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Keywords: are obtained from highly and finitely smooth solutions, respectively. The stability analysis

Method of fundamental solutions

" . of the MAFS is also made for circular domains. Numerical experiments are carried out for
Almansi’s fundamental solutions

Biharmonic equation both smooth and singularity problems. The numerical results coincide with the theoretical
Singularity problem analysis made. When the particular solutions satisfying the biharmonic equation can be
Trefttz method found, the method of particular solutions (MPS) is always superior to the MFS and the
Error and stability analysis MAFS, based on numerical examples. However, if such singular particular solutions near
the singular points do not exist, the local refinement of collocation nodes and the greedy
adaptive techniques can be used for seeking better source points. Based on the computed
results, the MFS using the greedy adaptive techniques may provide more accurate solutions
for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS
are slightly better in accuracy and stability than those by the traditional MFS. Hence, the

MAFS with the AFS is recommended for biharmonic equations due to its simplicity.
© 2011 Elsevier B.V. All rights reserved.

1. Description of MFS

For simplicity, first consider the homogeneous biharmonic equation with the clamped boundary conditions

A’u=0 inS, (1.1)
u=f onrl, (1.2)
u, =g onl, (1.3)
where A = 5’722 + %, S is the bounded simply connected domain, u, = g—ﬂ is the outward normal derivative to I", I"

is its boundary, and f and g are the known functions smooth enough. In real application, we may encounter the non-
homogeneous equation A?u = p(x, y) in S. Suppose that a particular solution # is found so that A% = p(x,y) inS. By
means of a transformation w = u — u we have the homogeneous biharmonic equation A?w = 0in S with the clamped
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boundary conditions w = f = f —éionI" and w, = § = g — i, on I". Hence we may simply consider (1.1)-(1.3). The
general solutions of biharmonic equations can be represented by
u=u(p,0) = p*v+z, (1.4)

where (p, ) are the polar coordinates, and v and z are the harmonic functions. Denote r = |PQ|, P = pe?, Q = Rel?, ©

isaradianwith0 < ¢ < 2m,andi = +/—1.Thenr = \/RZ + p? — 2Rp cos(@ — ¢). Hence the fundamental solutions of
biharmonic equations in 2D are found from (1.4) as

®(p,0) =rInr = (R* + p*> — 2Rp cos(0 — ¢)) In/R2 + p? — 2Rp cos(6 — ). (1.5)
Denote

®j(p,0) =17 InT;, (1.6)

¢i(p,0) =Inrj, (1.7)

where r; = |[PQ;| = /R2 + p2 —2Rpcos(d — ¢;) and Q; = Re¥ with ¢; € [0, 27]. Hence we may choose the linear
combinations of (1.6) and (1.7):

N

oy =Y _{G®i(p. 0) + digy(p. 0)}. (18)

=1

where ¢; and d; are the unknown coefficients to be determined by the boundary conditions (1.2) and (1.3). We may use the
Trefftz method [1]. Denote Vy the set of (1.8). Then the Trefftz solution uy is obtained by

I(uy) = minI(v), (1.9)
veVy

where the energy

1) = /(v e w2/<vv . (110)
r I

v is the normal of I", and w is the weight chosen as w = 1/N in computation.

Almansi’s fundamental solutions (simply denoted Almansi’s FS) for biharmonic equations are obtained directly
from (1.4).

Then Almansi’s FS is given by

®4(p,0) = p?In/R2 + p? — 2Rp cos(6 — ), (1.11)

while the fundamental solutions (1.5) are called the traditional FS in this paper. We may choose the linear combination of
(1.11)and (1.7):

N

vi =Y _{G@](p.0) + digsj(p. 0)}, (1.12)
j=1

to replace (1.8), where
M (p,0) = p’Inr

= o’In \/Rz + p? — 2Rp cos(6 — ). (1.13)

The coefficients ¢; and d; can also be obtained from the Trefftz method (1.9). For the biharmonic equation, the MFS and
numerical experiments are carried out for (1.8) and (1.12) in [2-5]. The other kind of fundamental solution is also introduced
in[2].

Next, let us consider the mixed type of the clamped and simply support boundary conditions on I". Then Eq. (1.3) is
replaced by (see [6])

u,=g only, u,=g" only, (1.14)

where I U I3, = I',and I7 N I, = @. The admissible functions (1.8) and (1.12) remain, but the energy I(v) in (1.9) is
replaced by

I"(v) = / W= +w [ -2+ @) [ (v, —g9?% (1.15)
r I 5]

where the weight w} = w? = 1/N2.
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Below, we take the FS in (1.8) for example, and formulate the collocation equations from (1.14). For Almansi’s FSin (1.12),
the formulation of collocation equations is similar. We have

N N
uy =un(p.0) = Y (7 Inr)+ Y dilnr

i=1 =1

N
=Y {g®i(p. 0) + digj(p. )}, (1.16)

=1
where ¢; and d; are the coefficients, and r; = [PQ;|. By following [7], we choose the uniform collocation nodes on an enlarged
circleof 8S : Qx = (R, ¢x), ok = ZW”k. Then we obtain the collocation equations for the mixed type of boundary conditions:

N N
un (o6, 0) = Y Gk, 0) + Y iy (pr 0 = f (P ), (o, ) € T, (1.17)
j=1 j=1
9 Ny N9
Wt (Pr, ) = w ;cja—vcbj(pk, O + w ;dfa—v@(pk, 0 = wg (o ), (px, O) € T, (1.18)
2 N 82 N 82
wzﬁuw(pk, Or) = w? cha?%(pk, ) + w? Zdjwqu(pk, 00 = w2 (o 0, (o ) € I, (1.19)

j=1 j=1
where v is the normal of Iy and I3, and w = 1/N.

This paper is organized as follows. In Section 2, the error bounds are derived for the MAFS with Almansi’s FS, and in
Section 3, the stability analysis of the MAFS is also made for circular domains. In Sections 4 and 5, numerical experiments
are carried out for the smooth and singular problems, respectively. In the last section, a few remarks are made.

