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a b s t r a c t

In this paper, the Trefftz method of fundamental solution (FS), called the method of
fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are
derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in
bounded simply connected domains. The exponential and polynomial convergence rates
are obtained from highly and finitely smooth solutions, respectively. The stability analysis
of the MAFS is also made for circular domains. Numerical experiments are carried out for
both smooth and singularity problems. The numerical results coincide with the theoretical
analysis made. When the particular solutions satisfying the biharmonic equation can be
found, the method of particular solutions (MPS) is always superior to the MFS and the
MAFS, based on numerical examples. However, if such singular particular solutions near
the singular points do not exist, the local refinement of collocation nodes and the greedy
adaptive techniques can be used for seeking better source points. Based on the computed
results, theMFS using the greedy adaptive techniquesmay providemore accurate solutions
for singularity problems. Moreover, the numerical solutions by theMAFSwith Almansi’s FS
are slightly better in accuracy and stability than those by the traditional MFS. Hence, the
MAFS with the AFS is recommended for biharmonic equations due to its simplicity.

© 2011 Elsevier B.V. All rights reserved.

1. Description of MFS

For simplicity, first consider the homogeneous biharmonic equation with the clamped boundary conditions

12u = 0 in S, (1.1)
u = f on Γ , (1.2)
uν = g on Γ , (1.3)

where 1 =
∂2

∂x2
+

∂2

∂y2
, S is the bounded simply connected domain, uν =

∂u
∂ν

is the outward normal derivative to Γ , Γ

is its boundary, and f and g are the known functions smooth enough. In real application, we may encounter the non-
homogeneous equation 12u = p(x, y) in S. Suppose that a particular solution ū is found so that 12ū = p(x, y) in S. By
means of a transformation w = u − ū we have the homogeneous biharmonic equation 12w = 0 in S with the clamped
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boundary conditions w = f̄ = f − ū on Γ and wν = ḡ = g − ūν on Γ . Hence we may simply consider (1.1)–(1.3). The
general solutions of biharmonic equations can be represented by

u = u(ρ, θ) = ρ2v + z, (1.4)

where (ρ, θ) are the polar coordinates, and v and z are the harmonic functions. Denote r = |PQ |, P = ρeiθ ,Q = Reiϕ, ϕ

is a radian with 0 ≤ ϕ ≤ 2π , and i =
√

−1. Then r =

R2 + ρ2 − 2Rρ cos(θ − ϕ). Hence the fundamental solutions of

biharmonic equations in 2D are found from (1.4) as

Φ(ρ, θ) = r2 ln r = (R2
+ ρ2

− 2Rρ cos(θ − ϕ)) ln

R2 + ρ2 − 2Rρ cos(θ − ϕ). (1.5)

Denote

Φj(ρ, θ) = r2j ln rj, (1.6)

φj(ρ, θ) = ln rj, (1.7)

where rj = |PQj| =

R2 + ρ2 − 2Rρ cos(θ − ϕj) and Qj = Reiϕj with ϕj ∈ [0, 2π ]. Hence we may choose the linear

combinations of (1.6) and (1.7):

vN =

N−
j=1


cjΦj(ρ, θ) + djφj(ρ, θ)


, (1.8)

where cj and dj are the unknown coefficients to be determined by the boundary conditions (1.2) and (1.3). We may use the
Trefftz method [1]. Denote VN the set of (1.8). Then the Trefftz solution uN is obtained by

I(uN) = min
v∈VN

I(v), (1.9)

where the energy

I(v) =

∫
Γ

(v − f )2 + w2
∫

Γ

(vν − g)2, (1.10)

ν is the normal of Γ , and w is the weight chosen as w = 1/N in computation.
Almansi’s fundamental solutions (simply denoted Almansi’s FS) for biharmonic equations are obtained directly

from (1.4).
Then Almansi’s FS is given by

ΦA(ρ, θ) = ρ2 ln

R2 + ρ2 − 2Rρ cos(θ − ϕ), (1.11)

while the fundamental solutions (1.5) are called the traditional FS in this paper. We may choose the linear combination of
(1.11) and (1.7):

vA
N =

N−
j=1


cjΦA

j (ρ, θ) + djφj(ρ, θ)

, (1.12)

to replace (1.8), where

ΦA
j (ρ, θ) = ρ2 ln rj

= ρ2 ln

R2 + ρ2 − 2Rρ cos(θ − ϕj). (1.13)

The coefficients cj and dj can also be obtained from the Trefftz method (1.9). For the biharmonic equation, the MFS and
numerical experiments are carried out for (1.8) and (1.12) in [2–5]. The other kind of fundamental solution is also introduced
in [2].

Next, let us consider the mixed type of the clamped and simply support boundary conditions on Γ . Then Eq. (1.3) is
replaced by (see [6])

uν = g on Γ1, uνν = g∗ on Γ2, (1.14)

where Γ1 ∪ Γ2 = Γ , and Γ1 ∩ Γ2 = ∅. The admissible functions (1.8) and (1.12) remain, but the energy I(v) in (1.9) is
replaced by

I∗(v) =

∫
Γ

(v − f )2 + w2
∫

Γ1

(vν − g)2 + (w∗

1)
2
∫

Γ2

(vνν − g∗)2, (1.15)

where the weight w∗

1 = w2
= 1/N2.



4352 Z.-C. Li et al. / Journal of Computational and Applied Mathematics 235 (2011) 4350–4367

Below,we take the FS in (1.8) for example, and formulate the collocation equations from (1.14). For Almansi’s FS in (1.12),
the formulation of collocation equations is similar. We have

uN = uN(ρ, θ) =

N−
j=1

cj(r2j ln rj) +

N−
j=1

dj ln rj

=

N−
j=1

{cjΦj(ρ, θ) + djφj(ρ, θ)}, (1.16)

where cj and dj are the coefficients, and rj = |PQj|. By following [7], we choose the uniform collocation nodes on an enlarged
circle of ∂S : Qk = (R, ϕk), ϕk =

2π
N k. Then we obtain the collocation equations for the mixed type of boundary conditions:

uN(ρk, θk) =

N−
j=1

cjΦj(ρk, θk) +

N−
j=1

djφj(ρk, θk) = f (ρk, θk), (ρk, θk) ∈ Γ , (1.17)

w
∂

∂ν
uN(ρk, θk) = w

N−
j=1

cj
∂

∂ν
Φj(ρk, θk) + w

N−
j=1

dj
∂

∂ν
φj(ρk, θk) = wg(ρk, θk), (ρk, θk) ∈ Γ1, (1.18)

w2 ∂2

∂ν2
uN(ρk, θk) = w2

N−
j=1

cj
∂2

∂ν2
Φj(ρk, θk) + w2

N−
j=1

dj
∂2

∂ν2
φj(ρk, θk) = w2g∗(ρk, θk), (ρk, θk) ∈ Γ2, (1.19)

where ν is the normal of Γ1 and Γ2, and w = 1/N .
This paper is organized as follows. In Section 2, the error bounds are derived for the MAFS with Almansi’s FS, and in

Section 3, the stability analysis of the MAFS is also made for circular domains. In Sections 4 and 5, numerical experiments
are carried out for the smooth and singular problems, respectively. In the last section, a few remarks are made.

