [67�]. A number of recent studies have confirmed

and extended the initial reports of perceptual [55,68–70]

and electrophysiological [71�] correlates of spinal LTP in

volunteers, see [3,13] for reviews. At present a direct

comparison between the results obtained from exper-

imental animals with those from human subjects is,

however, hampered by the fact that in humans condition-

ing stimulation was always applied to a small set of

cutaneous afferents, while in most previous animal exper-

iments conditioning electrical nerve stimulation recruited

virtually all fibres in large mixed nerves, thus including

muscle afferents. This probably makes a major difference

as muscle and skin afferents differ substantially in their

ability to express synaptic LTP [26]. Nonetheless the
www.sciencedirect.com
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volunteer studies importantly demonstrate that percep-

tual correlates of LTP can be demonstrated in humans

and they are probably also relevant for pain in patients.

Concluding remarks
LTP is a feature of most, if not all synapses in the central

nervous system but its properties much depend on the

type of synapse involved, the induction protocols used

and the context of its induction. LTP at C-fibre synapses

constitutes a powerful model system for the prolonged

amplification of nociception. LTP probably contributes

to enhanced pain-related behaviour in experimental

animals and to the amplification of pain perception in

human subjects. Understanding LTP in nociceptive

pathways appears to be promising for developing better

strategies for the prevention and the treatment of some

types of chronic pain.
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