2. Error analysis for the MAFS with Almansi’s FS
In this section, from [7,8] we will develop the error analysis of the MAFS with Almansi’s FS for biharmonic equations with

the clamped boundary conditions (1.2) and (1.3).
Denote two harmonic polynomials of degree n,

n
a .
Pl(p.0) = 5" + " pl(a;cosif + bysini6), (2.1)
i=1
a; LI
P (p,0) = 50 + Z p'(af cosif + b} sinif), (2.2)
i=1
with the coefficients a;, b;, a and b}". The biharmonic solutions can be denoted by
u, = PA + RY, (2.3)
where the biharmonic polynomials of degree n + 2 and the residuals are given by
Py =P)(p,6) = Py (p, 0) + Py(p, 6), (24)
Ry =Ri(p,0) = p°Rl (p,0) + Ry (p, 6), (2.5)
respectively. The boundary norm is defined by
5 1/2
lolls = {1012 +w? | o> (26)
0,1 v or ’ .

and the Sobolev norms in H¥(S) are defined by

X 1/2
vl = llvlls = (Z |v|§,5> : (2.7)

=0
Suppose that the solution has the regularity property,

ueHPES), p=3. (2.8)
There exist the bounds for the residuals,

1
IRY (0, Dllks. IR0, O)lles < Clullps, k=0,1. (2.9)
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There exist the bounds for the function v satisfying Av = 0,

Il r = Cllvll 1 s, H

o = Cllvlly s 55 (2.10)

k.

where C is a constant independent of v. Hence from w = % and N =< n' in computation, we have

]
IRalls < IR lo.r + w HaURA = CHIRM s + wiIR 3 6} < C— lullps. (2.11)
o,r nP~2
From (1.10) we have
lu — uyllp = inf [u— v]|s. (2.12)
veVy
Letv = ﬁf;,, where ﬁ’,'\‘, = Xy (P,’]‘; p, 0) is a special linear combination of (1.12) using Almansi’s FS, to approximate the
biharmoic polynomial P,‘:‘ of degree n 4 2. Hence we obtain
lu—uyllp < llu— iyl < 1P} — iy lls + llu — P15
= 1P} = =n(Py; . O)lls + IR, - (2.13)
Since the bounds of ||Rf1‘||3 are given in (2.11), the important work is to find the bounds of ||Pf1‘ — 2y (Pfl‘; P, 0)]|p. Since
O<po<p<C inl, (2.14)
the errors
1Py — Zn (P35 p, O) s, (2.15)

have, essentiality, the same bounds

P} — Zn (P p. O)lo,r (2.16)

for Laplace’s equations.
Leth = ZW” and R # 1. Choose the following two special linear combinations [8],

N
oy = In (P p.0) = ) dign(p. 6), (2.17)

k=1

oy = InP0,0) =) dlo(p,0), (2.18)

N
k=1
where the coefficients are given explicitly by

~ k000 .
dZ =73 + Z(ak,mam + Brmbm), (2.19)
m=1
= a,00g - * b*
= =30+ ) @nty + Bimb}), (2.20)
m=1
and
h mR™
o= ——, ogm=h——cosmkr, m=12,..., (2.21)
' 27 InR ’ b4
mR™ |
Bxm =h——sinmknr, m=1,2,.... (2.22)
b4

By following Li [7,8], we have the following lemma.

Lemma 2.1. Let (2.14) hold and N satisfy

R —2N
22a+1 <—) <1 (2.23)

T'min

1 The notation N = nor N = O(n) denotes that there exist two constants C; and C; such that C;n < N < Gyn.
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For P and P!" there exist the bounds,

R 2n—N r n
Py — En(PY; 0, 6)llg.r < CN ( ) ( “‘“) 1P lo. (2.24)
T'max T'min
9 H a1 R 2N \" H
—{P; — Zn(P; p,0)} <CN — 1P, llo,r> (2.25)
v q.r T'max T'min

where rmax = Maxr|r, rmin = mMinr|; and C is a constant independent of N and n.

Lemma 2.2. Let (2.14) hold. There exist the bounds,

0% = En(0?Py's p, llr < CIPY = En(Py's p, D) llrs (2.26)
H;v{pzp,’f — Zn(p°Py p, 0)) o =cC {MP,? = Zn(Pys . )l r + H;‘){P,’f — Zn(Py: p, 0)) “} . (227
where C is a constant independent of N and n, and the linear combination of @;(r, 0) is given by
N
(e’ p.0) = dl'di(p. 0). (2.:28)
=1
with the coefficients d' in (2.20).
Proof. From (2.14) we have
I10°PY = Zn (0P p, Ollir = [10°(PY — Zn Py p, )} llkr
< CIPy = Zn (P51, 0) k- (2.29)
This is the first result (2.26). Next, there exist the derivative relations,
av av av
™ =3 cos(v, p) + 236 cos(v, 0) (2.30)
% = g—z cos(v, 0) + % cos(s, 0), (2.31)

where v and s are the normal and tangent directions of I", respectively. Let v = pZP,f', we have from (2.30) and (2.31)
ap*PH
av

d 0
= 2oP" cos(v, 2L _Z pH Y cos(v, 20— _pilcos(n, 0
PP, cos(v, p) + p {8,0"} W, p)+p PETA (v, 0)

d d 0
= 2pP" cos(v, p) + p? {%Pf} cos(v, p) + p? {EP,?} cos?(v, 6) + p? {&P’Ij} cos(s, ) cos(v, 6). (2.32)

Hence we obtain from (2.14)

bl
Hav{p%’,’? = IR p O} < ngxp{n{z’,? — EnPy . OMlkr

k,.I"

+ Ha{P,t’ — 5P 0. 0))
v

+ [P — =N (P p, 9)||k+1,r}

} . (2.33)
k.r

k,.I"

0
<cC {HP:’ — NP o, O kg r + HaU{P{f — IR p,0))

This gives the second result (2.27), and completes the proof of Lemma 2.2. O

We have the following theorem.