2. Error analysis for the MAFS with Almansi’s FS

In this section, from [7,8] wewill develop the error analysis of theMAFSwith Almansi’s FS for biharmonic equations with
the clamped boundary conditions (1.2) and (1.3).

Denote two harmonic polynomials of degree n,

Ph
n (ρ, θ) =

a0
2

+

n−
i=1

ρ i(ai cos iθ + bi sin iθ), (2.1)

PH
n (ρ, θ) =

a∗

0

2
+

n−
i=1

ρ i(a∗

i cos iθ + b∗

i sin iθ), (2.2)

with the coefficients ai, bi, a∗

i and b∗

i . The biharmonic solutions can be denoted by

un = PA
n + RA

n, (2.3)
where the biharmonic polynomials of degree n + 2 and the residuals are given by

PA
n = PA

n (ρ, θ) = ρ2PH
n (ρ, θ) + Ph

n (ρ, θ), (2.4)

RA
n = RA

n(ρ, θ) = ρ2RH
n (ρ, θ) + Rh

n(ρ, θ), (2.5)
respectively. The boundary norm is defined by

‖v‖B =


‖v‖

2
0,Γ + w2

∂v

∂ν

2
0,Γ

1/2

, (2.6)

and the Sobolev norms in Hk(S) are defined by

‖v‖k = ‖v‖k,S =


k−

ℓ=0

|v|
2
ℓ,S

1/2

. (2.7)

Suppose that the solution has the regularity property,

u ∈ Hp(S), p ≥ 3. (2.8)
There exist the bounds for the residuals,

‖RH
n (ρ, θ)‖k,S, ‖Rh

n(ρ, θ)‖k,S ≤ C
1

np−k
‖u‖p,S, k = 0, 1. (2.9)
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There exist the bounds for the function v satisfying 1v = 0,

‖v‖k,Γ ≤ C‖v‖k+ 1
2 ,S,

∂v

∂ν


k,Γ

≤ C‖v‖k+ 3
2 ,S, (2.10)

where C is a constant independent of v. Hence from w =
1
N and N ≍ n1 in computation, we have

‖RA
n‖B ≤ ‖RA

n‖0,Γ + w

 ∂

∂ν
RA
n


0,Γ

≤ C{‖RA
n‖ 1

2 ,S + w‖RA
n‖ 3

2 ,S} ≤ C
1

np− 1
2
‖u‖p,S . (2.11)

From (1.10) we have

‖u − uA
N‖B = inf

v∈VN
‖u − v‖B. (2.12)

Let v = ūA
N , where ūA

N := ΣN(PA
n ; ρ, θ) is a special linear combination of (1.12) using Almansi’s FS, to approximate the

biharmoic polynomial PA
n of degree n + 2. Hence we obtain

‖u − uA
N‖B ≤ ‖u − ūA

N‖B ≤ ‖PA
n − ūA

N‖B + ‖u − PA
n ‖B

= ‖PA
n − ΣN(PA

n ; ρ, θ)‖B + ‖RA
n‖B. (2.13)

Since the bounds of ‖RA
n‖B are given in (2.11), the important work is to find the bounds of ‖PA

n − ΣN(PA
n ; ρ, θ)‖B. Since

0 < ρ0 ≤ ρ ≤ C in Γ , (2.14)

the errors

‖PA
n − ΣN(PA

n ; ρ, θ)‖B, (2.15)

have, essentiality, the same bounds

‖Ph
n − ΣN(Ph

n ; ρ, θ)‖0,Γ , (2.16)

for Laplace’s equations.
Let h =

2π
N and R ≠ 1. Choose the following two special linear combinations [8],

v̄h
N = ΣN(Ph

n ; ρ, θ) =

N−
k=1

d̄hkφk(ρ, θ), (2.17)

v̄H
N = ΣN(PH

n ; ρ, θ) =

N−
k=1

d̄Hk φk(ρ, θ), (2.18)

where the coefficients are given explicitly by

d̄hk =
αk,0a0

2
+

n−
m=1

(αk,mam + βk,mbm), (2.19)

d̄Hk =
αk,0a∗

0

2
+

n−
m=1

(αk,ma∗

m + βk,mb∗

m), (2.20)

and

αk,0 =
h

2π ln R
, αk,m = h

mRm

π
cosmkπ, m = 1, 2, . . . , (2.21)

βk,m = h
mRm

π
sinmkπ, m = 1, 2, . . . . (2.22)

By following Li [7,8], we have the following lemma.

Lemma 2.1. Let (2.14) hold and N satisfy

22q+1


R
rmin

−2N

≤ 1. (2.23)

1 The notation N ≍ n or N ≍ O(n) denotes that there exist two constants C1 and C2 such that C1n ≤ N ≤ C2n.
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For PH
n and Ph

n there exist the bounds,

‖PH
n − ΣN(PH

n ; ρ, θ)‖q,Γ ≤ CNq


R
rmax

2n−N  rmax

rmin

n

‖PH
n ‖0,Γ , (2.24) ∂

∂ν
{PH

n − ΣN(PH
n ; ρ, θ)}


q,Γ

≤ CNq+1


R
rmax

2n−N  rmax

rmin

n

‖PH
n ‖0,Γ , (2.25)

where rmax = max r|Γ , rmin = min r|Γ and C is a constant independent of N and n.

Lemma 2.2. Let (2.14) hold. There exist the bounds,

‖ρ2PH
n − ΣN(ρ2PH

n ; ρ, θ)‖k,Γ ≤ C‖PH
n − ΣN(PH

n ; ρ, θ)‖k,Γ , (2.26) ∂

∂ν
{ρ2PH

n − ΣN(ρ2PH
n ; ρ, θ)}


k,Γ

≤ C


‖PH

n − ΣN(PH
n ; ρ, θ)‖k+1,Γ +

 ∂

∂ν
{PH

n − ΣN(PH
n ; ρ, θ)}


k,Γ


, (2.27)

where C is a constant independent of N and n, and the linear combination of Φj(r, θ) is given by

ΣN(ρ2PH
n ; ρ, θ) =

N−
j=1

d̄Hj Φj(ρ, θ), (2.28)

with the coefficients d̄Hj in (2.20).