Theorem 2.1. Let (2.8), (2.14) and (2.23) hold. Then for w = ., there exists the bound,

1
N’

R 2n—N r n
P} — Zn (P p, 0)l5 < c( ) ( ““‘*) , (2.34)

I'max T'min
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where C is a constant independent of N and n, the special linear combination is given by
N - -
iy = Sn(Phip.0) = Y _(d'i(p. 0) + d'¢i(p. 0)). (2.35)
j=1

and aj’f’ and t_i]h are given in (2.19) and (2.20), respectively.
Proof. First we have from (2.4),

1P} — Zn (P 0, 0)lls < [10°PY — Zn 0Py p, 05 + 1Py — Zn(PY: p, 0) I3, (2.36)
and from (2.6)

1 8
2P — Zn(p°PE; p, 0) 15 < C{1Ip*P — Zn(p*PH; p, 0)llo.r + N ”av{sz,’,’ — Zn(p’PY p, )}

] . (2.37)
o,

From (2.8) and (2.3) we have P;‘ ~ u, and

IP1ls < Cliulls = O(1).
Hence from (2.4) and (2.14), there exist the bounds

1P o, r» [P} llo.r = 0(1). (2.38)
From (2.36)-(2.38) and Lemmas 2.1 and 2.2, we have

R 2n—N r n
102Pf (p, 0) — Zn(p*Pf; p, 0)ll5 < c( ) ( "‘“) IPY (o, 0)llo,r,
T'max T'min

2n—N n
< c( R ) (”‘“’X) , (2.39)
T'max T'min
and then from (2.36) and (2.38)

1Py — En(Pys 0, 0)lls < [10°Py — En(p°Py's p, 0)lls + 1P} — En(Pys p, 0) s
R 2n—N r N
max
¢ ( ) (r ) {IP (. 0)lls + IIP (0. 0) 5}

I'max min

R 2n—N r N
T'max T'min

This completes the proof of Theorem 2.1. O

IA

IA

Theorem 2.2. Let (2.8), (2.14) and (2.23) hold, and choose N such that

R 2n—N r n 1
( ) (““X> = . (2.41)
T'max T'min nP~2

Then when w =

1, there exists the bound,

lu—uplls < C , (2.42)

NP2
where C is a constant independent of N and n.

Proof. From (2.13),(2.11) and Theorem 2.1, when w = % we obtain the following error bound,

R 2n—N r n
lu—uylls < C ( ) ( “’“) : (2.43)
T'max T'min

Under (2.41), Eq. (2.43) leads to

lu—ufllp < C—. (2.44)

1
nf2
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For (2.41), we may choose

1 Tmax 1
N~2n4+ ——— in—+(p— =) Inn; <Cn, (2.45)
In (L) Tmin 2

Tmin

which implies n < N. We have from (2.44)

lu—uplls < (2.46)

_1
2

This completes the proof of Theorem 2.2. O

Note that Eq. (2.46) is similar to the bounds for Laplace’s equation in [8]. Moreover, the H' errors in S may also be derived,
to give the optimal convergence rate:

1
lu —unllis =0 <W> ) (2.47)

provided that u € HP(S) (p > 3). When the solution is highly smooth, the exponential convergence rates can also be
obtained. For the biharmonic equations with the mixed type of boundary conditions (1.14), the error bounds of the MAFS
can also be derived, to give the polynomial convergence rates as in (2.46) and (2.47).

Remark 2.1. The error estimates of the MFS for (1.8) are more challenging and difficult, details appear in a subsequent
paper, although the same error bounds as (2.46) and (2.47) are obtained.

3. Stability analysis on circular domains for the MAFS with Almansi’s FS

We consider only the circular domains in this paper. For the non-circular domains, the stability analysis may follow [9].
From (1.8), we have

N N
uy = uy(p,0) = ch(,o2 Inry) + Zd]- Inr;
=1 =1

N
=Y olp.0) + digs(p. 0). (3.1)

j=1

where ¢; and d; are the coefficients, j = [PQj|, P = pe'’, Q; = Re'¥, ¢ = %”j, and i = +/—1. We also choose the uniform
collocation nodes at P, = pe'’t and 6 = %”k. Then we have the 2N collocation equations:

N N
uy(p. 0) = Y _ @ p.0) + D digi(p.0) = f(p. 0. (32)
=1 =1
9 N9 N
wo—un (9, 00 = w Y Go—B (0, 00 +w Y di—;(p, 61) = wg(p, ), (33)
P = “op = "op
where k = 1,2, ..., N, and w is a weight constant with w = 1/N. Hence the 2N coefficients ¢; and d; can be obtained by

(3.2) and (3.3) if the system of equations is nonsingular, which will be confirmed in Lemma 3.3 given below. Denote (3.2)
and (3.3) as the form of matrix and vector:

Ax =b, (34)
where the vectors

x={cr,....cn,dq, ..., dy}", (3.5)

b={fi,....fu.wgr. ..., wgn}", (3.6)

and the matrix A € R*V*2N is decomposed as

_| Au(®) Az (o)
A—[wAzl(D@ WAzz(D¢)]’ (37)
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where
QL) - DO
A]](‘p) GRNXN = s
2Oy - Dp(ON)
L0 - Pu(6)
Ap(p) € RN = ;
PN o PhON)
9 9
—®hO) - — i)
ap 1 ap
A1 (DP) e RVN = : : ,
8 A 8 A
%@ ©On) - %% 6n)
9 9
Wb’?(el) 5«/43(91)
Ay (Dp) € RN = : : . (3.8)
8 A 8 A
%qﬁ] On) - %d)N (6n)

The matrices Aj2(¢) and Ay, (D¢) result from the Dirichlet and Neumann problems of Laplace’s equations on circular
domains, given in [9], respectively. All four sub-matrices A11(®), A12(¢), A1 (D®) and Ay, (D¢) are circulant. Denote the
eigen-matrix (see [10], p.32)