Proof. From (2.14) we have

‖ρ2PH
n − ΣN(ρ2PH

n ; ρ, θ)‖k,Γ = ‖ρ2
{PH

n − ΣN(PH
n ; ρ, θ)}‖k,Γ

≤ C‖PH
n − ΣN(PH

n ; r, θ)‖k,Γ . (2.29)

This is the first result (2.26). Next, there exist the derivative relations,

∂v

∂ν
=

∂v

∂ρ
cos(ν, ρ) +

∂v

ρ∂θ
cos(ν, θ) (2.30)

∂v

ρ∂θ
=

∂v

∂ν
cos(ν, θ) +

∂v

∂s
cos(s, θ), (2.31)

where ν and s are the normal and tangent directions of Γ , respectively. Let v = ρ2PH
n , we have from (2.30) and (2.31)

∂ρ2PH
n

∂ν
= 2ρPH

n cos(ν, ρ) + ρ2


∂

∂ρ
PH
n


cos(ν, ρ) + ρ2


∂

ρ∂θ
PH
n


cos(ν, θ)

= 2ρPH
n cos(ν, ρ) + ρ2


∂

∂ρ
PH
n


cos(ν, ρ) + ρ2


∂

∂ν
PH
n


cos2(ν, θ) + ρ2


∂

∂s
PH
n


cos(s, θ) cos(ν, θ). (2.32)

Hence we obtain from (2.14) ∂

∂ν
{ρ2PH

n − ΣN(ρ2PH
n ; ρ, θ)}


k,Γ

≤ 2max
Γ

ρ


‖{PH

n − ΣN(PH
n ; ρ, θ)}‖k,Γ

+

 ∂

∂ν
{PH

n − ΣN(PH
n ; ρ, θ)}


k,Γ

+ ‖PH
n − ΣN(PH

n ; ρ, θ)‖k+1,Γ



≤ C


‖PH

n − ΣN(PH
n ; ρ, θ)‖k+1,Γ +

 ∂

∂ν
{PH

n − ΣN(PH
n ; ρ, θ)}


k,Γ


. (2.33)

This gives the second result (2.27), and completes the proof of Lemma 2.2. �

We have the following theorem.

Theorem 2.1. Let (2.8), (2.14) and (2.23) hold. Then for w =
1
N , there exists the bound,

‖PA
n − ΣN(PA

n ; ρ, θ)‖B ≤ C


R
rmax

2n−N  rmax

rmin

n

, (2.34)
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where C is a constant independent of N and n, the special linear combination is given by

ūA
N = ΣN(PA

n ; ρ, θ) =

N−
j=1

(d̄Hj Φj(ρ, θ) + d̄hj φj(ρ, θ)), (2.35)

and d̄Hj and d̄hj are given in (2.19) and (2.20), respectively.

Proof. First we have from (2.4),

‖PA
n − ΣN(PA

n ; ρ, θ)‖B ≤ ‖ρ2PH
n − ΣN(ρ2PH

n ; ρ, θ)‖B + ‖Ph
n − ΣN(Ph

n ; ρ, θ)‖B, (2.36)

and from (2.6)

‖ρ2PH
n − ΣN(ρ2PH

n ; ρ, θ)‖B ≤ C


‖ρ2PH

n − ΣN(ρ2PH
n ; ρ, θ)‖0,Γ +

1
N

 ∂

∂ν
{ρ2PH

n − ΣN(ρ2PH
n ; ρ, θ)}


0,Γ


. (2.37)

From (2.8) and (2.3) we have PA
n ≈ u, and

‖PA
n ‖B ≤ C‖u‖B = O(1).

Hence from (2.4) and (2.14), there exist the bounds

‖PH
n ‖0,Γ , ‖Ph

n‖0,Γ = O(1). (2.38)

From (2.36)–(2.38) and Lemmas 2.1 and 2.2, we have

‖ρ2PH
n (ρ, θ) − ΣN(ρ2PH

n ; ρ, θ)‖B ≤ C


R
rmax

2n−N  rmax

rmin

n

‖PH
n (ρ, θ)‖0,Γ0

≤ C


R
rmax

2n−N  rmax

rmin

n

, (2.39)

and then from (2.36) and (2.38)

‖PA
n − ΣN(PA

n ; ρ, θ)‖B ≤ ‖ρ2PH
n − ΣN(ρ2PH

n ; ρ, θ)‖B + ‖Ph
n − ΣN(Ph

n ; ρ, θ)‖B

≤ C


R
rmax

2n−N  rmax

rmin

N

{‖PH
n (ρ, θ)‖B + ‖Ph

n (ρ, θ)‖B}

≤ C


R
rmax

2n−N  rmax

rmin

N

. (2.40)

This completes the proof of Theorem 2.1. �

Theorem 2.2. Let (2.8), (2.14) and (2.23) hold, and choose N such that
R

rmax

2n−N  rmax

rmin

n

=
1

np− 1
2
. (2.41)

Then when w =
1
N , there exists the bound,

‖u − uA
N‖B ≤ C

1

Np− 1
2
, (2.42)

where C is a constant independent of N and n.

Proof. From (2.13), (2.11) and Theorem 2.1, when w =
1
N we obtain the following error bound,

‖u − uA
N‖B ≤ C


R

rmax

2n−N  rmax

rmin

n

. (2.43)

Under (2.41), Eq. (2.43) leads to

‖u − uA
N‖B ≤ C

1

np− 1
2
. (2.44)
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For (2.41), we may choose

N ≈ 2n +
1

ln


R
rmin

 nrmax

rmin
+


p −

1
2


ln n


≤ Cn, (2.45)

which implies n ≍ N . We have from (2.44)

‖u − uA
N‖B ≤ C

1

Np− 1
2
. (2.46)

This completes the proof of Theorem 2.2. �

Note that Eq. (2.46) is similar to the bounds for Laplace’s equation in [8]. Moreover, theH1 errors in S may also be derived,
to give the optimal convergence rate:

‖u − uN‖1,S = O


1
Np−1


, (2.47)

provided that u ∈ Hp(S) (p ≥ 3). When the solution is highly smooth, the exponential convergence rates can also be
obtained. For the biharmonic equations with the mixed type of boundary conditions (1.14), the error bounds of the MAFS
can also be derived, to give the polynomial convergence rates as in (2.46) and (2.47).

Remark 2.1. The error estimates of the MFS for (1.8) are more challenging and difficult, details appear in a subsequent
paper, although the same error bounds as (2.46) and (2.47) are obtained.

3. Stability analysis on circular domains for the MAFS with Almansi’s FS

We consider only the circular domains in this paper. For the non-circular domains, the stability analysis may follow [9].
From (1.8), we have

uN = uN(ρ, θ) =

N−
j=1

cj(ρ2 ln rj) +

N−
j=1

dj ln rj

=

N−
j=1

cjΦA
j (ρ, θ) + djφj(ρ, θ), (3.1)

where cj and dj are the coefficients, rj = |PQj|, P = ρeiθ ,Qj = Reiϕj , ϕj =
2π
N j, and i =

√
−1. We also choose the uniform

collocation nodes at Pk = ρeiθk and θk =
2π
N k. Then we have the 2N collocation equations:

uN(ρ, θk) =

N−
j=1

cjΦA
j (ρ, θk) +

N−
j=1

djφj(ρ, θk) = f (ρ, θk), (3.2)

w
∂

∂ρ
uN(ρ, θk) = w

N−
j=1

cj
∂

∂ρ
ΦA

j (ρ, θk) + w

N−
j=1

dj
∂

∂ρ
φj(ρ, θk) = wg(ρ, θk), (3.3)

where k = 1, 2, . . . ,N , and w is a weight constant with w = 1/N . Hence the 2N coefficients cj and dj can be obtained by
(3.2) and (3.3) if the system of equations is nonsingular, which will be confirmed in Lemma 3.3 given below. Denote (3.2)
and (3.3) as the form of matrix and vector:

Ax = b, (3.4)

where the vectors

x = {c1, . . . , cN , d1, . . . , dN}
T , (3.5)

b = {f1, . . . , fN , wg1, . . . , wgN}
T , (3.6)

and the matrix A ∈ R2N×2N is decomposed as

A =

[
A11(Φ) A12(φ)

wA21(DΦ) wA22(Dφ)

]
, (3.7)
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where

A11(Φ) ∈ RN×N
=

ΦA
1 (θ1) · · · ΦA

N(θ1)
...

. . .
...

ΦA
1 (θN) · · · ΦA

N(θN)

 ,

A12(φ) ∈ RN×N
=

φA
1 (θ1) · · · φA

N(θ1)
...

. . .
...

φA
1 (θN) · · · φA

N(θN)

 ,

A21(DΦ) ∈ RN×N
=


∂

∂ρ
ΦA

1 (θ1) · · ·
∂

∂ρ
ΦA

N(θ1)

...
. . .

...
∂

∂ρ
ΦA

1 (θN) · · ·
∂

∂ρ
ΦA

N(θN)

 ,

A22(Dφ) ∈ RN×N
=


∂

∂ρ
φA
1 (θ1) · · ·

∂

∂ρ
φA
N(θ1)

...
. . .

...
∂

∂ρ
φA
1 (θN) · · ·

∂

∂ρ
φA
N(θN)

 . (3.8)

The matrices A12(φ) and A22(Dφ) result from the Dirichlet and Neumann problems of Laplace’s equations on circular
domains, given in [9], respectively. All four sub-matrices A11(Φ), A12(φ), A21(DΦ) and A22(Dφ) are circulant. Denote the
eigen-matrix (see [10], p.32)

F∗(∈ CN×N) =
1

√
N


1 1 1 · · · 1
1 ω ω2

· · · ωN−1

1 ω2 ω4
· · · ω2(N−1)

...
...

. . .
...

1 ωN−1 ω2(N−1)
· · · ω(N−1)(N−1)

 , (3.9)

where ω = e
2π
N i

= cos 2π
N + i sin 2π

N , F is unitary with FF∗
= F∗F = I, and I is the identity matrix. Based on Davis [10], p. 73,

we have

A11(Φ) = F∗Λ11(Φ)F, A12(φ) = F∗Λ12(φ)F, (3.10)
A21(DΦ) = F∗Λ21(DΦ)F, A22(Dφ) = F∗Λ22(Dφ)F.

In (3.10), the matrices, Λ11(Φ), Λ12(φ), Λ21(DΦ) and Λ22(Dφ), are diagonal. We have from [9]

Λ12(φ) =

λ0(φ) O
. . .

O λN−1(φ)

 , (3.11)

Λ22(Dφ) =

λ0(Dφ) O
. . .

O λN−1(Dφ)

 , (3.12)

Λ11(Φ) =

λ0(Φ) O
. . .

O λN−1(Φ)

 ,

Λ21(DΦ) =

λ0(DΦ) O
. . .

O λN−1(DΦ)

 . (3.13)

Since the eigenvalues of similar matrices are the same, the eigenvalues of A are just those of Λ, denoted by

Λ =

[
Λ11(Φ) Λ12(φ)

wΛ21(DΦ) wΛ22(Dφ)

]
=

[
diag(λi(Φ)) diag(λi(φ))

wdiag(λi(DΦ)) wdiag(λi(Dφ))

]
. (3.14)
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By using matrix F∗ in (3.9), we obtain from (3.10)

A =

[
A11(Φ) A12(φ)

wA21(DΦ) wA22(Dφ)

]
=

[
F∗ O
O F∗

] [
Λ11(Φ) Λ12(φ)

wΛ21(DΦ) wΛ22(Dφ)

] [
F O
O F

]
. (3.15)

By a permutation transformation P,

PTΛP =



λ0(Φ) λ0(φ)
wλ0(D(φ)) wλ0(Dφ)

. . .

λi(Φ) λi(φ)
wλi(DΦ) wλi(Dφ)

. . .

λN(Φ) λN(φ)
wλN(DΦ) wλN(Dφ)


.

We have a lemma.

Lemma 3.1. Let the eigenvalues of matrix φ be

λk(φ) = c0 + c1ρk
+ c2ρN−k, (3.16)

where c0, c1 and c2 are constants independent of ρ . Then there exist the eigenvalues for matrices Dφ, 8 and D8,

λk(Dφ) = c1kρk−1
+ c2(N − k)ρN−k−1, (3.17)

λk(8) = c0ρ2
+ c1ρk+2

+ c2ρN−k+2, (3.18)

λk(D8) = 2c0ρ + c1(k + 2)ρk+1
+ c2(N − k + 2)ρN−k+1. (3.19)

Proof. Consider the matrix eigenvalue problem,

Bx = λx (3.20)

where B is the circulant matrix dependent of ρ, and the eigenvectors are given in (3.9). Since ∂
∂ρ

(B), ρ2B and ∂
∂ρ

(ρ2B) are
also circulant, with the same eigenvectors, the conclusions (3.17)–(3.19) hold. �

Lemma 3.2. For the matrix A ∈ Rn×n with n = 2N from MAFS, when w =
1
N , R ≠ 1 and ρ < R, there exist the leading

eigenvalues

λ+

0 ≍ N, λ−

0 ≍ 1, (3.21)

Proof. Since the leading eigenvalue is given from [9] by

λ0(φ) = N ln R + ε ≈ N ln R, ε ≈ −

ρ

R

N
,

we have

λ0(Dφ) ≈ 0, λ0(Φ) = λ0(ρ
2φ) ≈ Nρ2 ln R, λ0(DΦ) ≈ 2Nρ ln R.