1 1 1
» w? N1
1 2 4 2(N—1)
Fi(e CV*N) = ﬁ 1 w w w , (3.9)
i w[\}—l wZ(N'—l) . oN-DN-1)

where » = e ¥ = cos ZW” +1isin ZW” Fis unitary with FF* = F*F = [, and I is the identity matrix. Based on Davis [10], p. 73,
we have

A1 (P) =F A1(Q)F, Ap(p) = F A;(9)F, (3.10)
Ay (DP) = F Ay (DD)F, Az (D) = F* Apy(DP)F.
In (3.10), the matrices, A11(D), A12(¢), A21(DP) and Ay, (D), are diagonal. We have from [9]

Ao(@) 0
Ap(p) = ) (3.11)
0 An-1()
Ao (Do) 0
Ay (Do) = , (3.12)
0 An-1(Dg)
Ao(D) 0
A(P) = )
0 An-1(P)
o(DD) 0
Ay (DD) = . (3.13)
0 An-1(DP)

Since the eigenvalues of similar matrices are the same, the eigenvalues of A are just those of A, denoted by

A =[ An(P) An(d) ]_ diag(Ai(®)) diag(Ai(¢))

wAn (D) WAz (DY) —[wdiag@,-(m)) wdiag(x,v(Dqs))]' (314)
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By using matrix F* in (3.9), we obtain from (3.10)

A— A]]((p) A12(¢)
T |wA;1(D®)  wAy (D)

_[F* OH An(®)  An(@) ][F O] (3.15)
T {0 F||wAy(D®) wAxnDe)|[|0 F|- ’
By a permutation transformation P,

r Ao(P) Ao(9) 7

who(D())  who(Dep)

B ' M@ M)
PTAP = wA{(D®)  wA;(De)

AnN(DP) An ()
L w)\.N (D(p) wAN(Dq&)_

We have a lemma.

Lemma 3.1. Let the eigenvalues of matrix ¢ be

(@) = co+ c1p* + e p" 7, (3.16)
where cg, ¢; and c, are constants independent of p. Then there exist the eigenvalues for matrices D¢, ® and D®,

(D) = cikp* ™! + (N — k)", (3.17)

M(®) = cop” + c1p 2 + e p"N T2, (3.18)

Me(D®) = 2c0p + c1(k+ 2) " + (N — k 4+ 2)pN 1, (3.19)

Proof. Consider the matrix eigenvalue problem,
Bx = AX (3.20)

where B is the circulant matrix dependent of p, and the eigenvectors are given in (3.9). Since %(B), p?B and %(pZB) are
also circulant, with the same eigenvectors, the conclusions (3.17)-(3.19) hold. O

Lemma 3.2. For the matrix A € R™" with n = 2N from MAFS, when w = % R # 1and p < R, there exist the leading
eigenvalues
A= N, Ay =<1, (3.21)

Proof. Since the leading eigenvalue is given from [9] by

o N
2o(@) =NInR+¢& ~ NInR, 8%—(§) ,

we have
(D) ~ 0,  Ag(®) = ho(p°¢) ~ Np’InR,  Ao(DP) ~ 2NpInR.

Hence we obtain the matrix of the leading eigenvalue )\?f,

Ao(@) (@) | | No’InR  NInR
who(DP) wro(DP) | ~ |w2poNInR 0

Np*InR NInR| _ Np?> N
—[zplnR 0 ]_lnR[zp ol (3.22)

From (3.22) the leading eigenvalues are given by )\Oi = u* InR, where p¥ satisfy
22— Np*L —2pN =0,

to give

InR
A= 7{1\1,02 + /N2p* 4 8pN}.
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WhenR # 1and N is large, we have

2
AT =< N,oz, Ay < —,
0 0 0
and the desired result (3.21) follow. O

Lemma 3.3. Let all the conditions in Lemma 3.2 hold. Then there exists the minimal eigenvalue

1 /0\%
min A, (A x—(—) . 323
in 48] = - (£ (323

Proof. The original eigenvalues are given in [9]

(@) ~ [11( (£)k+ﬁ<%)mk] k=1,2,...,N—1. (3.24)

Based on Lemma 3.1 we have

A(Dg) ~ —% [( % N k} (3.25)
M @) = pPin(@) ~ — 7"[7 &)+ (5 )H], (3.26)
A(DP) = ixk(cp) ~ —Nzl [kTZ (p) + %:2 (E)N_k] (327)

Without loss of generality, let N be even. Let k = % we obtain

o\ N /p\%
@ ~-2(2)" . o~ (2)° (3.28)
o\ o\
@)~ =207 (£)7. g @@y~ —(N 40 (L) (3.29)
2 R 2 R
Then we obtain the matrixatk = § and w = ¢,
2 (5) =2(f)
(@) @) PR R/,
wi(DP)  whr (Do) P\ 2 N /p\2
—w(N +4)p (7) —w— <7)
R P \R
2
N3 2p 2
=-(%) [ (1+4), * (330
N p P
The eigenvalues of (3.30) are given by AT = (%) w*, where p* satisfy the quadratic equation,
7
1 8
22— (2,02 + ) A= . (331)
) N
Similarly we have
=1 -1 (3.32)
TR pT = .
Then the minimal eigenvalue is obtained by
min aA)| = 1 @) =+ (2) (333
i = =—(=)". .
ko § N \R

This is the desired result (3.23).
From Lemmas 3.2 and 3.3 we have the following theorem. O
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Theorem 3.1. Let all the conditions in Lemma 3.2 hold. Then there exists the bound

mlflka(A)l X (R)hzl

v (=
min () P

Cond = (3.34)

Theorem 3.1 is for the circular domains. For the bounded simply connected domains, the exponential bounds of condition
number can also be derived by following the arguments in [9].