Hence we obtain the matrix of the leading eigenvalue λ±

0 ,[
λ0(Φ) λ0(φ)

wλ0(DΦ) wλ0(Dφ)

]
≈

[
Nρ2 ln R N ln R

w2ρN ln R 0

]
=

[
Nρ2 ln R N ln R
2ρ ln R 0

]
= ln R

[
Nρ2 N
2ρ 0

]
. (3.22)

From (3.22) the leading eigenvalues are given by λ±

0 = µ± ln R, where µ± satisfy

λ2
− Nρ2λ − 2ρN = 0,

to give

λ±

0 =
ln R
2

{Nρ2
±


N2ρ4 + 8ρN}.
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When R ≠ 1 and N is large, we have

λ+

0 ≍ Nρ2, λ−

0 ≍
2
ρ

,

and the desired result (3.21) follow. �

Lemma 3.3. Let all the conditions in Lemma 3.2 hold. Then there exists the minimal eigenvalue

min
k

|λk(A)| ≍
1
N

ρ

R

 N
2

. (3.23)

Proof. The original eigenvalues are given in [9]

λk(φ) ≈ −
N
2

[
1
k

ρ

R

k
+

1
N − k

ρ

R

N−k
]

, k = 1, 2, . . . ,N − 1. (3.24)

Based on Lemma 3.1 we have

λk(Dφ) ≈ −
N
2ρ

[ρ

R

k
+

ρ

R

N−k
]

, (3.25)

λk(Φ) = ρ2λk(φ) ≈ −
Nρ2

2

[
1
k

ρ

R

k
+

1
N − k

ρ

R

N−k
]

, (3.26)

λk(DΦ) =
∂

∂ρ
λk(Φ) ≈ −

Nρ

2

[
k + 2
k

ρ

R

k
+

N − k + 2
N − k

ρ

R

N−k
]

. (3.27)

Without loss of generality, let N be even. Let k =
N
2 we obtain

λ N
2
(φ) ≈ −2

ρ

R

 N
2

, λ N
2
(Dφ) ≈ −

N
ρ

ρ

R

 N
2

, (3.28)

λ N
2
(Φ) ≈ −2ρ2

ρ

R

 N
2

, λ N
2
(DΦ) ≈ −(N + 4)ρ

ρ

R

 N
2

. (3.29)

Then we obtain the matrix at k =
N
2 and w =

1
N ,

[
λk(Φ) λk(φ)

wλk(DΦ) wλk(Dφ)

]
≈

 −2ρ2
ρ

R

 N
2

−2
ρ

R

 N
2

−w(N + 4)ρ
ρ

R

 N
2

−w
N
ρ

ρ

R

 N
2


= −

ρ

R

 N
2

 2ρ2 2
1 +

4
N


ρ

1
ρ

 . (3.30)

The eigenvalues of (3.30) are given by λ±

N
2

= −


ρ

R

 N
2 µ±, where µ± satisfy the quadratic equation,

λ2
−


2ρ2

+
1
ρ


λ −

8ρ
N

= 0. (3.31)

Similarly we have

µ+
≍ 1, µ−

≍
1
N

. (3.32)

Then the minimal eigenvalue is obtained by

min
k

|λk(A)| = |λ−

N
2
(A)| ≍

1
N

ρ

R

 N
2

. (3.33)

This is the desired result (3.23).
From Lemmas 3.2 and 3.3 we have the following theorem. �
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Theorem 3.1. Let all the conditions in Lemma 3.2 hold. Then there exists the bound

Cond =

max
k

|λk(A)|

min
k

|λk(A)|
≤ CN2


R
ρ

 N
2

. (3.34)

Theorem 3.1 is for the circular domains. For the bounded simply connected domains, the exponential bounds of condition
number can also be derived by following the arguments in [9].

4. Plate bending problem with smooth solutions

Consider (1.1)–(1.3) in the rectangular domain S = {(x, y)| − 1 < x < 1, − 1 < y < 1}, and choose the true solution,

u(x, y) = exp(x) cos y + (x2 + y2) exp(y) cos x. (4.1)

The plate bending problemwith themixed type of the clamped and simply supported boundary conditions is given in (1.14).
For the collocation Eqs. (1.17)–(1.19), the number m of collocation nodes is often chosen to be larger than the number n of
source nodes. Then we obtain the over-determined system of linear algebraic equations

Ax = b, (4.2)

where the matrix A ∈ Rm×n(m ≥ n), x ∈ Rn and b ∈ Rm. The traditional condition number is defined by

Cond =
σmax

σmin
, (4.3)

where σmax and σmin are the maximal and the minimal singular value of the matrix A, respectively. The new effective
condition number is defined in [11,12] as

Cond_eff =
‖b‖

σmin‖x‖
, (4.4)

where ‖x‖ is the Euclidean norm. The boundary errors are given by

‖ϵ‖B = ‖u − uN‖B =


I(uN),

where

I(v) =

∫
Γ

(v − f )2 + w2
1

∫
Γ1

(vν − g)2 + w2
2

∫
Γ2

(vνν − g∗)2,

with wi = 1/N i. When Γ2 = ∅, the mixed type is just the purely clamped boundary conditions. We use both the traditional
MFS with (1.8) and the MAFS with Almansi’s FS with (1.12). For the clamped boundary conditions, the errors and condition
numbers are listed in Tables 1 and 2, where M denotes the number of uniform collocation nodes along each edge of ∂S.
Then n = 2N and m = 8M in (4.2). We also use the Trefftz method with the particular solutions (2.4), to give the method
of particular solutions (MPS), and their results are listed in Table 3. Interestingly, the numerical solutions of the MAFS are
slightly better than those of the MFS. However, the MPS is superior to both the MFS and the MAFS.

Next, we still choose the true solution (4.1), but use the mixed type of the clamped and simply supported boundary
conditions:

u = f , uν = g, on x = ±1, (4.5)
u = f , uνν = g∗, on y = ±1,

where ν is the exterior normal of ∂S. The errors and condition numbers of the MFS, the MAFS and the MPS are listed in
Tables 4–6. All tables and figures are carried out by Java programs with double precision. The errors of the MFS and the
MAFS are larger than those of the MPS, because their huge Cond and Cond_eff adversely affect the accuracy of numerical
solutions.

From the above tables and figures, we may also conclude that for smooth solutions, the errors of the MFS may catch up
with those of MPS, if the huge effective condition numbers will not deteriorate the accuracy in the sense that there exist
the sufficient significant digits for the numerical solutions obtained. Evidently, it is due to better stability that the MPS is
superior to the MFS and the MAFS.

5. Plate bending problem with crack singularity

5.1. The MFS using uniform source points on the enlarged circle

Consider the homogeneous biharmonic equation12u = 0 in S, where the solution domain is also a rectangle: S : {(x, y) |

−1 < x < 1, 0 < y < 1}. We choose a crack model of singularity from [6], shown in Fig. 1. The section OD represents an
interior crack under the clamped conditions: u = uν = 0. The symmetric conditions, uν = uννν = 0 on OA ∪ BC ∪ CD, are
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Table 1
Errors and condition numbers for the biharmonic equationwith the clamped boundary condition by theMFS and theMAFSwith R = 2.0, where ϵ = u−uN
or ϵ = u − uA

N .

N M ‖ϵ‖B ‖ϵ‖0,S ‖ϵ‖1,S Cond Cond_eff ‖x‖

MFS

11 5 2.25(−1) 8.77(−2) 6.08(−1) 1.54(4) 86.0 27.3
21 10 2.16(−3) 4.46(−4) 6.89(−3) 1.28(6) 5.95(3) 23.6
31 15 2.89(−5) 4.33(−6) 9.07(−5) 4.10(7) 1.89(5) 19.6
41 20 6.03(−7) 3.72(−8) 1.94(−6) 1.32(9) 6.24(6) 16.6

MAFS with Almansi’s FS

11 5 6.44(−2) 1.78(−2) 1.46(−1) 1.13(3) 1.62(2) 4.64
21 10 4.40(−4) 9.18(−5) 1.53(−3) 4.05(4) 6.49(3) 2.99
31 15 5.62(−6) 8.06(−7) 1.47(−5) 7.85(5) 1.26(5) 2.44
41 20 1.37(−7) 8.25(−9) 4.14(−7) 1.79(7) 2.89(6) 2.12

Table 2
Errors and condition numbers for the biharmonic equationwith the clamped boundary condition by theMFS and theMAFSwith R = 5.0, where ϵ = u−uN
or ϵ = u − uA

N .

N M ‖ϵ‖B ‖ϵ‖0,S ‖ϵ‖1,S Cond Cond_eff ‖x‖

MFS
11 5 2.86(−2) 1.11(−2) 8.73(−2) 2.22(7) 1.69(2) 2.33(3)
21 10 1.46(−6) 5.35(−7) 5.89(−6) 1.64(11) 6.68(5) 3.14(3)
31 15 3.10(−11) 1.71(−11) 8.48(−11) 4.41(14) 1.79(9) 2.59(3)

NAFS with Almansi’s FS
11 5 1.32(−2) 6.06(−3) 4.18(−2) 2.69(5) 6.54(2) 1.18(2)
21 10 4.42(−7) 2.02(−7) 2.09(−6) 9.98(8) 1.79(6) 1.15(2)
31 15 1.78(−12) 8.30(−13) 9.72(−12) 1.67(12) 2.98(9) 95.3

Table 3
Errors and condition numbers for the biharmonic equation with the clamped boundary condition by the MPS, where ϵ = u − uN .

N = M ‖ϵ‖B ‖ϵ‖0,S ‖ϵ‖1,S Cond Cond_eff ‖x‖

5 8.24(−3) 1.73(−3) 1.44(−2) 31.6 5.74 3.25
10 4.92(−7) 1.36(−7) 1.46(−6) 3.00(2) 13.2 3.25
15 1.98(−12) 5.15(−13) 6.83(−12) 7.93(2) 7.46 3.25

Table 4
Errors and condition numbers for the biharmonic equation with the mixed type of the clamped and simply supported boundary conditions by theMFS and
the MAFS with R = 2.0, where ϵ = u − uN or ϵ = u − uA

N .

N M ‖ϵ‖B ‖ϵ‖0,S ‖ϵ‖1,S Cond Cond_eff ‖x‖

MFS

11 5 1.87(−1) 2.27(−1) 1.07 1.83(4) 1.37(2) 20.3
21 10 2.01(−3) 1.05(−3) 8.23(−3) 1.46(6) 6.48(3) 24.1
31 15 2.62(−5) 6.33(−6) 1.08(−4) 4.87(7) 2.24(5) 19.6
41 20 5.77(−7) 5.71(−8) 2.32(−6) 1.52(9) 7.20(6) 16.6

MAFS with Almansi’s FS

11 5 4.72(−2) 3.04(−2) 1.72(−1) 1.38(3) 2.10(2) 4.35
21 10 4.15(−4) 1.65(−4) 1.74(−3) 4.11(4) 6.58(3) 2.99
31 15 5.00(−6) 1.04(−4) 2.02(−5) 8.35(5) 1.34(5) 2.45
41 20 1.32(−7) 1.29(−8) 4.89(−7) 1.85(7) 2.99(6) 2.12

Table 5
Errors and condition numbers for the biharmonic equation with the mixed type of the clamped and simply supported boundary conditions by theMFS and
the MAFS with R = 5.0, where ϵ = u − uN or ϵ = u − uA

N .

N M ‖ϵ‖B ‖ϵ‖0,S ‖ϵ‖1,S Cond Cond_eff ‖x‖

MFS
11 5 2.48(−2) 1.19(−2) 8.91(−2) 3.35(7) 2.59(2) 2.28(3)
21 10 1.28(−6) 7.39(−7) 6.93(−6) 2.00(11) 8.14(5) 3.14(3)
31 15 4.87(−11) 3.59(−11) 1.28(−10) 4.72(14) 1.92(9) 2.59(3)

MAFS with Almansi’s FS
11 5 9.72(−3) 2.07(−2) 7.97(−2) 3.20(5) 8.11(2) 1.13(2)
21 10 3.46(−7) 3.03(−7) 2.46(−6) 1.04(9) 1.86(6) 1.15(2)
31 15 1.45(−12) 1.04(−12) 1.20(−11) 1.79(12) 3.19(9) 95.3

Table 6
Errors and condition numbers for the biharmonic equation with the mixed type of the clamped and simply supported boundary conditions by the MPS,
where ϵ = u − uN .

n = M ‖ϵ‖B ‖u − un‖0,S ‖u − un‖1,S Cond Cond_eff ‖x‖

5 1.04(−2) 3.34(−3) 2.05(−2) 29.4 4.99 3.25
10 5.50(−7) 1.51(−7) 7.11(−12) 8.70(2) 7.93 3.25
15 2.32(−12) 6.06(−13) 7.11(−12) 8.70(2) 7.93 3.25
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Fig. 1. Model II called in [6].

required, where ν is the outward normal direction to the boundary ∂S. On AB when the simply supported conditions are
provided, we choose the biharmonic equation with the following boundary condition, called Model II in [6] and also in this
paper, see Fig. 1

u|OD = 0, uy|OD = 0, uy|OA = 0, uyyy|OA = 0, (5.1)
u|AB = 1, uxx|AB = 0, uy|BC = 0, uyyy|BC = 0, ux|CD = 0, uxxx|CD = 0.

There exists a singularity at O due to the intersection of the clamped and simply supported boundary conditions. The true
function can be found as in [6,12]

u =

∞−
i=1

(digi(r, θ) + cifi(r, θ)), (5.2)

where

gi(r, θ) = r i+1/2


cos


i −

3
2


θ −

i − 3
2

i + 1
2

cos

i +

1
2


θ


, (5.3)

fi(r, θ) = r i+1
{cos(i − 1)θ − cos(i + 1)θ}. (5.4)

To compute the errors of MFS, we choose the highly accurate solution u30 =
∑30

i=1(digi(r, θ) + cifi(r, θ)) as the exact
solution u, where the coefficients di and ci are also given in [6]. For the boundary condition (5.1), define an energy on the
boundary by

I(v) =

∫
AB

((v − 1)2 + w2
2v

2
xx) +

∫
BC

(w2
1v

2
y + w2

3v
2
yyy)

+

∫
CD

(w2
1v

2
x + w2

3v
2
xxx) +

∫
OA

(w2
1v

2
y + w2

3v
2
yyy) +

∫
DO

(v2
+ w2

1v
2
y ), (5.5)

where the weight wi = O


1
N i


, and 2N is the number of fundamental solution terms. We use midpoint method to

approximate (5.5). In computation, we use only the MFS with (1.8), and choose R = 1.6 and R = 2.0. In this subsection, the
source points are uniformly located on the outside circle lR = {(r, θ)|r = R, 0 ≤ θ ≤ 2π}, where R > rmax and rmax =

√
5
2 .