4. Plate bending problem with smooth solutions

Consider (1.1)-(1.3) in the rectangular domain S = {(x,¥)| — 1 <x <1, — 1 <y < 1}, and choose the true solution,

u(x, y) = exp(x) cosy + (x* + y*) exp(y) cos x. (4.1)

The plate bending problem with the mixed type of the clamped and simply supported boundary conditions is given in (1.14).
For the collocation Egs. (1.17)-(1.19), the number m of collocation nodes is often chosen to be larger than the number n of
source nodes. Then we obtain the over-determined system of linear algebraic equations
Ax = b, (4.2)
where the matrix A € R™*"(m > n), X € R" and b € R™. The traditional condition number is defined by
0,
Cond = /=, (4.3)
Omin
where oy and o, are the maximal and the minimal singular value of the matrix A, respectively. The new effective
condition number is defined in [11,12] as

bl
OminlIX|I”
where ||x|| is the Euclidean norm. The boundary errors are given by
llells = llu — unllz = VI(un),
where

I(v)=/(v—f)2+wf (v, — ) +ws [ (v — g%,
r I Iy

Cond_eff =

(4.4)

with w; = 1/N'. When I'; = ¢, the mixed type is just the purely clamped boundary conditions. We use both the traditional
MES with (1.8) and the MAFS with Almansi’s FS with (1.12). For the clamped boundary conditions, the errors and condition
numbers are listed in Tables 1 and 2, where M denotes the number of uniform collocation nodes along each edge of 9S.
Thenn = 2N and m = 8M in (4.2). We also use the Trefftz method with the particular solutions (2.4), to give the method
of particular solutions (MPS), and their results are listed in Table 3. Interestingly, the numerical solutions of the MAFS are
slightly better than those of the MFS. However, the MPS is superior to both the MFS and the MAFS.

Next, we still choose the true solution (4.1), but use the mixed type of the clamped and simply supported boundary
conditions:

u="f, u, =g, onx= =1, (4.5)
u=f, u,=g" ony=4=I1,

where v is the exterior normal of dS. The errors and condition numbers of the MFS, the MAFS and the MPS are listed in
Tables 4-6. All tables and figures are carried out by Java programs with double precision. The errors of the MFS and the
MAFS are larger than those of the MPS, because their huge Cond and Cond_eff adversely affect the accuracy of numerical
solutions.

From the above tables and figures, we may also conclude that for smooth solutions, the errors of the MFS may catch up
with those of MPS, if the huge effective condition numbers will not deteriorate the accuracy in the sense that there exist
the sufficient significant digits for the numerical solutions obtained. Evidently, it is due to better stability that the MPS is
superior to the MFS and the MAFS.

5. Plate bending problem with crack singularity
5.1. The MFS using uniform source points on the enlarged circle
Consider the homogeneous biharmonic equation A%u = 0in S, where the solution domain is also a rectangle: S : {(x,y) |

—1 <x < 1,0 <y < 1}. We choose a crack model of singularity from [6], shown in Fig. 1. The section OD represents an
interior crack under the clamped conditions: u = u,, = 0. The symmetric conditions, u, = u,,,, = 0 on OA U BC U CD, are
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Table 1

4361

Errors and condition numbers for the biharmonic equation with the clamped boundary condition by the MFS and the MAFS with R = 2.0, wheree = u—uy

—u—ut
ore =u—uy.

N M llells li€llo.s llells Cond Cond_eff [Ix]|
11 5 2.25(— 8.77(—2) 6.08(—1) 1.54(4) 86.0 273
MFS 21 10 2.16(— 3) 4.46(—4) 6.89(—3) 1.28(6) 5.95(3) 236
31 15 2.89(— 5) 4.33(—6) 9.07(—5) 4.10(7) 1.89(5) 196
41 20 6.03(— 3.72(—8) 1.94(—6) 1.32(9) 6.24(6) 16,6
11 5 6.44(— ) 1.78(—2) 1.46(—1) 1.13(3) 1.62(2) 464
. , 21 10 4.40(—4) 9.18(—5) 1.53(—3) 4.05(4) 6.49(3) 2.99
MAFS with Almansi’s FS 31 15 562(—6) 8.06(—7) 1.47(—5) 7.85(5) 1.26(5) 2.44
41 20 1.37(=7) 8.25(—9) 414(—7) 1.79(7) 2.89(6) 2.12
Table 2

Errors and condition numbers for the biharmonic equation with the clamped boundary condition by the MFS and the MAFS with R = 5.0, where e = u—uy

—u—u
ore =u—uy.

N M llells l€llo,s lells Cond Cond_eff x|
11 5 2.86(— 2) 1.11(=2) 8.73(—2) 2.22(7) 1.69(2) 2.33(3)
MFS 21 10 1.46(— 5.35(—7) 5.89(—6) 1.64(11) 6.68(5) 3.14(3)
31 15 3.10(— 11) 1.71(—11) 8.48(—11) 4.41(14) 1.79(9) 2.59(3)
11 5 1.32(-2) 6.06(—3) 4.18(—2) 2.69(5) 6.54(2) 1.18(2)
NAFS with Almansi’s FS 21 10 4.42(-7) 2.02(—7) 2.09(—6) 9.98(8) 1.79(6) 1.15(2)
31 15 1.78(—12) 8.30(—13) 9.72(—12) 1.67(12) 2.98(9) 95.3
Table 3
Errors and condition numbers for the biharmonic equation with the clamped boundary condition by the MPS, where € = u — uy.
N=M l€lls l€llo.s lell,s Cond Cond_eff B
5 8.24(-3) -3) 1.44(-2) 31.6 574 3.25
10 4.92(-7) -7) 1.46(—6) 3.00(2) 13.2 3.25
15 1.98(—12) —13) 6.83(—12) 7.93(2) 7.46 3.25
Table 4

Errors and condition numbers for the biharmonic equation with the mixed type of the clamped and simply supported boundary conditions by the MFS and
the MAFS with R = 2.0, where € = u — uy ore = u — uj.