Since the FS in (1.6) and (1.7) are smooth on ∂S, the local refinements of collocation nodes Pi nearO should be used (see [13]).
The errors and condition numbers are listed in Tables 7 and 8. From Fig. 2, it is shown that the derivatives of these numerical
solutions are large and undesirable. Then we may improve the MFS by greedy adaptive techniques in the next subsection,
to select the source points differently.

5.2. Greedy adaptive techniques to select source points

Greedy adaptive techniques are the algorithms to select better source points, which were first introduced for radial basis
functions in [14], and then for the MFS in [15,16]. The idea is as follows. First we assume many potential source points, as
shown in Fig. 3. Then we select the effective source points, based on smaller errors. For the potential source points as shown
in Fig. 3, we obtain Fx = b, where F = Rm×n. Then we reduce n as small as possible, to pick up the useful columns of the
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Table 7
Errors and condition numbers for Model II with R = 1.6 and M = 55 by the MFS, where ε = u − uN , 2N is the number of FS terms, and M is the number
of collocation points of AB.

N 10 20 30 40 50

|ε|B 1.84(−1) 3.59(−2) 1.17(−2) 1.17(−2) 7.31(−3)

|ε|
∞,AB∪DO 1.79(−1) 7.99(−2) 5.37(−2) 3.49(−2) 2.50(−2)

|εν |∞,AD∪BC∪CD 1.50(−1) 9.78(−2) 6.42(−2) 4.90(−2) 4.41(−2)
|ενν |∞,AB 2.00(−1) 3.38(−2) 6.41(−2) 2.58(−2) 6.45(−2)
|εννν |∞,OA∪BC∪CD 7.15(−1) 9.67(−1) 1.51 4.04 4.68

‖ε‖0,S 1.23(−1) 5.29(−2) 4.46(−2) 6.48(−2) 7.06(−2)
‖ε‖1,S 4.35(−1) 2.20(−1) 1.77(−1) 1.90(−1) 1.88(−1)

Cond 2.23(2) 1.03(5) 1.51(7) 1.64(9) 1.21(11)
Cond_eff 19.53 1.39(2) 1.85(2) 1.22(3) 3.66(3)

‖x‖2 68.7(−1) 4.01(1) 4.37(3) 5.35(4) 1.19(6)

Table 8
Errors and condition numbers for Model II with R = 2.0 and M = 55 by the MFS, where ε = u − uN , 2N is the number of FS terms, and M is the number
of collocation points of AB.

N 10 20 30 40

|ε|B 1.12(−1) 3.56(−2) 2.10(−2) 1.18(−2)
|ε|

∞,AB∪DO 1.84(−1) 8.31(−2) 5.38(−2) 3.50(−2)
|εν |∞,AD∪BC∪CD 1.00(−2) 9.52(−2) 8.24(−2) 5.59(−2)
|ενν |∞,AB 1.41(−1) 1.37(−1) 9.57(−2) 5.78(−2)
|εννν |∞,OA∪BC∪CD 1.50(−1) 8.86(−2) 1.78 3.82
‖ε‖0,S 1.31(−1) 6.85(−2) 3.83(−2) 6.39(−2)
‖ε‖1,S 4.48(−1) 2.45(−1) 1.67(−1) 1.87(−1)
Cond 1.05(3) 6.53(3) 2.11(8) 3.61(10)
Cond_eff 2.13(1) 5.73(1) 2.87(2) 7.30(2)
‖x‖2 2.04 1.63(2) 1.47(4) 1.61(6)
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Fig. 2. Numerical derivatives ux|y=0 and uy|y=0 by the MFS (N = 80 and R = 1.6) without greedy adaptive techniques, where the source points are
uniformly located on the outside circle lR .

m × nmatrix F in a data-dependent way without cutting the numberm of rows down for Fx = b. To maintain stability, we
use orthogonal transformations, but choose the columns dependent on the right-hand side vector b.

Let F = (f1, . . . , fn), where fi are the column vectors. To approximate b by multiples of a nonzero vector f, the error
vector is given by b − f ·

bT f
fT f . We may find j such that the error

‖b‖2 −
(bT fj)2

‖fj‖2
2

, 1 ≤ j ≤ n,

is minimal, where ‖b‖2 is the Euclidean norm. This is equivalent to choose the maximum of the values:

(bT fj)2

‖fj‖2
, ‖fj‖2

2 ≠ 0.
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Fig. 3. The initial source points.
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Fig. 4. The 100(=N1 + N2) source points selected by Algorithm I.

So we have Algorithm I given in Appendix (also see [14–16]), and apply it to our problem. Note that the local refinements
of collocation nodes near the singular point O can also be applied. Since the final source points are different for the Φj and
φj after the greedy adaptive techniques, the FS solutions in (1.8) are modified as

vN =

N1−
j=1

cjΦj(r, θ) +

N2−
j=1

djφj(r, θ). (5.6)

The initial and final source points are drawn in Figs. 3 and 4, respectively. From Fig. 4, we can see that there exist more
source points selected near to the singular point O; such results coincide with [15,16]. The numerical results are listed in
Table 9 with N =

1
2 (N1 + N2), and the error curves are drawn with Figs. 5 and 6. From Table 9, we can see the following

asymptotic relations,

|ε|B ≈ O(0.90N), ‖ε‖0,S ≈ O(0.96N), ‖ε‖1,S ≈ O(0.96N),

Cond ≈ O(1.58N), Cond_eff ≈ O(1.08N),

where ε = u − uN , and the effective condition number is given in (4.4).
From Tables 8 and 9 at N = 40, we cite the errors:

‖ε‖0,S = 6.39(−2), ‖ε‖1,S = 1.87(−1), in Table 8,
‖ε‖0,S = 1.01(−2), ‖ε‖1,S = 3.62(−2), in Table 9,

and the condition numbers:

Cond = 3.61(10), Cond_eff = 7.30(2), in Table 8,
Cond = 1.52(8), Cond_eff = 2.90(3), in Table 9.

Hence, the errors of solutions and derivatives by the MFS using the greedy adaptive techniques are smaller, while the
condition numbers are smaller but the effective condition numbers are larger. Comparing Figs. 5 and 6 with Fig. 2 in
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Table 9
Errors and condition numbers for Model II by the MFS with greedy adaptive techniques, where ε = u − uN , N =

1
2 (N1 + N2), 2N is the number of FS

terms, andM = 55 is number of collocation points on AB.

N 10 20 30 40 50 60

|ε|B 6.20(−2) 8.23(−3) 1.61(−3) 6.49(−4) 2.21(−4) 1.19(−4)
‖ε‖0,S 1.31(−1) 3.56(−2) 1.60(−2) 1.01(−2) 6.37(−3) 4.56(−3)
‖ε‖1,S 4.33(−1) 1.30(−1) 5.47(−2) 3.62(−2) 2.36(−2) 1.68(−2)
Cond 6.84(3) 1.08(4) 6.46(6) 1.52(8) 1.56(10) 4.45(13)
Cond_eff 19.3 2.39(2) 1.21(3) 2.90(3) 5.53(3) 2.10(4)
‖x‖2 1.86 2.32 1.98(2) 2.35(3) 1.66(5) 1.30(8)
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Fig. 5. Numerical derivatives ux|y=0 and uy|y=0,1 by the MFS (N1 + N2 = 80) with greedy adaptive techniques.
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Fig. 6. Numerical derivatives ux|y=0 and uy|y=0,1 by the MFS (N1 + N2 = 100) with greedy adaptive techniques.

Section 5.1, the derivative curves are significantly closer to the true curves. Although the greedy adaptive techniques
need more CPU time, the source points selected by the greedy adaptive techniques are advantageous for the MFS for the
biharmonic equation with singularity.

Finally in Table 10, we cite the results of the MPS from [12]. From Table 10, we can see that

|ε|B = O(0.59N), Cond = O(1.55N), Cond_eff = O(1.09N).
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Table 10
The computed results by the MPS from [12], where ε = u − uN , 2N is the number of PS terms, and σmax and σmin are the maximal and minimal singular
values of the discrete matrix F, respectively.

N M |ε|B Cond Cond_eff σmax σmin

5 40 3.33(−3) 228 41.7 6.29 2.76(−2)
10 80 5.68(−5) 6.78(3) 268 29.2 4.32(−3)
15 120 2.80(−6) 1.06(5) 820 150 1.41(−3)
20 160 1.38(−7) 1.11(6) 1.86(3) 692 6.23(−4)
25 200 3.30(−9) 9.61(6) 3.55(3) 3.14(3) 3.27(−4)
30 240 2.34(−10) 9.58(7) 6.04(3) 1.84(4) 1.92(−4)
35 280 1.51(−11) 8.60(8) 9.46(3) 1.05(5) 1.23(−4)

Comparing Table 10 with Tables 7–9, the solutions of the MPS are significantly more accurate than those of the MFS even
using the greedy adaptive techniques. Such conclusions can be seen from the data cited from Tables 9 and 10:

|ε|B = 6.49(−4), Cond = 1.52(8), Cond_eff = 2.90(3), in Table 9 at N = 40,
|ε|B = 1.15(−11), Cond = 8.60(8), Cond_eff = 9.46(3), in Table 10 at N = 35.

Remark 5.1. Better choice of source points is an important issue for the MFS. In [17–19], for Laplace’s equation on the disk
domain Sρ = {(r, θ)|r ≤ ρ, 0 ≤ θ ≤ 2π}, the source points Q ∗

j are uniformly located on the larger circle lR(R > ρ), and
the exponential convergence rates of the MFS are derived for smooth solutions. In [20], a better choice of source points is
explored for the bounded simply connected domain S as follows. By a conformal mapping T , the S can be transformed to a
disk domain Sρ , and the source points Qj are obtained by the inverse conforming mapping: Qj = T−1Q ∗

j . Such techniques
have been implemented numerically for the MFS for the singularity problems: the biharmonic equation with the boundary
conditions (5.1). The computed results do not show a better behavior than the MFS using the uniform source points directly
on lR; details are omitted. Hence, the techniques in [20] for choosing source points may not be helpful for the MFS for
singularity problems. Based on the computed results in this subsection, the greedy adaptive techniques are recommended.

Remark 5.2. To conclude this section, let us discuss the relations amongMFS,MAFS andMPS.We classify them as the Trefftz
method described in (1.9) but with different admissible functions in VN , such as FS, with Almansi’s FS and PS. Numerical
experiments and comparisons are reported in [21] for smooth solutions, to show that the MFS and MAFS achieve the
equivalent convergence rates by the MPS, but offer much larger condition numbers. Such comparisons retain the same
for singularity problems shown in this paper. These results coincide with the analysis in Sections 2 and 3, where the
optimal convergence rates and the exponential growth rates of Cond are derived. In [22,23], a similarity (but not an intrinsic
equivalence) of algorithms between MFS and MPS is discovered for Laplace and biharmonic equations. The fundamental
solutions can be expanded into particular solutions (such as harmonic or biharmonic polynomials; see [24]), and a particular
solution can also be expressed as a linear combination of FS; see Section 2. However, the bounds of their errors and condition
numbers are distinct; see the analysis in Sections 2 and 3. In [25,26], the series expansions of FS are fully used for the null
field method (NFM) for circular domains with circular holes, where the semi-analytic solutions are obtained. Their explicit
discrete algorithms and strict analysis will be reported in another paper.

6. Concluding remarks

To conclude this paper, let us make a few concluding remarks.

1. In this paper, themethod of fundamental solution (MFS) is used for biharmonic equations with both smooth and singular
solutions. Both the traditional FS as r2j ln rj and Almansi’s FS as ρ2 ln rj are chosen for the MFS, the latter is denoted as the
MAFS.

2. The error analysis for the MAFS is made in Section 2, to give the polynomial convergence rates, and in Section 3, the
stability analysis of theMAFS is alsomade for circular domains, to give the exponential growth rates of condition number.
Their numerical results in Section 4 are slightly better than those by the MFS. Hence, we may simply choose the MAFS
with (1.12) for engineering applications. It is noteworthy to pointing out that this paper is the first time to explore the
analysis of the MAFS and to compare the MAFS with the traditional MFS.

3. For the biharmonic equation with smooth solutions, the clamped and the mixed boundary conditions are considered.
The MFS, the MAFS and the MPS (i.e., the Trefftz method using the particular solutions) are used, and the source points
are uniformly located on the enlarged circle lR with R > rmax. The errors of the MFS and the MAFS can cope with those
of the MPS, if the instability will not adversely affect the accuracy. However, in computation with double precision in
Section 4, the MPS is superior to both MFS and MAFS, due to better stability.

4. For the biharmonic equations with crack singularity, the MPS results are given in [6]. We use the MFS with source points
on circles with local refinements of collocation nodes, and the computed results are not satisfactory; see Fig. 2. In general,
adding one or two particular solutions is useful. Whenever we find the particular solutions of the problem, we should
choose the MPS. However, for singularity problems, if the singular particular solutions cannot be found, we may adapt
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the MFS by the local refined collocation nodes, and by selecting the source points from the greedy adaptive techniques.
From the numerical results in Section 5.2, the greedy adaptive techniques may provide better solutions for singularity
problems.
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Appendix

Algorithm I.

Step1: Pick the column of Fwhose multiples approximate b best:
1. Copy F → A.
2. Find j such that (bT aj)2

‖aj‖22
is maximal and ‖aj‖2 ≠ 0.

3. Set u = aj, and v = u/‖u‖2.
4. Store j.

Step2: Transform the problem to the space orthogonal to the column:
5. A = A − v(vT )A.
6. b = b − v(vT )b.

If the satisfactory solution is obtained, the computation is terminated; otherwise repeat Steps 1 and 2.
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