N M llells ll€llo.s llells Cond Cond_eff [Ix]|

11 5 187(—1) 227(—1) 1.07 1.83(4) 1.37(2) 203

MES 21 10 2.01(— 3) 1.05(—3) 8.23(—3) 1.46(6) 6.48(3) 24.1
31 15 2.62(— 6.33(—6) 1.08(—4) 487(7) 2.24(5) 196

41 20 577(— ) 5.71(—8) 2.32(—6) 1.52(9) 7.20(6) 166

11 5 472(=2) 3.04(—2) 172(=1) 1.38(3) 2.10(2) 435

. , 21 10 4.15(—4) 1.65(—4) 1.74(—3) 4.11(4) 6.58(3) 2.99

MAFS with Almansi's FS 31 15 5.00(— 6) 1.04(—4) 2.02(—5) 8.35(5) 1.34(5) 2.45
41 20 1.32(— 129(—8) 4.89(—7) 1.85(7) 2.99(6) 2.12

Table 5

Errors and condition numbers for the biharmonic equation with the mixed type of the clamped and simply supported boundary conditions by the MFS and
the MAFS with R = 5.0, where € = u — uy ore = u — ufj.

N M llells llello.s llells Cond Cond_eff [Ix]|

11 5 2.48(—2) 1.19(—2) 8.91(—2) 3.35(7) 2.59(2) 2.28(3)
MFS 21 10 1.28(—6) 7.39(—7) 6.93(—6) 2.00(11) 8.14(5) 3.14(3)

31 15 487(—11) 3.59(—11) 1.28(—10) 472(14) 1.92(9) 2.59(3)

11 5 9.72(-3) 2.07(-2) 7.97(-2) 3.20(5) 8.11(2) 1.13(2)
MAFS with Almansi’s FS 21 10 3.46(—7) 3.03(—7) 2.46(—6) 1.04(9) 1.86(6) 1.15(2)

31 15 1.45(—12) 1.04(—12) 1.20(—11) 1.79(12) 3.19(9) 95.3

Table 6

Errors and condition numbers for the biharmonic equation with the mixed type of the clamped and simply supported boundary conditions by the MPS,

where € = u — uy.

n=M llells lu —unllos [lu — unll1s Cond Cond_eff [Ix]|

5 1.04(—2) 3.34(—3) 2.05(—2) 29.4 499 325
10 5.50(—7) 1.51(=7) 7.11(—12) 8.70(2) 7.93 325
15 2.32(—12) 6.06(—13) 7.11(=12) 8.70(2) 7.93 325
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uy =0
Ugyyyy = 0
C(-1,1) o B(1,1)

U, =0 u=1
u, =0 S Upy =0
D(-1,0) u=0 0 Uy =0 A(L0)
wy =0 Uyyy =0

Fig. 1. Model I called in [6].

required, where v is the outward normal direction to the boundary 8S. On AB when the simply supported conditions are
provided, we choose the biharmonic equation with the following boundary condition, called Model Il in [6] and also in this
paper, see Fig. 1
ulop =0, Uylop = 0, Uylor =0, Uyyyloz = 0, (5.1)
u|/ﬁ =1, uxxl/ﬁ =0, uylﬁ =0, uyyylﬁ =0, uxl@ =0, uxxxl@ =0.

There exists a singularity at O due to the intersection of the clamped and simply supported boundary conditions. The true
function can be found as in [6,12]

U= (dgr.0)+cfir.0)). (5.2)
i=1
where
, 3 i—3 1
gi(r,0) = r+1/2 L cos (1 - f) 6 — —=2 cos (l + f) 1, (5.3)
2 i+ 3 2
fi(r, 8) = r*{cos(i — 1)8 — cos(i + 1)0}. (5.4)

To compute the errors of MES, we choose the highly accurate solution 3y = Zfzol (digi(r, 0) + cifi(r, 0)) as the exact
solution u, where the coefficients d; and c; are also given in [6]. For the boundary condition (5.1), define an energy on the
boundary by

10) = | (v =1+ w2d) + ff(wfvi +wivy,)
AB BC

+ /7(14)%113 + w%vfxx) + /7(w%vy2 + w%vjyy) + /7(1)2 + w%vj), (5.5)
D 0A DO
where the weight w; = 0 (#) and 2N is the number of fundamental solution terms. We use midpoint method to

approximate (5.5). In computation, we use only the MFS with (1.8), and choose R = 1.6 and R = 2.0. In this subsection, the

source points are uniformly located on the outside circle [ = {(r,0)|r = R, 0 < 6 < 27w}, where R > rmax and rpax = é
Since the FSin (1.6) and (1.7) are smooth on 39S, the local refinements of collocation nodes P; near O should be used (see [13]).
The errors and condition numbers are listed in Tables 7 and 8. From Fig. 2, it is shown that the derivatives of these numerical
solutions are large and undesirable. Then we may improve the MFS by greedy adaptive techniques in the next subsection,
to select the source points differently.

5.2. Greedy adaptive techniques to select source points

Greedy adaptive techniques are the algorithms to select better source points, which were first introduced for radial basis
functions in [14], and then for the MFS in [15,16]. The idea is as follows. First we assume many potential source points, as
shown in Fig. 3. Then we select the effective source points, based on smaller errors. For the potential source points as shown
in Fig. 3, we obtain Fx = b, where F = R™*". Then we reduce n as small as possible, to pick up the useful columns of the
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Errors and condition numbers for Model Il with R = 1.6 and M = 55 by the MFS, where & = u — uy, 2N is the number of FS terms, and M is the number
of collocation points of AB.

N 10 20 30 40 50
le|s 1.84(—1) 3.59(—2) 1.17(=2) 1.17(-2) 7.31(=3)
€| 0 ABUDG 1.79(—1) 7.99(—2) 5.37(=2) 3.49(—2) 2.50(—2)
|€v] 00, ADUBCUD 1.50(—1) 9.78(—2) 6.42(—2) 4.90(—2) 441(-2)
[&vv oo 2B 2.00(—1) 3.38(—2) 6.41(—2) 2.58(—2) 6.45(—2)
€000 | oo, 0AUBCUD 7.15(—1) 9.67(—1) 151 4.04 468
lello.s 1.23(—1) 5.29(—2) 4.46(—2) 6.48(—2) 7.06(—2)
llell,s 4.35(—1) 2.20(—1) 1.77(-1) 1.90(—1) 1.88(—1)
Cond 2.23(2) 1.03(5) 1.51(7) 1.64(9) 1.21(11)
Cond_eff 19.53 1.39(2) 1.85(2) 1.22(3) 3.66(3)
1|2 68.7(—1) 4.01(1) 4.37(3) 5.35(4) 1.19(6)

Table 8

Errors and condition numbers for Model Il with R = 2.0 and M = 55 by the MFS, where & = u — uy, 2N is the number of FS terms, and M is the number
of collocation points of AB.

N 10 20 30 40
el 1.12(—1) 3.56(—2) 2.10(—2) 1.18(—2)
1€ o0 ABUBG 1.84(—1) 8.31(—2) 5.38(—2) 3.50(—2)
|€v] oo, ADUBCUD 1.00(—2) 9.52(—2) 8.24(—2) 5.59(—2)
v |oo.78 1.41(—1) 1.37(—1) 9.57(—2) 5.78(—2)
180wy | oo, 0AUBCUTD 1.50(—1) 8.86(—2) 1.78 3.82
lellos 1.31(—1) 6.85(—2) 3.83(—2) 6.39(—2)
lells 4.48(—1) 2.45(—1) 1.67(—1) 1.87(—1)
Cond 1.05(3) 6.53(3) 2.11(8) 3.61(10)
Cond_eff 2.13(1) 5.73(1) 2.87(2) 7.30(2)
X1l 2.04 1.63(2) 1.47(4) 1.61(6)

14 0.2

12l —Numerical uy ke - —Numerical Uyl

Fig. 2. Numerical derivatives u|y—o and uy|,—o by the MFS (N = 80 and R = 1.6) without greedy adaptive techniques, where the source points are
uniformly located on the outside circle Ig.

m x n matrix F in a data-dependent way without cutting the number m of rows down for Fx = b. To maintain stability, we
use orthogonal transformations, but choose the columns dependent on the right-hand side vector b.

Let F = (f],..

vector is given

IIbll2 —

(bf;)’
1612

byb —f- BT \e may find j such that the error

a3
(bej)Z

) =J
16115

is minimal, where ||b||, is the Euclidean norm. This is equivalent to choose the maximum of the values:

16115 # o.

<n,

., £,), where f; are the column vectors. To approximate b by multiples of a nonzero vector f, the error
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Fig.4. The 100(=N; + N,) source points selected by Algorithm L.

So we have Algorithm I given in Appendix (also see [14-16]), and apply it to our problem. Note that the local refinements
of collocation nodes near the singular point O can also be applied. Since the final source points are different for the &; and
¢; after the greedy adaptive techniques, the FS solutions in (1.8) are modified as

Nq Ny
oy =Y GO 0) + Y digy(r.0). (5.6)
j=1 j=1

The initial and final source points are drawn in Figs. 3 and 4, respectively. From Fig. 4, we can see that there exist more
source points selected near to the singular point O; such results coincide with [15,16]. The numerical results are listed in
Table 9 with N = %(Nl + N3), and the error curves are drawn with Figs. 5 and 6. From Table 9, we can see the following
asymptotic relations,

lels ~ 0(0.90Y),  |leflos ~ 0(0.96"),  |lell1.s ~ 0(0.96"),
Cond ~ 0(1.58"),  Cond_eff ~ 0(1.08"),

where ¢ = u — uy, and the effective condition number is given in (4.4).
From Tables 8 and 9 at N = 40, we cite the errors:

llello,s = 6.39(—2), lellis = 1.87(—1), inTables,

llello.s = 1.01(=2), llell1,s = 3.62(—2), inTable9,
and the condition numbers:

Cond = 3.61(10), Cond_eff = 7.30(2), inTableS8,

Cond = 1.52(8), Cond_eff = 2.90(3), inTable9.

Hence, the errors of solutions and derivatives by the MFS using the greedy adaptive techniques are smaller, while the
condition numbers are smaller but the effective condition numbers are larger. Comparing Figs. 5 and 6 with Fig. 2 in
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Errors and condition numbers for Model II by the MFS with greedy adaptive techniques, where e = u — uy, N = %(N1 + N5), 2N is the number of FS
terms, and M = 55 is number of collocation points on AB.

N

10 20 30 40 50 60

lels 6.20(—2) 8.23(—3) 1.61(—3) 6.49(—4) 221(—4) 1.19(—4)
lellos 131(—1) 3.56(—2) 1.60(—2) 1.01(—2) 6.37(—3) 4.56(—3)
lellts 433(—1) 1.30(—1) 5.47(—2) 3.62(—2) 2.36(—2) 1.68(—2)
Cond 6.84(3) 1.08(4) 6.46(6) 1.52(8) 1.56(10) 4.45(13)
Cond_eff 19.3 2.39(2) 1.21(3) 2.90(3) 5.53(3) 2.10(4)
1%l 1.86 2.32 1.98(2) 2.35(3) 1.66(5) 1.30(8)

Exact u, -

Numerical u, P

— — - Exact uy ==

1.2 F | ___ Numerical Uy 1

Fig. 6. Numerical derivatives u|,—o and uy|y—o 1 by the MFS (N; + N, = 100) with greedy adaptive techniques.

Section 5.1, the derivative curves are significantly closer to the true curves. Although the greedy adaptive techniques
need more CPU time, the source points selected by the greedy adaptive techniques are advantageous for the MFS for the
biharmonic equation with singularity.

Finally in Table 10, we cite the results of the MPS from [12]. From Table 10, we can see that

le|ls = 0(0.59"),  Cond = 0(1.55"), Cond_eff = 0(1.09V).
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Table 10
The computed results by the MPS from [12], where ¢ = u — uy, 2N is the number of PS terms, and op,x and o, are the maximal and minimal singular
values of the discrete matrix F, respectively.

N M lelp Cond Cond_eff Omax Omin

5 40 3.33(—3) 228 41.7 6.29 2.76(—2)
10 80 5.68(—5) 6.78(3) 268 292 432(—3)
15 120 2.80(—6) 1.06(5) 820 150 1.41(-3)
20 160 1.38(—7) 1.11(6) 1.86(3) 692 6.23(—4)
25 200 3.30(—9) 9.61(6) 3.55(3) 3.14(3) 3.27(—4)
30 240 2.34(—10) 9.58(7) 6.04(3) 1.84(4) 1.92(—4)
35 280 1.51(—11) 8.60(8) 9.46(3) 1.05(5) 1.23(—4)

Comparing Table 10 with Tables 7-9, the solutions of the MPS are significantly more accurate than those of the MFS even
using the greedy adaptive techniques. Such conclusions can be seen from the data cited from Tables 9 and 10:

le|p = 6.49(—4), Cond = 1.52(8), Cond_eff = 2.90(3), inTable9atN = 40,
lelp = 1.15(—11), Cond = 8.60(8), Cond_eff = 9.46(3), inTable 10atN = 35.

Remark 5.1. Better choice of source points is an important issue for the MFS. In [17-19], for Laplace’s equation on the disk
domainS, = {(r,0)|r < p,0 < 6 < 2m}, the source points Qj* are uniformly located on the larger circle [z(R > p), and
the exponential convergence rates of the MFS are derived for smooth solutions. In [20], a better choice of source points is
explored for the bounded simply connected domain S as follows. By a conformal mapping T, the S can be transformed to a
disk domain S,, and the source points Q; are obtained by the inverse conforming mapping: Q; = T~!Q*. Such techniques
have been implemented numerically for the MFS for the singularity problems: the biharmonic equation with the boundary
conditions (5.1). The computed results do not show a better behavior than the MFS using the uniform source points directly
on I; details are omitted. Hence, the techniques in [20] for choosing source points may not be helpful for the MES for
singularity problems. Based on the computed results in this subsection, the greedy adaptive techniques are recommended.

Remark 5.2. To conclude this section, let us discuss the relations among MFS, MAFS and MPS. We classify them as the Trefftz
method described in (1.9) but with different admissible functions in Vy, such as FS, with Almansi’s FS and PS. Numerical
experiments and comparisons are reported in [21] for smooth solutions, to show that the MFS and MAFS achieve the
equivalent convergence rates by the MPS, but offer much larger condition numbers. Such comparisons retain the same
for singularity problems shown in this paper. These results coincide with the analysis in Sections 2 and 3, where the
optimal convergence rates and the exponential growth rates of Cond are derived. In [22,23], a similarity (but not an intrinsic
equivalence) of algorithms between MFS and MPS is discovered for Laplace and biharmonic equations. The fundamental
solutions can be expanded into particular solutions (such as harmonic or biharmonic polynomials; see [24]), and a particular
solution can also be expressed as a linear combination of FS; see Section 2. However, the bounds of their errors and condition
numbers are distinct; see the analysis in Sections 2 and 3. In [25,26], the series expansions of FS are fully used for the null
field method (NFM) for circular domains with circular holes, where the semi-analytic solutions are obtained. Their explicit
discrete algorithms and strict analysis will be reported in another paper.

6. Concluding remarks

To conclude this paper, let us make a few concluding remarks.

1. In this paper, the method of fundamental solution (MFS) is used for biharmonic equations with both smooth and singular
solutions. Both the traditional FS as rj2 Inr; and Almansi's FS as p? Inr; are chosen for the MFS, the latter is denoted as the
MAFS.

2. The error analysis for the MAFS is made in Section 2, to give the polynomial convergence rates, and in Section 3, the
stability analysis of the MAFS is also made for circular domains, to give the exponential growth rates of condition number.
Their numerical results in Section 4 are slightly better than those by the MFS. Hence, we may simply choose the MAFS
with (1.12) for engineering applications. It is noteworthy to pointing out that this paper is the first time to explore the
analysis of the MAFS and to compare the MAFS with the traditional MFS.

3. For the biharmonic equation with smooth solutions, the clamped and the mixed boundary conditions are considered.
The MFS, the MAFS and the MPS (i.e., the Trefftz method using the particular solutions) are used, and the source points
are uniformly located on the enlarged circle Iz with R > r.. The errors of the MFS and the MAFS can cope with those
of the MPS, if the instability will not adversely affect the accuracy. However, in computation with double precision in
Section 4, the MPS is superior to both MFS and MAFS, due to better stability.

4, For the biharmonic equations with crack singularity, the MPS results are given in [6]. We use the MFS with source points
on circles with local refinements of collocation nodes, and the computed results are not satisfactory; see Fig. 2. In general,
adding one or two particular solutions is useful. Whenever we find the particular solutions of the problem, we should
choose the MPS. However, for singularity problems, if the singular particular solutions cannot be found, we may adapt
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the MFS by the local refined collocation nodes, and by selecting the source points from the greedy adaptive techniques.
From the numerical results in Section 5.2, the greedy adaptive techniques may provide better solutions for singularity
problems.
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Appendix

Algorithm L.

Step1: Pick the column of F whose multiples approximate b best:
1. Copy F — A.

L (bTaj)?

2. Find j such that ||aj|]|§
3. Setu = aj,and v =u/|jul],.
4, Storej.

Step2: Transform the problem to the space orthogonal to the column:
5.A=A—v(v)A
6. b=b—vy)b.

If the satisfactory solution is obtained, the computation is terminated; otherwise repeat Steps 1 and 2.

is maximal and ||aj||> # 0.
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